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Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard

Predictions

RAFFAELE DE RISI
1 and KATSUICHIRO GODA

1

Abstract—Probabilistic tsunami hazard analysis (PTHA) is the

prerequisite for rigorous risk assessment and thus for decision-

making regarding risk mitigation strategies. This paper proposes a

new simulation-based methodology for tsunami hazard assessment

for a specific site of an engineering project along the coast, or,

more broadly, for a wider tsunami-prone region. The methodology

incorporates numerous uncertain parameters that are related to

geophysical processes by adopting new scaling relationships for

tsunamigenic seismic regions. Through the proposed methodology

it is possible to obtain either a tsunami hazard curve for a single

location, that is the representation of a tsunami intensity measure

(such as inundation depth) versus its mean annual rate of occur-

rence, or tsunami hazard maps, representing the expected tsunami

intensity measures within a geographical area, for a specific

probability of occurrence in a given time window. In addition to the

conventional tsunami hazard curve that is based on an empirical

statistical representation of the simulation-based PTHA results, this

study presents a robust tsunami hazard curve, which is based on a

Bayesian fitting methodology. The robust approach allows a sig-

nificant reduction of the number of simulations and, therefore, a

reduction of the computational effort. Both methods produce a

central estimate of the hazard as well as a confidence interval,

facilitating the rigorous quantification of the hazard uncertainties.

Key words: Megathrust earthquakes, tsunami hazard curves

and maps, Bayesian model selection.

1. Introduction

The 2004 Sumatra and the 2011 Tohoku tsunami

events revealed the extreme threat posed by catas-

trophic tsunamis for coastal regions around

subduction areas globally. These well-documented

events have increased the scientific interest towards

the tsunami research, resulting in rapid development

of sophisticated computational tools and new meth-

ods as well as physical observation networks (e.g.,

tsunami early warning systems). Accurate predictions

of tsunami hazards are essential for enhancing the

preparedness and resilience against future tsunami

disasters. In particular, rigorous quantification of

tsunami hazard uncertainties at various spatial scales

is critically important.

According to González et al. (2009), tsunami

hazard assessment methodologies can be classified

into three broad categories: (a) probabilistic tsunami

hazard analysis (PTHA), (b) worst-case scenario

approach, and (c) sensitivity analysis. In this work the

focus is upon PTHA. PTHA has many common

features with probabilistic seismic hazard analysis

(PSHA, Cornell 1968), on the other hand there are

important differences: (a) tsunami intensity measures

are obtained through numerical inundation simula-

tions and not by means of empirical relationships,

such as ground motion prediction equations

(GMPEs); (b) being based on numerical inundation

simulations, PTHA automatically considers the spa-

tial correlation among tsunami hazard estimates at

different locations; and (c) in conventional PSHA,

scaling relationships relating magnitude to seismic

source characteristics are not explicitly considered

because GMPEs used in PSHA do not account for

such features, whilst details of earthquake rupture

process (e.g., slip distribution and rise time) have

major influence on tsunami simulations. Limitations

in the adoption of GMPEs has been already empha-

sized also in recent studies proposing physically

based PSHA (Convertito et al. 2006; Hutchings et al.

2007) in which the empirical relations are substituted

with several wave propagation simulations based on

empirical Green’s functions.
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The existing PTHA can be classified into three

categories. In the first category, PTHA is conducted

using tsunami catalogs (Burroughs and Tebbens

2005; Kulikov et al. 2005; Tinti et al. 2005;

Orfanogiannaki and Papadopoulos 2007), whereas in

the second category, different ‘‘scenario-based’’

PTHA methods are suggested (Geist and Dmowska

1999; Downes and Stirling 2001; Farreras et al. 2007;

Liu et al. 2007; Power et al. 2007; Yanagisawa et al.

2007; Burbidge et al. 2008; González et al. 2009;

Løvholt et al. 2012). In the third category, a combi-

nation of the previous two is considered (Geist 2005;

Geist and Parsons 2006; Annaka et al. 2007; Thio

et al. 2007; Burbidge et al. 2008; Parsons and Geist

2009; Grezio et al. 2010, 2012; Horspool et al. 2014;

Fukutani et al. 2016). Recently, De Risi and Goda

(2016) have developed a new simulation-based multi-

hazards approach for ground motions and tsunamis.

The method combines PSHA and PTHA, and com-

putes earthquake and tsunami hazard curves for

specific locations, starting from the same source

characteristics. The major novelties of the developed

method include: (1) slip distribution of earthquake

rupture is taken into account in the assessment, unlike

conventional uniform slip distribution over a fault

plane, (2) uncertainties of earthquake source param-

eters, i.e., fault width, fault length, mean slip, etc., are

modeled using probabilistic prediction models of

these parameters, accounting for their variability and

dependency, (3) a wide range of magnitude scenarios

is considered by characterizing regional seismicity of

the target region in terms of occurrence rate of major

earthquakes and their relative frequency, and (4)

inland inundation of incoming and receding tsunami

waves are simulated, rather than stopping at offshore

locations, producing more accurate and realistic

estimates of tsunami hazard parameters. The adoption

of realistic heterogeneous slip distributions in a

stochastic simulation framework is a key point for

reliable results, as also emphasized in Li et al. (2016).

It is important to highlight that the computational

requirements for the simulation-based method are

relatively high, in comparison with conventional

methods. De Risi and Goda (2016) suggested that for

the region and site considered in their analyses, about

300 tsunami simulations per magnitude scenario were

necessary for reliable estimates of the tsunami

hazard. Therefore, it is desirable to be able to reduce

the number of simulation runs.

