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1 Introduction

Particle image velocimetry (PIV) is a non-intrusive 
technique for measuring flow velocities by analysing 
successive images of seeding particles captured by spe-
cialised cameras. Images are subsequently interrogated 
by means of statistical operators, such as cross correla-
tion, to infer flow velocities representative of the parti-
cle image displacements captured within the image sub-
sections (Theunissen 2012). The most suitable image 
for PIV analyses constitutes homogeneously distributed 
bright particle images on a completely dark background. 
Unfortunately, this ideal scenario is not always possible 
as the flow region of interest can be occupied by objects 
producing artefacts (light reflections, shadow areas, local 
variations in seeding density, etc.) hindering the meas-
urement quality (Westerweel et al. 2005). If the required 
particle image displacement measurement is in the near 
vicinity of a surface, special care must be taken in ade-
quate surface preparation during the experimental phase 
(Paterna et al. 2013), images must be properly pre-pro-
cessed by means of, e.g., background subtraction (Men-
dez et al. 2017), or advanced image interrogation pro-
cesses are to be adopted (Ronneberger et al. 1998; Gui 
et al. 2003; Usera et al. 2004). Such advanced PIV anal-
ysis routines typically involve the exclusion of object 
regions within cross-correlation windows as to minimise 
distortions in the cross-correlation map, consequently 
limiting associated displacement bias errors (Theunis-
sen et al. 2008). This, in turn, requires knowledge of the 
imaged object boundaries to enable seeded flow regions 
to be discerned from non-seeded object regions. The 
generation of such logical masks thus constitutes a criti-
cal step, independent from the PIV algorithm used.

Abstract The measurement of displacements near the 
vicinity of surfaces involves advanced PIV algorithms 
requiring accurate knowledge of object boundaries. These 
data typically come in the form of a logical mask, gener-
ated manually or through automatic algorithms. The auto-
matic detection of masks usually necessitates special fea-
tures or reference points such as bright lines, high contrast 
objects, and sufficiently observable coherence between pix-
els. These are, however, not always present in experimental 
images necessitating a more robust and general approach. 
In this work, the authors propose a novel method for the 
automatic detection of static image regions which do not 
contain relevant information for the estimation of particle 
image displacements and can consequently be excluded 
or masked out. The method does not require any a priori 
knowledge of the static objects (i.e., contrast, brightness, or 
strong features) as it exploits statistical information from 
multiple PIV images. Based on the observation that the 
temporal variation in light intensity follows a completely 
different distribution for flow regions and object regions, 
the method utilizes a normality test and an automatic 
thresholding method on the retrieved probability to iden-
tify regions to be masked. The method is assessed through 
a Monte Carlo simulation with synthetic images and its 
performance under realistic imaging conditions is proven 
based on three experimental test cases.
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Logical masks are typically generated manually when 
the geometry of the object is very simple and clearly detect-
able in the PIV images. However, the manual approach 
becomes unreliable and too time-consuming when complex 
aerodynamic shapes are involved or several image sets need 
to be analysed with many different masks. Some examples 
of automated mask generation have been reported in litera-
ture: in Dussol et al. (2016), strong light reflections of the 
object were manually detected to generate the initial mask, 
which was dynamically moved using the a priori knowl-
edge of the object motion. In Sanchis and Jensen (2011), 
the air–water interface was successfully detected exploit-
ing the image intensity gradients through the Radon trans-
form. Ergin et al. (2015) dealt with the motion of a mov-
ing body by implementing a tracking method and moving 
to an object-fixed coordinate system, allowing the use of 
a manual mask to the moving object. Deen et al. (2010) 
applied a combination of contrast enhancement and inten-
sity thresholding to identify bubbles in two-phase flows. 
However, shadows caused by the obstruction of the laser 
light also constitute unwanted image regions, yet these 
are not defined by high intensity boundaries. Moreover, 
experimental settings often produce complex images where 
objects contours are dark, vague, and blurred. Objects thus 
become hardly detectable even for a human observer, lim-
iting the application of typical masking algorithms. Alter-
natively, the spatial coherence between image pixels is 
involved to filter and identify object regions by means of 
low-pass filtering (Willert 1999), median filtering (Scholz 
and Kähler 2004), etc. Due to the finite extent of the filter 
kernels, such operations tend to introduce inaccuracies in 
the localisation of the object boundaries and are influenced 
by noise in the grey-scale distributions. Delnoij et al. (1999) 
discriminated objects on the basis of inherent differences in 
their motion. This, however, demands objects to be identi-
fied a priori. Similarly, Honkanen and Nobach (2005) uti-
lised the variation in flow velocities to completely remove 
stagnant objects. In case of temporally well-resolved PIV 
recordings, frequency analyses of the time-evolution in 
pixel intensities allow the identification of objects (Sciac-
chitano and Scarano 2014). This methodology is, however, 
only conducive for time-resolved PIV recordings involving 
dynamic objects.

In the current work, the authors propose a general, 
robust methodology for the automatic detection of static 
image regions containing no information relevant in the 
cross-correlation operation. Without any special require-
ment for the image regions to be excluded (shape, lumi-
nosity, or contrast), the method takes advantage of the sta-
tistical information contained within each individual pixel 
across several independent PIV images. A statistical test 
distinguishes unseeded image regions from image sections 
of interest with pixel accuracy. The underlying principle is 

the understanding that the temporal intensity variation of 
pixels constituting the unseeded partitions is mainly due to 
camera noise, producing a normal-distributed intensity his-
togram (Westerweel 2000). Pixels of seeded image regions 
on the other hand are characterized by the strong alterna-
tion of bright and dark values, producing highly skewed 
histograms (Westerweel 2000). A normality test is, there-
fore, performed on the time history of each pixel of the 
image to distinguish objects from particle images. Unlike 
filtering operations, the categorisation is performed pixel-
wise and, therefore, does not incorporate neighbouring pix-
els. As a result of an automatic thresholding on the p value 
of the normality test, the proposed method is fully autono-
mous and independent of user input. The technique is fully 
assessed on synthetic images and the application to several 
experimental cases is proposed to show its suitability for a 
variety of real conditions.

2  Methodology

2.1  Normality test

Considering a sequence of N PIV images, for each pixel, 
the evolution in intensity across the image sequence can 
be extracted. Pixel intensities pertaining the imaged flow 
region will be characterized by strong alternations of high 
and low values due to the passage of tracer particles. Cor-
responding intensity probability density functions con-
sequently exhibit a strong skewness (Fig. 1). Conversely, 
pixels associated with the imaged object display intensity 
variations principally due to camera noise, which is typi-
cally normally distributed (Westerweel 2000). Based on 
this observation, the authors propose a method to automati-
cally categorise pixels within PIV images, by means of a 
pixel-wise normality tests. Given that the proposed meth-
odology is based on probability density functions, validity 
is independent of the temporal resolution in the acquired 
images.

Normality tests are a tool to compute the likelihood 
of a set of data to be modelled by a Gaussian probabil-
ity density function (PDF). Existing literature offers sev-
eral tests for normality such as D’Agostino’s K-squared 
test (D’agostino et al. 1990), the Kolmogorov–Smirnov 
test (Fasano and Franceschini 1987), the Pearson’s Chi-
squared test (Plackett 1983), etc. Lead by simplicity of 
implementation, the method of choice in the current work 
is the Jarque–Bera test, for which the heuristic can be eas-
ily evaluated on the basis of data skewness and kurtosis 
(Jarque and Bera 1987).