In this paper, the methodology proposed by De

Risi and Goda (2016) is firstly adopted and extended

to carry out tsunami hazard assessments at regional

scale, rather than a single location. This extension is

particularly useful for city-level tsunami hazard

mapping. Secondly, a new Bayesian statistical

method is proposed to improve the statistical

robustness of the tsunami hazard prediction. It is

noted that De Risi and Goda (2016) employed a

classical statistical method to develop a tsunami

hazard curve by treating tsunami simulation results

as empirical data. Although this is straightforward, it

requires a large number of simulations to obtain

stable tsunami hazard estimates. The Bayesian

method produces so-called robust hazard curves by

fitting suitable analytical probabilistic models (e.g.,

log-normal distribution and Pareto distribution)

using less data with respect to the empirical

approach. The computational effort of the Bayesian

method can be high when fitting involves numerical

evaluations of multi-dimensional integrals related to

a large number of parameters, which are treated as

uncertain variables in the Bayesian method. In the

case of tsunami hazard curves, it can be shown that

the number of parameters to represent a tsunami

hazard curve is relatively small (less than or equal

to three), therefore, the Bayesian procedure becomes

feasible with a reasonable computational time,

which is significantly less than the tsunami simula-

tion runs for numerous source scenarios. Thereby,

the adoption of the Bayesian approach allows to

reduce significantly the number of simulations

required to have reliable tsunami inundation results

(up to one-third of the original number). For both

empirical and robust methods, three hazard curves

are obtained, one corresponding to the central value

and two for the confidence interval. In both cases,

the confidence interval reflects the limited number

of simulations. To demonstrate the developed

methodology, the procedure is applied to the

Tohoku region of Japan, where the subduction fault

plane is well defined and information on regional

seismicity is available. Specifically, tsunami hazard

for the plain-type coastal region of Miyagi Prefec-

ture, is investigated.

R. De Risi, K. Goda Pure Appl. Geophys.



2. Methodology

2.1. Earthquake Occurrence Model

A classical occurrence model is the memory-

less Poisson process (McGuire 2004), generally

adopted for long-term hazard assessment, whereas a

renewal model (Matthews et al. 2002) may be

applied for time-dependent hazard assessment based

on recent seismic activity. For the sake of

simplicity, in the following, a Poissonian process

is assumed. It is noteworthy that the simulation-

based framework proposed in this study can

incorporate a more general case, such as a renewal

occurrence model. Let IM represent the tsunami

intensity measure of interest, such as inundation

height (h) or flow velocity (v), the probability to

observe the first occurrence of a tsunami having

intensity value equal to or greater than the specific

value im in t years is:

PðIM� imjtÞ ¼ 1� exp[� kðIM� imÞ � t�; ð1Þ

where k(IM C im) is the mean annual rate at which

the tsunami intensity measure IM will exceed the

specific value im, at a given location. In analogy to

the PTHA methodology by Parsons and Geist (2009),

the rate k(IM C im) can be described as a filtered

Poisson process:

kðIM� imÞ ¼
XNSources

i¼1

kiðM �MminÞ �
Z

PiðIM� imjhÞ

� SðhjMÞ � fiðMÞ � dM:

ð2Þ

In Eq. (2), NSources is the number of subduction

seismic sources that are capable of generating a tsu-

nami considered in the analysis. ki(M C Mmin) is the

mean annual rate of occurrence of the seismic events

having magnitudes greater than the minimum mag-

nitude Mmin for the ith source, whereas fi(M) is the

magnitude–frequency distribution characterizing the

th siource. The term S(h|M) represents the functional

distribution of the uncertain source parameters con-

ditioned on the earthquake magnitude. Pi(IM C im|h)

is the probability that the tsunami intensity measure

IM produced by the ith source will exceed a pre-

scribed value im at a given coastal location for a

given set of tsunami source parameters h.

To obtain the terms on the left-hand side of

Eq. (2), four phases are defined: (1) definition of

input data (i.e., geometrical characteristics of each

seismic source and magnitude–frequency distribu-

tion), (2) definition of earthquake source scaling

relationships and stochastic source model generation,

(3) tsunami inundation modeling, (4) statistical

analysis of simulated tsunami results and final

convolution. The description for each of these phases

is presented in the following.

2.2. Sources Characterization and Magnitude–

Frequency Distribution

The first step is the identification of all seismic

sources that are capable of producing damaging

tsunami inundation at a site. The sources that are of

interest for PTHA are usually located in subduction

zones at convergent plate boundaries, and they are

known from seismological studies. For instance,

detailed geometrical information on subduction zones

is available online (Hayes et al. 2012). With respect to

the location of interest for which PTHA is performed

(e.g., the star in Fig. 1a), tsunamigenic sources can be

divided into near-field and far-field (Fig. 1a). Tsuna-

mis triggered by near-field seismic sources can be

regarded as the main contributors of the tsunami

impact, and they should be studied in detail. In

comparison to local tsunamis, a simpler parameteriza-

tion is usually sufficient for far-field tsunamis because

seismic moment, source mechanism, and radiation

pattern aremore influential than slip distributionwithin

a rupture plane (Geist and Parsons 2006, 2016).

The procedure proposed herein simplifies the

geometry of the tsunamigenic sources by defining one

or more curved surfaces having a rectangular shape

(Fig. 1b). Slip distributions of past events from

literature can be used to determine the source

geometry (Fig. 1b). The seismic source must be able

to accommodate the maximum magnitude (Mmax) and

should be consistent with the magnitude–frequency

distribution. Extreme values of magnitude (e.g.,

larger than 9) should be considered carefully, since

such large earthquakes are rare and may span across

multiple rupture segments. These events may well be

modeled by the characteristic magnitude model

(Youngs and Coppersmith 1985).

Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical…



Since the methodology considered in this study is

based on the stochastic synthesis of simulated slip

distributions representative of realistic seismic

events, a discretization of the fault plane into many

sub-faults (Fig. 1c), generally having variable dip, is

required. The dimension of the sub-faults must allow
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around the world according to the NEIC catalog. Schematic representations of e Gutenberg–Richter relationship and f discrete probability
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an accurate modeling of the slip distribution corre-

sponding to the minimum magnitude (Mmin) that is

considered in the magnitude–frequency distribution.

This minimum value of magnitude should also take

into account that small-to-moderate earthquakes

rarely generate significant tsunamis and their contri-

butions to the tsunami hazard are negligible (Annaka

et al. 2007).To describe the earthquake size in a target

region, i.e., the term f(M) in Eq. (2), a truncated

Gutenberg–Richter relationship (Gutenberg and

Richter 1956) can be adopted:

GðMÞ ¼ 1� 10�b�ðM�MminÞ

1� 10�b�ðMmax�MminÞ
; Mmin\M\Mmax;

ð3Þ

where the b value is calibrated on the basis of his-

torical events available from earthquake catalogs

(e.g., the NEIC earthquake catalog, http://earthquake.

usgs.gov/earthquakes/search/, Fig. 1d). Subsequently,

the mean annual rate of occurrence of earthquakes

with magnitudes greater than or equal to Mmin falling

in that area can be calculated from the fitted Guten-

berg–Richter relationship (Fig. 1e). For simulation, it

is convenient to convert the continuous distribution of

magnitudes into a discrete set of values (Mmin,…, Mi,

…, Mmax), by adopting a specific discretization

interval DM. The discrete probability can be calcu-

lated as follows:

PðMiÞ ¼ GðMi þ 0:5 � DMÞ � GðMi � 0:5 � DMÞ:
ð4Þ

The probability mass function (pmf, Fig. 1f) for

the discrete values of magnitude presented in Eq. (4)

is normalized (conditional) with respect to the

occurrence rate for the minimum magnitude event.

Since the discrete magnitude is considered, the

integral in Eq. (2) is replaced by a summation.

It is noteworthy that the adoption of the GR model

with a Poisson occurrence process and estimating

model parameters based on short earthquake catalogs

may not produce the reliable estimate of the long-

term recurrence rate for large earthquakes ([M8.5)

given the lack of major historical events in modern

instrumental catalogs (e.g., 869 Jogan earthquake for

the Tohoku case; see Sawai et al. 2012). The

extrapolation of the fitted magnitude-recurrence

model should be considered carefully (Pisarenki and

Rodkin 2010).

2.3. Scaling Relationships of Earthquake Source

Parameters and Stochastic Source Models

The proposed simulation-based method generates

a certain number of stochastic source models to take

into account uncertainty related to the rupture

process. The simulation is based on the probabilistic

models of earthquake source parameters (Goda et al.

2016) and the spectral synthesis method (Goda et al.

2014; Fukutani et al. 2016), characterizing the

earthquake slip distribution by wavenumber spectra

(Mai and Beroza 2002). Specifically, for each discrete

value of magnitude Mi (target magnitude hereafter),

many samples of the source parameters are necessary

to define a slip field on the fault plane comprehen-

sively. Herein, scaling relationships that evaluate the

source parameters (e.g., rupture size and spectral

characteristics of the slip) as a function of moment

magnitude are used for stochastic source generation.

Such scaling relationships are obtained on the basis of

226 inverted source models in the SRCMOD

database (Mai and Thingbaijam 2014).

Specifically, the two geometrical parameters, i.e.,

rupture width W and length L, are used to create the

rupture area, which is randomly located inside the

pre-defined subduction fault plane. Subsequently, a

slip distribution is represented as a constrained

random field based on desirable seismological fea-

tures, which are characterized by anisotropic

wavenumber spectra (Mai and Beroza 2002), and a

realization of such earthquake slip distribution is

obtained using a stochastic synthesis method (Goda

et al. 2014). The simulation of the random slip

distribution is carried out using a Fourier integral

method (Pardo-Iguzquiza and Chica-Olmo 1993).

The amplitude spectrum of the target slip distribution

is specified by a theoretical power spectrum, while

the phase spectrum is represented by a random phase

matrix. For the amplitude spectrum, the von Kármán

model is adopted (Mai and Beroza 2002). According

to the von Kármán model, the correlation lengths

(CLz along the dip and CLx along the strike) are

important source parameters that define the spatial

heterogeneity of small wavenumber components in

Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical…
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the spectrum. On the other hand, the Hurst number

NH determines the spectral decay in the large

wavenumber range. All three parameters that

describe the slip heterogeneity can be simulated

using the scaling relationships by Goda et al. (2016).

The obtained complex Fourier coefficients are trans-

formed into the spatial domain via 2-D inverse Fast

Fourier Transform. The synthesized slip distribution

is then scaled non-linearly to achieve suitable right-

tail characteristics, in agreement with those observed

in the finite-fault models, using the Box–Cox param-

eter k (Box and Cox 1964) that is modeled as a

normal random variable. Finally, the generated slip

distribution is further adjusted to have a mean slip

(Da) and maximum slip (Dm), which also scale with

respect to the magnitude; the slip parameters can also

be simulated using the scaling relationships by Goda

et al. (2016).

It is important to note that the error terms of the

source parameters W, L, CLz, CLx, Da, and Dm

mentioned above are considered to follow a multi-

variate normal distribution (Goda et al. 2016),

therefore, values of these source parameters can be

simulated jointly in the stochastic source generation.

Joint random sampling of the source parameters

ensures overall consistency in the simulated param-

eters, leading to a potential reduction of the hazard

uncertainties. Nevertheless, due to uncertainty in the

source parameters, sampled values of W, L, and Da

may result in a seismic moment (i.e., lWLDa)

different from the target magnitude Mi. Therefore,

to avoid sampled values of W, L, and Da that do not

match the target magnitude, consistency of the

simulated magnitude with the target is ensured in

determining an acceptable source model; in case the

calculated moment magnitude does not fall within a

certain range, the simulated combination of W, L, and

Da is discarded and the sampling is repeated. A

tolerance band of ±dM around each magnitude value

can be used to define the acceptance criterion in this

regard; in this study, dM is set to 0.05.

2.4. Tsunami Modeling

As mentioned above, with respect to PSHA,

intensity measures are not usually assessed using

empirical prediction equations, such as GMPEs. In

PTHA, for each stochastic event, the maximum

inundation intensity measure for a specific location

needs to be computed through numerical simulations

of the physical phenomena from the source to the

location of interest.

The first step is the calculation of the initial water

surface elevation for a given earthquake slip scenario.

Specifically, assuming incompressibility of water,

initial water surface elevation from the mean sea

level can be considered to be equivalent to the seabed

displacement field induced by the slip on the fault

plane. Such a displacement field can be evaluated

using analytical formulae for elastic dislocation

(Okada 1985; Tanioka and Satake 1996). To optimize

the computation of seafloor dislocation, the seafloor

displacement field induced by a unity slip for each

sub-fault can be computed in advance, by creating a

database of seabed displacement fields. To obtain the

total effects of the ith slip distribution, each displace-

ment field is scaled based on the slip in the sub-fault

and summed.