For a set of observations x (i.e., the set of intensity val-
ues of same pixel) with mean μ and standard deviation σ, 
the skewness s and kurtosis k are defined as:
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where E(t) represents the expected value of t. For a nor-
mally distributed data set, the expected value of the kur-
tosis will equal 3 with a skewness of 0. The Jarque–Bera 
statistic quantifies the data set discrepancies from these 
expected ideal values:

where N is the size of the sample x (i.e., number of PIV 
images). The statistic expressed by (2), under the null 
hypothesis of x being normally distributed, is asymptoti-
cally distributed as a Chi-squared with two degrees of free-
dom (Jarque and Bera 1987). Thanks to this assumption, 
the p value for the Jarque–Bera test can be evaluated as:

where the general Chi-squared with ν degrees of freedom 
is defined as:

with Γ being the gamma function:

Given a p value for each pixel of the image, the null 
hypothesis of normality can be accepted (noise-dominated 
region) or rejected (flow region) based on the compari-
son with a cut-off level. This level is typically set to 0.05 
(Jarque and Bera 1987).

(1)
s =

E(x − µ)3

σ 3

k =
E(x − µ)4

σ 4

(2)JB =
N

6

(

s2 +
(k − 3)2

4

)

(3)p = 1− χ2
(2)(JB)

(4)χ2
(ν)(x) =

∫ x

0

t(ν−2)/2e−t/2

2ν/2Γ (ν/2)
dt

(5)Γ (x) =

∫ ∞

0

tx−1e−tdt.

The aim of the presented work is not to test the normal-
ity of boundary pixels in an absolute sense, but rather to 
discern them from regions of strong non-normality due to 
the presence of particle images. Empirical studies lead the 
authors to conclude that flow regions are typically charac-
terized by extremely low p values, whereas regions void of 
any signal usable for cross correlation usually present p 
values which can be several orders of magnitude higher 
(Fig. 2). Once the p value is evaluated for each image pixel, 
an automatic threshold exploiting the peculiar bimodality 
of the probability in p values across the image can be 
adopted to discern low p values (image regions of interest) 
from high p values (statistically irrelevant regions) to gen-
erate a binary mask. In the current work, the Matlab func-
tion otsuthresh was used as implementation of Otsu’s 

Fig. 1  Illustration of the princi-
ple used for the mask detection: 
the probability distributions 
of pixel intensities have very 
distinguishable shapes depend-
ing on whether pixels belong to 
flow regions or objects

Fig. 2  Histogram of the p values for a set of experimental images 
(micro-channel flow, see. Sect. 5). The distribution of p values pre-
sents the typical bimodal distribution due to the presence of flow (low 
p values) and object (high p values). The automatic threshold discerns 
flow regions from the object by maximising the separability of the 
histogram
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method (Otsu 1979), together with a median filter1 of a 
fixed 3 by 3 kernel to enhance the bimodality of the histo-
gram (Gonzalez et al. 2013). The reader should note that 
this automatic implementation of the threshold ensures a 
robust distinction of flow from object areas even when 
related pixels are not perfectly normally distributed, as flow 
regions will continue to have a much lower distribution of p 
values due to their more skewed pdf as corroborated by the 
theoretical intensity pdf suggested by Westerweel (2000).

2.2  Pre‑processing

The assumption of normally distributed noise can be vio-
lated when the laser light intensity varies across the image 
sequence, producing artificially skewed histograms of pixel 
intensity. An example of this behaviour is shown in Fig. 3a 
and b, where a normally distributed pixel intensity was 
combined with a decreasing average light intensity. The 
histogram produced by this light distribution could eas-
ily be mistaken for a particle image, as it is not normally 
distributed. However, even exceptional cases like this do 
not prevent the application of the proposed mask detec-
tion algorithm, since a simple additional pre-processing 

1 The median filter is only applied for the threshold estimation, there-
fore the pixel accuracy of the mask holds true.

step can be implemented to equalize the light intensity. For 
example, a high pass filter can be applied to the time his-
tory of the intensities of the individual pixels to reduce the 
effect of the light variation and restore the Gaussian shape 
of the histogram. The high pass filtered signal is presented 
in Fig. 3c, together with its normally distributed histogram 
in Fig. 3d.

Another common scenario where the hypothesis of 
normally distributed noise could be violated is in case of 
a double pulsed laser. Due to the possible discrepancies in 
manufacturing of the laser cavities, the light intensity of the 
two consecutive PIV images might be different, producing 
two sets of images that have a skewed or bimodal intensity 
distribution. In such a case, the authors suggest to apply the 
mask detection algorithm independently on the two image 
sets, producing two different masks of which the logical 
union can be used as final mask.

2.3  Minimum number of images required

Besides a sufficient number of images to ensure validity of 
the normality statistics, a secondary condition for the pro-
posed methodology to work is that each pixel of the flow 
region should be occupied by a particle image at least once 
in the entire PIV sequence. The number of images based on 
the first condition depends on the image quality and conse-
quently cannot be estimated a priori. The second condition, 

Fig. 3  Example of signal pre-
processing, applicable in case 
of decaying laser intensity. a 
Synthetic Gaussian noise com-
bined with decreasing average 
light intensity and b histogram; 
c high pass filtered signal with d 
restored Gaussian histogram
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on the other hand, can be exploited to estimate an absolute 
minimum number of images necessary to allow the correct 
functioning of the mask detection. The probability of hav-
ing n particles in a control volume V follows a Poisson dis-
tribution (Adrian 1983):

where s is the seeding particles concentration. The prob-
ability of a pixel of being occupied by a particle image 
at least once in a sequence of N images is described by a 
binomial distribution. From Eq. (6), for n = 1, follows:

Equation (7) can be used to estimate a necessary num-
ber of images N, for a given probability Pr. Equation (7) 
is graphically presented in Fig. 4 and is indicative of the 
applicability of the method.

3  Post‑processing

The application of the normality test explained in the previ-
ous section leads to the generation of a mask based solely 
on the time history of each pixel and as such independent 
of the spatial coherence between image pixels. The spa-
tial information can be used in a post-detection phase to 
enhance the quality of the mask, especially when insuffi-
cient images are available. In such cases, spurious random 
pixels might be excluded producing pixel-sized holes in the 
binary mask generated. To increase the robustness of the 
mask, morphological operations can be included to simplify 

(6)Pr{n particles in V} =
sn

n!
e−s

(7)Pr{1 particle per pixel} = 1−
(

1− s · e−s
)N

.

the binary image preserving the characteristics of the shape 
and eliminating irrelevancies (Haralick et al. 1987). While 
the reader may require alternative operations when dealing 
with special geometries, the morphological operations of 
closing and filling proposed in this work are fundamental. 
All morphological operations can be performed using the 
MATLAB routines bwmorph and imfill. The closing pro-
cess allows to smoothen contours and to eliminate small 
holes, whereas the process of filling allows to close every 
area of the binary mask that cannot be reached by filling in 
the background from the edge of the image. The majority 
process allows a final cleansing of the mask by recursively 
setting a pixel to 1 when more than half of the pixels in 
the immediate neighbourhood are 1. Figure 5 illustrates the 
achievable improvements by means of the morphological 
operations where an example mask is artificially perturbed 
with noise and holes (Fig. 5a). After the closing process, 
pixel-sized holes have disappeared (Fig. 5b). The bigger 
hole inside the mask is removed as a result of the filling 
process (Fig. 5c) and the recursive application of majority 
(Fig. 5d) filters out smaller pixel-sized structures without 
altering the main shape of the mask.

The reader should note that the adoption of morpho-
logical operations, despite being beneficial from a gen-
eral point of view, may cause unwanted effects on the 
smallest scale of the geometry (8 by 8 pixels). Operations 
like majority would reduce the size of every sharp corner 
of the mask by one pixel.2 Although the advantages of 
using morphological operations may well outweigh 
smaller issues on this scale, its use should, therefore, be 
considered as a facultative addition to the main 
methodology.

4  Numerical assessment

To assess the validity of the proposed masking method-
ology and investigate the minimum number of images 
required for the approach to be reliable, Monte Carlo sim-
ulations involving synthetic PIV images were performed. 
Cylinders of three different diameters of 100, 200, and 
400 pixels, occupying 3, 13, and 50% of the entire image 
area, respectively, served as object. Pixel intensities 
within the cylinders were randomly drawn from a Gauss-
ian distribution with a mean normalized intensity of 
0.12 and standard deviation of 0.03. Images were 500 by 
500 pixels in size, discretized in 16 bits, with randomly 

2 The majority operations works in cluster of 8 pixels: the sharp 
edge of a rectangle composed by ones, surrounded by zeros, is a 
pixel surrounded by 4 ones (the rectangle) and 5 zeros. Therefore, 
it will be replaced by the majority which is zero.