Tsunami modeling is then carried out using a

suitable numerical code that is capable of generating

offshore tsunami propagation and inundation profiles

by evaluating non-linear shallow water equations

with run-up. See Dutykh et al. (2011) for a summary

of available computer codes in literature specific or

adaptable to tsunami analysis (e.g., ComCot, FUN-

WAVE, MOHID, TIDAL, TUNAMI, and SWAN,

among the others). To run tsunami simulations, a

comprehensive database of bathymetry/elevation,

coastal/riverside structures (e.g., breakwater and

levees), and surface roughness is required.

2.5. Empirical Tsunami Hazard Curve Based

on Tsunami Simulation Results

A conceptual representation of the calculation of

the empirical tsunami hazard curve is presented in

Fig. 2a. For each seismic source and for each

magnitude, simulated intensity measures are used to

evaluate the term P(IM C im|M) for the locations of

interest (Fig. 2b). Such probability is represented by

the complementary cumulative distribution function

(CCDF) of the resulting IM. Specifically, IM is

represented with the Kaplan–Meier estimator (Kaplan

and Meier 1958), being the central estimate:

R. De Risi, K. Goda Pure Appl. Geophys.



PðIM[ imijMÞ ¼
Y

IM\imi

NsimðIM� imijMÞ � NsimðIM ¼ imijMÞ
NsimðIM� imijMÞ ;

ð5Þ

where Nsim is the number of simulations. In addition,

a confidence interval around the central estimate can

be obtained by calculating the variance of the data

through Greenwood’s formula (Greenwood 1926):

Var[PðIM[ imijMÞ� ¼ PðIM[ imijMÞ2 �
X

IM\imi

NsimðIM ¼ imijMÞ
NsimðIM� imijMÞ � NsimðIM ¼ imijMÞ :

ð6Þ

The hazard curves obtained in the previous step

for each magnitude (i.e., conditional hazard curves)

are then multiplied by the probability corresponding

to the related magnitude, and eventually are summed

up (Fig. 2c). Also in this phase, three curves are

obtained, one corresponding to the central value and

two for the confidence interval.

3. Robust Hazard Curves

A disadvantage of the empirical method for

developing a conditional tsunami hazard curve for a

given magnitude is that a greater number of simula-

tions are required to obtain stable high/low percentile

values of tsunami wave height (e.g., 10th and 90th

percentiles). In this section, a Bayesian model fitting

method is presented. The method replaces the

empirical conditional hazard curve with an analytical

model using a smaller number of simulation results.

Adopting analytical probability distributions has two

more advantages. Firstly, parametric models reduce

numerical costs with respect to non-parametric

models, and improve robustness by avoiding over-

fitting problems (Zentner 2017). Secondly, for some

analytical distributions, it is possible to perform

hazard-vulnerability integration in a closed form

(Cornell et al. 2002). Such a computationally efficient

method is particularly useful, when tsunami inunda-

tion simulations are run over land areas represented

by high-resolution digital elevation data.

Figure 2d shows a procedure adopted for the

derivation of the robust hazard curves. In this case, the

conditional hazard curves are fitted with an analytical

model that is the most suitable for each magnitude

(Fig. 2e). The final convolution (Fig. 2f) remains

identical to the case of the empirical hazard curve.

Specifically, a three-step approach can be followed.

Firstly, candidate probabilistic models that are suit-

able to describe tsunami hazard parameters are selected

among those available in literature. Then, an evidence-

based Bayesianmodel selection is carried out to find the

most suitable probability distribution. Finally, a robust

model is calculated by integrating the analytical distri-

bution of the tsunami hazard and the joint posterior

distribution of the hazard curve statistics obtained from

the evaluation of themodel evidence. Taking advantage

of the model selection results, a Bayesian model aver-

aging can also be carried out, which can be compared

with the robust model.

3.1. Candidate Probabilistic Models

Many studies suggested that the log-normal

distribution is the most suitable in fitting tsunami

wave heights observed along a given coastal line

(Van Dorn 1968; Kajiura 1983; Go 1997; Choi et al.

2002; Kim et al. 2014). On the other hand, other

studies indicated that tsunami wave heights can be

approximated by different probability distributions

(Go et al. 1985; Mazova et al. 1989; Kim et al. 2014).

Therefore, further investigations are warranted. In

this study, seven distributions, which are widely

applied in modeling extreme events, are considered:

the Exponential distribution (EXP, Eq. (7)), the Log-

Normal distribution (LN, Eq. (8)), the Log-Cauchy

distribution (LC, Eq. (9)), the Generalized Pareto

distribution (GP, Eq. (10)) with threshold equal to

zero, the Generalized Extreme Value distribution

(GEV, Eq. (11)), the three-parameter Log-Normal

distribution (LN3, Eq. (12)), and the Generalized

Logistic distribution (GLO, Eq. (13)).

f ðxÞ ¼ h1 � e�h1�x; ð7Þ

f ðxÞ ¼ 1

x � h2 �
ffiffiffiffiffiffi
2p

p � e
� lnðxÞ�h1½ �2

2�h2
2 ; ð8Þ
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EXP is a one-parameter distribution; LN, LC, and

GP are two-parameter distributions; and GEV, LN3,

and GLO are three-parameter distributions. In

this section, the symbol h represents the parameters

of the probability distributions and should not be

confused with the earthquake source parameters.

3.2. Bayesian Model Selection

Conventionally, the best-fit probability distribu-

tion for the peak tsunami height can be determined

through various types of goodness-of-fit test, such as

v2 test, Cramer–von Mises test, Kolmogorov–Smir-

nov test, Anderson–Darling test, the probability plot

coefficient (PPCC) method, and the L-moment ratio

diagram (Kim et al. 2014). In addition, Akaike

Information Criterion (AIC, Akaike 1974) and

Bayesian Information Criterion (BIC, Schwarz

1978) are also applicable in the model selection. In

this study, a Bayesian model selection is considered

with respect to other methodologies, Bayes’ Theorem,

at the model class level, automatically enforces model

parsimony without the need for terms penalizing a case

with the larger number of uncertain parameters.