Fig. 4  Number of independent PIV images necessary to allow 
the correct functioning of the proposed masking algorithm against 
seeding density. The plots are shown for different probabilities as 
expressed by Eq. (7)
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Fig. 5  Example of application 
of the proposed sequence of 
morphological operations to (a) 
an artificially perturbed mask. b 
Application of closure removes 
single-pixel-sized holes from 
the mask; c filling operation 
closes any major size hole in the 
mask; and d the majority opera-
tion allows a final clean from 
any smaller scale perturbation

Fig. 6  Three samples of the cylinder images used for the synthetic analysis. Cylinders of 100 px (left), 200 px (centre), and 400 px (right) in 
diameter were generated using Gaussian noise
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distributed particles in the flow regions having a diameter 
of 3 pixels and a seeding density of 0.1 ppp (Fig. 6).

For each cylinder, 200 independent images were gen-
erated a total of 100 times to obtain statistically meaning-
ful average results. For each size of the set, the error ε in 
the estimation of the mask area was evaluated as:

where W and H are the width and height of the image in 
pixels, M is the ideal mask, and M ̂ is the estimated mask. 
Results for the error ε are presented in Fig. 7 and show a 
similar behaviour for all cylinders.

When fewer than 20 images are used for the mask detec-
tion, the outcome of the algorithm is erroneous due to an 
insufficient number of independent occurrences to dis-
tinguish normally distributed pixels from highly skewed 
pixels in flow regions. However, increasing the number 
of images analysed, the mask error quickly drops to  10−1 
or less for a set of 40 images. After this value, the error 
reaches a constant level as increasing the number of images 
does not affect the normality test anymore. This number of 
images is further confirmed by the theoretical estimation of 
Eq. (7), where 40 images with a seeding density of 0.1 ppp 
yield a probability of 98% of pixels being occupied at least 
by a particle image throughout the PIV sequence.

A detail of the resulting mask detected for a cylinder 
of 100 pixels in diameter using 200 PIV images is shown 
in Fig. 8, demonstrating a near perfect agreement with the 
imposed mask.

5  Experimental case

To validate the performances of the automatic mask detec-
tion in experimental conditions, three experimental test 
cases are proposed: (a) a micro-channel flow; (b) a trans-
parent acrylic aerofoil, and (c) a pipe junction simulating 

(8)ε =
100

WH

W
∑

i=1

H
∑

j=1

∣

∣

∣
Mi,j − M̂i,j

∣

∣

∣

a lung. The first test case comprises 600 PIV images of a 
micro-channel flow driven by 200 bar of pressure, con-
stituting Case A of the 4th International PIV Challenge 
(Kähler et al. 2016). The resulting mask is presented 
in Fig. 9a, where a sample of the original PIV images is 
superimposed with the estimated mask shown in red. In 
addition to the mask, Fig. 9b, c, respectively, shows a his-
togram of the grey levels in time for pixels belonging to the 
masked area and flow region. The plots are in agreement 
with the observation that masked regions are characterized 
by normally distributed histograms, whereas seeded image 
regions present a strongly skewed distribution in grey lev-
els. For the histograms presented in Fig. 9b and c, values of 
skewness are, respectively, 5.1 × 10−3 and 2.0.

The second test case comes from an experiment per-
formed in the low turbulence wind tunnel of the Univer-
sity of Bristol. PIV experiments were performed using a 
200 mJ Nd:Yag laser and 4MP FlowSense EO camera on 

Fig. 7  Results of the Monte 
Carlo simulation for the mask 
detection of the three synthetic 
cylinders. The plots present the 
error of the mask detected ver-
sus the number of PIV images 
used for that detection error

Fig. 8  Result of the mask detection algorithm for the cylinder of 100 
pixel of diameter using 200 images, showing a detail of the edges of 
the detected mask, together with the imposed mask and the respective 
overlap
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Fig. 9  a Automatically detected 
mask for the micro-channel 
overlapped with a sample of 
the set of images (contrast 
enhanced for clarity), b histo-
gram of the grey levels for a 
pixel belonging to the mask and 
c seeded flow portion

Fig. 10  Automatically detected mask for the transparent aerofoil and detail of the shadow in the top-left corner (a); histogram of the grey levels 
for a pixel belonging to the aerofoil (b) and the shadow (c), both belonging to the mask
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an NACA0024 airfoil at a chord-based Reynolds number 
of 1.4 × 105. The airfoil was manufactured out of acrylic 
to reduce light reflections in vicinity of the surface. A 
total of 400 images were acquired in 16 bits image depth. 
The final mask is presented in Fig. 10a and illustrates how 
both aerofoil and light shadow area are detected by the 
masking algorithm. Both regions are characterized by the 
lack of information due to the absence of particles and 
present normally distributed grey levels. Figure 10b, c 
shows two histograms for a pixel belonging to the aero-
foil and a pixel belonging to the shadow, respectively; 
as already mentioned, both the histograms are normally 
distributed and contribute to the masked region; how-
ever, the histogram for the aerofoil region (Fig. 10b) 
has a mean value which is higher than the shadow area 
(Fig. 10c), confirming that the suitability of the method 

is independent from the brightness and the contrast of the 
masked region.

The reader should notice that the shadow areas produced 
by the aerofoil are not entirely detected as masks; due to 
the transparent material used to manufacture the object, 
the casted shadows are not as dark as those produced by an 
opaque object, but they gradually fade from dark to bright 
(see detail of Fig. 10a). This implies that particle images 
also disappear progressively as they cross the shadow: 
those areas where the particle image intensity is on par with 
the random noise are detected as mask, while the regions 
that may contain valuable information about the displace-
ments are maintained as flow regions, producing the pattern 
observed in Fig. 10a.

The final test case involves 534 images of a flow bifur-
cation simulating a lung at Re = 2.24 (Theunissen and 

Fig. 11  Results of the auto-
mated mask detection for the 
lung test case, overlapped with a 
sample of the set of images (a); 
histogram of the grey levels for 
a pixel belonging to the object 
(b) and to a noisy area within 
the channel (c), both detected 
as mask



 Exp Fluids  (2017) 58:70 

1 3

 70  Page 10 of 11

Riethmuller 2008). The 8 bit discretization renders the test 
case challenging as sporadic noisy areas within the seeded 
flow region do not produce significant skew in the PDFs. 
Figure 11b, c, respectively, shows the histograms of pixels 
belonging to the boundary region and noisy flow area. Both 
present a normal distribution. This strong image noise in 
the flow region, coupled with the bright intensity of the par-
ticles and the low bit discretization, produces small regions 
within the flow area to be masked out. Overall, the geom-
etry of the object is correctly retrieved and the occurrence 
of these additional masked regions is restricted to very 
small domains. As mentioned in the previous section, these 
regions can be easily cleaned through the application of 
additional morphological operations. It is, however, impor-
tant to note that the mask is based on statistical informa-
tion of the PIV images and the exclusion of those masked 
regions from a PIV analysis does not affect the cross-cor-
relation results as those pixels do not contain information 
from a statistical point of view.

6  Limitations

The automatic mask detection proposed in this paper 
requires objects in PIV images to be stationary. With the 
analysis based on the time history of each pixel, vibra-
tions or deformations of the regions to be masked would 
combine time history of objects with time history of flow 
regions, hampering the correct classification of the pixels. 
Conditions like rigid motion and vibrations can be easily 
tackled by implementing a tracking method and moving 
the analysis to an object-fixed coordinate system (Ergin 
et al. 2015). The presence of ghost particles on reflective 
surfaces constitutes a more complex case. If the experimen-
tal settings were such that particle images were reflected 
within the objects to be masked, the mask detection will not 
be able to discern real particles from reflected ones. These 
regions will subsequently be characterized on the basis of 
pixels containing (reflected) particle images and will conse-
quently be excluded from the masked region.