Denoting available empirical data to be fitted with

the ith model Ti among N models by D, the

probability of the model Ti can be obtained as

follows:

pðTijDÞ ¼
pðDjTiÞ � pðTiÞPN
i¼1 pðDjTiÞ � pðTiÞ

; i ¼ 1; . . .;N;

ð14Þ

where p(Ti|D) is the posterior distribution of the

model Ti and can be used to select the most probable

one among the considered N models. p(Ti) is the prior

distribution of the model Ti and can be taken equal to

1/N. Finally, p(D|Ti) is called evidence for the model

Ti provided by the data D. According to Muto and

Beck (2008), the log-evidence can be expressed as

the difference of two terms:

ln[pðDjTiÞ� ¼
Z

ln[pðDjhi; TiÞ� � pðhijD; TiÞ � dhi

�
Z

ln
pðhijD; TiÞ

pðhijTiÞ

� �
� pðhijD; TiÞ � dhi;

ð15Þ

where p(D|hi,Ti) is the likelihood function depending

on the adopted model Ti and its parameters hi.

Specifically, assuming that data are independent, the

likelihood is the product of the probability of the data

D given the parameter hi. p(hi|Ti) and p(hi|D,Ti) are

the prior and the posterior of the model parameters,

respectively. The prior distribution of the model

parameters represents the information available on hi
prior to the estimation, while the posterior of the

model parameters is obtained according to the

Bayesian paradigm (Box and Tiao 1992):

pðhijD; TiÞ ¼
pðDjhi; TiÞ � pðhijTiÞ

r pðDjhi; TiÞ � pðhijTiÞ � dhi
ð16Þ

It is worth noting that in Eq. (15), the first term of

the right-hand side is the posterior mean of the log-

likelihood function which gives a measure of average

goodness-of-fit of the model Ti to the data, and the

second term is the Kullback–Libler information

(Kullback and Leibler 1951) (or relative entropy),

b Figure 2

Conceptual representation of the derivation of a empirical and

d robust hazard curves. b, e Conditional hazard curves. c, f Final

convolution and unconditional hazard curve
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which is a measure of the information gain about Ti

from the data. Therefore, Eq. (15) explicitly accounts

for a trade-off between the data-fit of the model and

its model complexity, i.e., how much information it

takes from the data (Cheung and Beck 2010).

3.3. Bayesian Robust Hazard Curve

The evidence-based assessment facilitates the

calculation of robust hazard curves (Jalayer et al.

2015). Once the most suitable model Ti is identified,

the posterior distribution of its parameters p(hi|D,Ti)

can be used to build the robust predictive probability

density function of future response X through total

probability theorem:

p̂ðXjD; TiÞ ¼
Z

pðXjhi;D; TiÞ � pðhijD; TiÞ � dhi

ð17Þ

The robustness of the model comes from the fact

that it takes into account the uncertainty in parameters

of the model Ti, reflecting the limited number of dataD

(i.e., simulations). It is worth noting that the robust

hazard curve is the expected value of a prescribed

probability model taking into account the posterior

distribution of the model’s parameters. Therefore, the

variance of the model can be calculated as follows:

r2pðXjD;TiÞ ¼
Z

pðXjhi;D; TiÞ2 � pðhijD; TiÞ � dhi

�
Z

pðXjhi;D; TiÞ � pðhijD; TiÞ � dhi
� �2

:

ð18Þ

The calculated variance can be used to define a

confidence interval around the robust model.

3.4. Model Averaging

Equation (14) can be used not only for model

selection, but also for response prediction based on

all models taken into account. Let X denote the

quantity to be predicted. According to Total Proba-

bility Theorem, the probability of X given the data D

can be calculated as follows:

pðXjDÞ ¼
XN

i¼1

p̂ðXjD; TiÞ � pðTijDÞ; ð19Þ

instead of using the single best model for prediction

as in the robust hazard curve. The operation presented

in Eq. (19), which is a weighted average of the

models adopting evidence as weight, is also called

posterior model averaging in the Bayesian literature

(Raftery et al. 1997) or hyper-robust predictive

model. In other words, models are weighted accord-

ing to their degree of belief and based on the quality

of the information they deliver.

4. Case Study

As a case study, the plain-type coastal area of

Miyagi Prefecture, in the Tohoku region, Japan, is

investigated (Fig. 3). This region has been severely

affected by the 2011 Tohoku tsunami. Specifically

two sets of locations are focused on in this investi-

gation: 44 points located on the coastal line (elevation

about zero) in front of tsunami protection barriers,

and 44 points, having the same latitude of the first

ones, located inland behind tsunami protection bar-

riers. The mean average height of these protection

barriers is about 5.30 m, with a minimum and max-

imum height of 1 and 10 m, respectively.

To reduce the computational efforts and to focus

on the methodological aspect, only a specific seis-

mogenic context, i.e., near-field source in the Tohoku

region of Japan (Fig. 1a), is taken into account.

Nevertheless, the procedure can be extended to con-

sider all possible sources of interest for the Tohoku

region and can be applied to other subduction zones.

Furthermore, only geophysical uncertainty is con-

sidered herein. Specifically, a 2011 Tohoku-type fault

is analyzed with a source zone of 650 km along the

strike and 250 km along the dip (Fig. 3); this is an

extended fault plane of the source model for the 2011

Tohoku earthquake (Satake et al. 2013). The fault

model can accommodate a M9 earthquake, consistent

with the maximum magnitude adopted for the mag-

nitude–frequency distribution. Values of magnitude

larger than 9 are neglected since simultaneous rupture

of the off-the-Tohoku subduction segment and the

off-the-Hokkaido subduction segment are not con-

sidered. For the stochastic synthesis of simulated

seismic events, a 10-km mesh with variable dip is

R. De Risi, K. Goda Pure Appl. Geophys.



generated. Such discretization allows accurate mod-

eling of the slip distribution that corresponds to a

M7.5 seismic event, involving at least 5 by 5 sub-

faults.

With respect to the magnitude frequency distri-

bution for the Tohoku region, the Japanese

Headquarters for Earthquake Research Promotion

proposes a hazard model based on the Poisson pro-

cess, combined with the Gutenberg–Richter

magnitude–frequency model. Specifically, a b value

equal to 0.9 is adopted (Headquarters for Earthquake

Research Promotion 2013) in Eq. (3). To obtain the

pmf presented in Eq. (4), seven discrete values of

magnitude are considered. Adopting a discretization

interval of 0.25 and considering 7.5 and 9.0 as the

smallest and largest central discrete values of

moment magnitude, the minimum and maximum

values of magnitude to consider in the truncated

Gutenberg–Richter relationship are 7.375 and 9.125,

respectively. Therefore, the seven central magnitude

values are 7.5, 7.75, 8.0, 8.25, 8.5, 8.75, and 9.0.

According to the NEIC earthquake catalog

(Fig. 1b), the mean annual rate of occurrence of

earthquakes with magnitude greater than or equal to

7.375 in the source area is calculated. In this study,

the events reported in the database that fall in the

considered major rupture area, recorded in the period

1976–2012, having a depth varying between 0 and

60 km, and considering a magnitude range between 5

and 9, are considered. According to the Gutenberg–

Richter fitting (Fig. 4a), the rate k(M C 7.375) is

estimated to be 0.183. Figure 4b shows the pmf for

the discrete values of magnitude. Note that the

Gutenberg–Richter model presented herein shown in

Fig. 4a is similar to the magnitude-recurrence model

adopted by the Headquarters for Earthquake Research

Promotion (2013).

4.1. Stochastic Source Models and Tsunami

Simulations

Figure 5 shows the adopted scaling relationships

for four source parameters; the central estimates and

the 16th/84th percentiles are presented with contin-

uous and dashed lines, respectively. Simulated data

from the stochastic source modeling (grey dots) and

their statistics (colored circles) are also shown.

Magnitude values for simulated data are not perfectly

aligned at the seven discrete values; a tolerance band

of ±0.05 around each magnitude value is allowed

(see the detail shown in the red dashed circle in

Fig. 5). Examples of the slip distributions generated

for the M7.5 and M9.0 scenarios are shown in Fig. 6a,

c.

Once the slip distribution is calculated, tsunami

simulations can be carried out. Tsunami modeling is

performed using a well-tested numerical code (Goto

et al. 1997) that is capable of generating offshore
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tsunami propagation and inundation profiles by

evaluating non-linear shallow water equations with

run-up using a leapfrog staggered-grid finite differ-

ence scheme. The run-up calculation is based on a

moving boundary approach, where a dry/wet condi-

tion of a computational cell is determined based on

total water depth relative to its elevation. To catch the

most critical phases of the tsunami waves, the

numerical tsunami simulation is performed for a

time window of 2 h following the seismic event. The

Courant–Friedrichs–Lewy condition determines the

integration time step DT; it is a function of

bathymetry/elevation data and their resolution. In

this study, DT is equal to 0.5 s. Results from

simulations are the maximum tsunami intensity

measures of interest (i.e., wave height, flow velocity,

etc.) for one or more specific locations along the

coast; aggregate tsunami hazard parameters, such as

inundation areas above a certain depth, can also be

evaluated.

The Miyagi prefectural government provided a

complete dataset containing information about

(a) bathymetry and elevation, (b) tsunami defense

coastal/riverside structure (e.g., breakwater and

levees), and (c) surface roughness. Data are organized

as nested grids (1350—450—150—50-m) for the

entire geographical regions of Tohoku; therefore, the

digital elevation model used for the inundation

provided by Miyagi Prefecture has a resolution of

50-m.

More specifically, the ocean-floor topography

resolution is 1:50,000; it is based on the bathymetric

charts and JTOPO30 database developed by the Japan

Hydrographic Association on the basis of nautical

charts developed by the Japan Coastal Guard.

Municipalities in Miyagi Prefecture provided detailed

data about the elevation of the coastal/riverside

tsunami protection structures. Such coastal/riverside

structures are represented as vertical walls along one

or two sides of each interested computational cell.

Homma’s overflowing formulae are adopted for

evaluating the volume of water that overpasses the

walls. No tidal fluctuation is considered in this study.

Ocean bottom friction is estimated through Man-

ning’s formula. Japanese land use data are adopted to

assign Manning’s coefficients to computational cells;

the following assumptions are made: 0.02 m-1/3 s for

agricultural land, 0.025 m-1/3 s for ocean/water,

0.03 m-1/3 s for forest vegetation, 0.04 m-1/3 s for

low-density residential areas, 0.06 m-1/3 s for mod-

erate-density residential areas, and 0.08 m-1/3 s for

high-density residential areas.

Figure 6b, d show the results in terms of maxi-

mum tsunami wave height for the case study area,

corresponding to the two slip simulations for M7.5

(Fig. 6a) and M9 (Fig. 6c), respectively. Results
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show that tsunami intensity increase significantly

with magnitude, both in terms of inundation height

and inundated areas.

4.2. Effects of Number of Simulations

It is well known that short or incomplete data can

lead to biased estimation of the hazard parameters

when conventional statistical methods are adopted

(Lamarre et al. 1992). In this section, a bootstrap

procedure is carried out to study the effect of the

number of simulations on the final hazard estimation.

Bootstrap provides, through a Monte Carlo simula-

tion, the sub-sampling of a pool of m independent and

identically distributed random variables from an

initial sample of n elements (with m B n), having a

distribution function identical to the empirical distri-

bution function of the original sample. For each

generated sample containing m elements, mean,

median, and different percentiles can be computed.

Such estimates can be used to quantify the uncer-

tainty associated with parameter values.