7  Conclusions

A novel method for the automatic detection of static masks 
for PIV is proposed. The method does not require any spe-
cific feature in terms of brightness or contrast of the images 
as it exploits pixel-wise statistical information regarding 
image intensity extracted across several PIV images. Statis-
tically irrelevant image regions are discerned from seeded 
regions of interest based on the assumption that variations 
of light intensity in the former are normally distributed 
in time, while the latter are skewed by the alternation of 

background and bright particles. The Jarque–Bera test is 
used to test the normality of the pixel intensity in time and 
an automatic threshold based on Otsu’s method is adopted 
to categorise image pixels based on p values. Numerical 
assessments by means of Monte Carlo simulations on syn-
thetic images were performed to investigate the minimum 
number of images needed for the normality test to be effec-
tive and results showed that at least 40 images are neces-
sary for the method to reliably identify the masked regions. 
The experimental application on three different sets of 
PIV images additionally confirmed the applicability of the 
method for different conditions of background, particle 
dimensions, seeding densities, and levels of quantization, 
showing visual agreement of the detected masks with the 
objects in the images.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Adrian RJ (1983) Laser velocimetry. In: Goldstein R (ed) Fluid 
mechanics measurements. Hemisphere, Washington, DC, pp 
155–244

D’agostino RB, Belanger A, D’Agostino Jr RB (1990) A suggestion 
for using powerful and informative tests of normality. Am Stat 
44:316–321

Deen NG, Willems P, Van Sint Annaland M et al (2010) On image 
pre-processing for PIV of single-and two-phase flows over 
reflecting objects. Exp Fluids 49:525–530. doi:10.1007/
s00348-010-0827-y

Delnoij E, Westerweel J, Deen NG et al (1999) Ensemble cor-
relation PIV applied to bubble plumes rising in a bub-
ble column. Chem Eng Sci 54:5159–5171. doi:10.1016/
S0009-2509(99)00233-X

Dussol D, Druault P, Mallat B et al (2016) Automatic dynamic 
mask extraction for PIV images containing an unsteady inter-
face, bubbles, and a moving structure. Comptes Rendus Mec 
344:464–478. doi:10.1016/j.crme.2016.03.005

Ergin FG, Watz BB, Wadhwa N (2015) Pixel-accurate dynamic 
masking and flow measurements around small breaststroke-
swimmers using long-distance MicroPIV. In: 11th Interna-
tional symposium on particle image velocimetry—PIV15. 
Santa Barbara, California, September 14–16

Fasano G, Franceschini A (1987) A multidimensional version of the 
Kolmogorov-Smirnov test. Mon Not R astr Soc 225:155–170

Gonzalez RC, Woods RE, Eddins SL (2013) Digital image process-
ing using MATLAB. McGraw Hill Education, New Delhi

Gui L, Wereley ST, Kim YH (2003) Advances and applica-
tions of the digital mask technique in particle image veloci-
metry experiments. Meas Sci Technol 14:1820–1828. 
doi:10.1088/0957-0233/14/10/312

Haralick RM, Sternberg SR, Zhuang X (1987) Image analysis using 
mathematical morphology. IEEE Trans Pattern Anal Mach 
Intell 9:532–550. doi:10.1109/TPAMI.1987.4767941

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s00348-010-0827-y
http://dx.doi.org/10.1007/s00348-010-0827-y
http://dx.doi.org/10.1016/S0009-2509(99)00233-X
http://dx.doi.org/10.1016/S0009-2509(99)00233-X
http://dx.doi.org/10.1016/j.crme.2016.03.005
http://dx.doi.org/10.1088/0957-0233/14/10/312
http://dx.doi.org/10.1109/TPAMI.1987.4767941