All points along the coast (Fig. 6) are investi-

gated; for illustration, results for points 8, 20, and 35,

located on the coast in front of the barriers, are shown

in Fig. 7. For each location, five percentiles (i.e., 5th,

25th, 50th, 75th, and 95th) of the wave height are

presented as a function of the number of simulations
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for different magnitude values (i.e., 7.5, 8.0, 8.5, and

9.0). A fixed original sample of n = 500 simulations

is considered for the analysis. The bootstrap proce-

dure is then applied considering the number of

simulations m varying between 1 and 500; for each

trial number of simulations m, 1000 Monte Carlo

samples are realized. Results show that the central

estimates (i.e., the 50th percentile, represented by the

black line) are stable after 200 simulations for all

considered magnitude values. To obtain stable high

percentiles, a larger number of simulations are

needed (the black dashed line in Fig. 7). In particular,

300 simulations are necessary for M7.5, 250 simula-

tions for M8.0, and 200 simulations for M8.5 and

M9.0. Such a decreasing trend with the magnitude is

consistent with the physical process: when the

magnitude is relatively small, the rupture area can

move more freely over the fault plane (see Fig. 6),

increasing the variability of the inundation intensity

measures. In turn, when the magnitude is large, the

fluctuation of the rupture area is more constrained

(i.e., the major slip area tends to occupy the entire

subduction plane). This concept is still valid for

points located behind tsunami protection barriers; in

the latter case the minimum values of magnitude are

shifted to values for which the barrier starts to be

inefficient (e.g.[8).

4.3. Empirical Tsunami Hazard Curves and Hazard

Maps

For each value of seven magnitudes (i.e., 7.5,

7.75, 8.0, 8.25, 8.5, 8.75, and 9.0), according to the

bootstrap analysis, 300 sets of the tsunami source

parameters h are generated using the scaling rela-

tionships by Goda et al. (2016) and 300 tsunami

simulations are performed. In total, 2100 stochastic

simulations are performed in the specific case study.

The simulated results are then treated according to

the empirical method presented in Sect. 2.5. The

empirical CCDFs in terms of tsunami wave height for

point 20 in front of and behind the tsunami protection

barriers are presented in Fig. 8a, d, respectively, for

seven magnitude values analyzed. Figure 8b, e show

the conditional hazard curves, weighted by the

probability values obtained from the discretized

Gutenberg-Richter relationship (Fig. 4b). The

summation of the curves presented in Fig. 8b, d,

multiplied by k(M C 7.375) = 0.183 (Fig. 4a), leads

to the final empirical hazard curves (Fig. 8c, f).

It is possible to observe that for the point in front

of the protection barriers, the slope of the final hazard

curve for wave height greater than 5 m is very steep.

This is the direct consequence of less variability of

tsunami inundation for large values of magnitude.

Moreover, the tsunami height cannot be so high in the

Sendai plain areas unlike ria-type coastal areas (e.g.,

Onagawa and Kesennuma), where the wave amplifi-

cation due to topographical effects is significant.

The comparison of the hazard curves for the two

points with the same latitude in front of and behind

the protection barriers, having different elevations,

shows another important result: when the location is

further inland or at higher elevation and when the

location is protected by tsunami defense, contribu-

tions of medium values of magnitude become less

important (values between 7.5 and 8.25 in the

examined case, Fig. 8a, d). Therefore, the maximum

mean annual rate of occurrence decreases, and the

extension of the flat part of the hazard curve increases

progressively, going from the coast to inland (Fig. 8c,

f) since only higher values of magnitude produce

significant effects at inland locations. A consequence

of this result is that for inland locations a smaller

number of simulations can be adopted by ignoring

smaller magnitude cases.

Figure 9a, c show the hazard curves in terms of

tsunami wave height for all points along the coast, for

points in front of and behind the tsunami protection

barriers, respectively. The results for points 8, 20, and

35 (same locations considered in Fig. 7) are high-

lighted. Figure 9b, d show the hazard curves for the

same points in terms of tsunami depth that is the

tsunami wave height corrected for the local topogra-

phy/elevation; such correction partially removes the

flat part of the curves for the inland locations. No

major differences can be noted between Fig. 9a, b,

since the considered locations have elevation approx-

imatively equal to zero. Some of the hazard curves

shown in Fig. 9a present a flat part that is lower than

the maximum mean annual rate (i.e., 0.183); such a

result is observed especially for coastal locations

close to harbor protection structures (i.e., breakwater,

reef, etc.). Structures protecting harbors from storms
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have demonstrated to be effective in protecting also

from tsunamis generated by small magnitude seismic

events.

The comparisons of the hazard curves for points

8, 20, and 35 on the coastline and inland (Fig. 10)

lead to an interesting observation. Tsunami hazard

curves for points 8 and 20, located behind the

protection barriers, have little contributions from

lower values of magnitude (as shown in Fig. 8),

therefore, hazard curves in terms of both tsunami

wave height and inundation depth are lower than

hazard curves for the corresponding points located in

front of the protection barriers. Conversely, the

hazard curve in terms of tsunami wave height for

point 38, located behind the tsunami barriers (dotted

brown line in Fig. 10a), is greater than the hazard

curve in front of the tsunami barriers (continuous

brown line in Fig. 10a). This result is due to the

insufficient effectiveness of protection barriers; in

fact, in this case, the low values of magnitude still

contribute to the final hazard, but only with high

values of wave height, specifically higher than local

elevation. Generally, the probability of simulated

tsunami wave height lower than the local topography

is equal to zero, by definition of tsunami wave height.

This effect is obviously lost for curve in terms of

tsunami inundation depth (Fig. 10b). This observa-

tion highlights the need of adopting depth-based

tsunami fragility curves for the risk assessment,

especially for the comparison of different mitigation

strategies.

An alternative hazard representation is shown in

Fig. 11; specifically, tsunami wave height (Fig. 11b,

e) and tsunami inundation depth (Fig. 11c, f) for all

44 points along the coast are displayed as a function

of the return period (different colors from grey to
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red), calculated as the inverse of the mean annual rate

of occurrence. Figure 11a–c show results for the

locations in front of the protection barriers and

Fig. 11d–f show results behind the protection barri-

ers. It is possible to observe that for some points the

depth values are different from zero only for high

values of return period. This is related to the presence

of protection structures and/or to the topographical

effects.

Finally, the hazard computation procedure can be

extended to obtain uniform tsunami hazard maps. The

term ‘uniform’ refers to the same annual probability

of exceedance of the tsunami intensity values for all

points in a given geographical region. Figure 12

shows the uniform tsunami hazard maps for five

values of return period: 30, 50, 475, 975, and

2475 years. These maps are obtained by repeating

the simulations shown for a single point, for a set of

grid points covering the area of interest. As tsunami

intensity measure, maps show both tsunami wave

height (Fig. 12a–e) and inundation depth (Fig. 12f–j).

It is possible to observe that values of tsunami
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inundation depth decrease with the reduction of the

probability of occurrence, i.e., with the increasing

mean annual rate. The tsunami depth maps show the

decrease of the inundation depth with the distance

from the shoreline.

4.4. Robust Tsunami Hazard Curves

In Sect. 4.2, it has been indicated that 300 simu-

lations are sufficient to obtain stable results for several

locations along the analyzed coast in terms of high and

low percentile values of tsunami wave height (e.g.,

10th and 90th percentiles). In the following, only 100

simulations are used for the construction of the robust

hazard prediction through the Bayesian procedure, and

the results are then compared with the empirical results

based on 300 simulations. This demonstrates the

possibility to reduce the number of simulations by

adopting analytical models. For illustration, results for

the point 20 located in front of the protection barriers

are obtained and shown below.

4.4.1 Bayesian Model Selection

The first step for the model selection is the compu-

tation of the posterior joint distribution p(hi|D,Ti) of

the parameters hi for each considered model. This is

calculated according to Eq. (16). The adopted data

are the tsunami wave height results from 100

stochastic tsunami simulations, chosen randomly

from the 300 simulations presented before. For the

prior distribution p(hi|Ti), in absence of other infor-

mation, independence of the parameters is assumed,

therefore, the joint prior distribution is decomposed

into marginal distributions of independent variables.

Figure 13 shows, for example, the posterior distribu-

tions of the three parameters that are necessary to

define the GEV model (Eq. (11)) for the seven

magnitude values. Once the posterior distributions for

all parameters of all selected models are obtained, it

is possible to calculate the evidence according to

Eq. (15) and then the probability of the models

according to Eq. (14).

Figure 14 shows the probabilities of the seven

considered probability models. It can be observed

that the GEV model is preferable in all cases. It is

noteworthy that the LN model and the three-param-

eter GLO distributions are equally competitive.

Table 1 shows the maximum likelihood parameters

obtained from the posteriors corresponding to the best

models that are based on the Bayesian model

selection.
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4.4.2 Robust Hazard Curves and Model Averaging

Once the best model for each magnitude is identified

and the posterior distributions of the parameters are

determined, it is possible to build the robust hazard

curve according to Eqs. (17) and (18). Figure 15a

shows the final robust hazard curve (central estimate

and confidence interval). Results indicate that the

hazard confidence interval (dashed red lines) around

the central estimate (solid red line) contains the

hazard results obtained from the 300 simulations (the

jagged blue line). It is worth noting that there are

some discrepancies between the robust hazard curve

and the curve representing the empirical data;

specifically, the robust hazard curve slightly overes-

timates the mean annual rate of occurrence at low

annual rate levels. This is mainly due to the

probability contribution of the right tails of the

analytical distributions associated with the medium–

high values of magnitude. Finally, model averaging,

according to Eq. (19), is carried out, and the results

are shown in Fig. 15b, presenting the hyper-robust

curves obtained by averaging the different probability

models according to their evidence values. Also in

this case, the confidence interval associated with the

final hazard curve contains the empirical results

based on the 300 simulations. However, no signifi-

cant fitting improvement can be observed with

respect to the simple robust model shown in Fig. 15a

because for the examined case GEV presents the

highest value of evidence and, therefore, the contri-

bution of the other models is not significant.
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5. Conclusions

Classical and robust probabilistic tsunami hazard

assessment procedures, based on the new PTHA

procedure proposed by De Risi and Goda (2016),

have been investigated and compared. Similarities

and differences with respect to PSHA were empha-

sized. New global scaling relationships of earthquake

source parameters for tsunamigenic events were used

to generate a wide range of earthquake scenarios

corresponding to pre-defined discrete magnitude

values. For each scenario, an inundation simulation is

carried out. Eventually, the inundation results are
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Table 1

Estimated parameters of the best analytical model for seven values

of magnitude

M Best model h1 h2 h3

7.5 GEV 0.34 0.10 0.26

7.75 GEV -0.01 0.19 0.47

8.0 GEV 0.20 0.32 0.82

8.25 GEV 0.06 0.60 1.43

8.5 GEV -0.05 1.00 2.52

8.75 GEV -0.19 1.46 4.55

9.0 GEV -0.21 1.83 6.30
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combined to obtain tsunami hazard curves and tsu-

nami hazard maps. A study on the sufficient number

of simulations required to obtain stable high and low

percentiles of the inundation results was presented.

Two types of hazard curves were presented. The

empirical hazard curve was built according to tradi-

tional statistical procedures. The robust hazard curve

was obtained using an advanced Bayesian method-

ology that allowed reducing the number of

simulations by adopting analytical probabilistic

models. Both hazard curves can produce a confidence

interval, allowing the potential propagation of the

hazard uncertainties in the risk assessment.

The procedure was applied to the plain-type coast

of the Tohoku region (Japan), and 44 points, which

are located on the coastline between the cities of

Shinchi and Sendai, were considered for assessing the

tsunami hazard. 300 simulations were performed to

obtain the empirical hazard curve. The number of

simulations can be reduced to 100 when the robust

Bayesian fitting is adopted. From the Bayesian model

fitting, it can be concluded that for the considered

locations, the Generalized Extreme Value distribution

is a suitable model for tsunami inundation height and

depth for all investigated magnitude values. A

potential further development of the procedure pro-

posed in this study is the improvement of the

Bayesian integration by the implementation of

advanced integration strategies, such as Markov

Chain Monte Carlo simulations.

The hazard curves calculated for a lattice of points

facilitated the generation of uniform tsunami hazard

maps corresponding to different probabilities of

occurrence in a given time window. Such maps are

useful for urban planning and for tsunami evacuation.

The observation of the hazards for all points along the

coast facilitated the understanding of the efficacy of

protection barriers against medium-size tsunamis.
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