Exp Fluids  (2017) 58:70  

1 3

Page 11 of 11  70 

Honkanen M, Nobach H (2005) Background extraction from dou-
ble-frame PIV images. Exp Fluids 38:348–362. doi:10.1007/
s00348-004-0916-x

Jarque CM, Bera AK (1987) A test for normality of observations 
and regression residuals. Int Stat Rev/Rev Int Stat 55:163–172. 
doi:10.2307/1403192

Kähler CJ, Astarita T, Vlachos PP et al (2016) Main results of 
the 4th international PIV challenge. Exp Fluids 57:1–71. 
doi:10.1007/s00348-016-2173-1

Mendez MA, Raiola M, Masullo A, Discetti S, Ianiro A, Theunis-
sen R, Buchlin J-M (2017) POD-based background removal 
for particle image velocimetry. Exp Therm Fluid Sci 80:181–
192. doi:10.1016/j.expthermflusci.2016.08.021

Otsu N (1979) A threshold selection method from gray-level histo-
grams. IEEE Trans Syst Man Cybern 9:62–66. doi:10.1109/
TSMC.1979.4310076

Paterna E, Moonen P, Dorer V, Carmeliet J (2013) Mitigation of 
surface reflection in PIV measurements. Meas Sci Technol. 
doi:10.1088/0957-0233/24/5/057003

Plackett RL (1983) Karl Pearson and the Chi Squared Test. Int Stat 
Rev/Rev Int Stat 51:59–72. doi:10.2307/1402731

Ronneberger O, Raffel M, Kompenhans J (1998) Advanced evalu-
ation algorithms for standard and dual plane particle image 
velocimetry. In: Proceedings of the 9th International Symposium 
on Applied laser techniques to fluid mechanics, pp 13–16

Sanchis A, Jensen A (2011) Dynamic masking of PIV images using 
the Radon transform in free surface flows. Exp Fluids 51:871–
880. doi:10.1007/s00348-011-1101-7

Scholz U, Kähler CJ (2004) Automated Image Processing and Seg-
mentation for mask generation in PIV. In: Proceedings of the 

12th international symposium on applications of laser techniques 
to fluid mechanics. Lisbon

Sciacchitano A, Scarano F (2014) Elimination of PIV light reflec-
tions via a temporal high pass filter. Meas Sci Technol 25:84009. 
doi:10.1088/0957-0233/25/8/084009

Theunissen R (2012) Theoretical analysis of direct and phase-
filtered cross-correlation response to a sinusoidal displace-
ment for PIV image processing. Meas Sci Technol 23:65302. 
doi:10.1088/0957-0233/23/6/065302

Theunissen R, Riethmuller ML (2008) Particle image velocimetry in 
lung bifurcation models. Particle image velocimetry: new devel-
opments and recent applications. Springer, Berlin Heidelberg, pp 
73–101

Theunissen R, Scarano F, Riethmuller ML (2008) On improvement 
of PIV image interrogation near stationary interfaces. Exp Fluids 
45:557–572. doi:10.1007/s00348-008-0481-9

Usera G, Vernet A, Ferré JA (2004) Considerations and improvements 
of the analysing algorithms used for time resolved PIV of wall 
bounded flows. In: Proc 12 th Int Symp Appl Laser Tech to fluid 
Mech Lisbon, Port July 11–15

Westerweel J (2000) Theoretical analysis of the measurement preci-
sion in particle image velocimetry. Exp Fluids Suppl 29(Suppl 
1):S003–S012. doi:10.1007/s003480070002

Westerweel J, Stanislas M, Okamoto K et al (2005) Main results of 
the second international PIV challenge. Exp Fluids 14:170–191. 
doi:10.1007/s00348-005-0951-2

Willert C (1999) Stereoscopic digital particle image velocimetry for 
application in wind tunnel flows. Meas Sci Technol 8:1465–
1479. doi:10.1088/0957-0233/8/12/010

http://dx.doi.org/10.1007/s00348-004-0916-x
http://dx.doi.org/10.1007/s00348-004-0916-x
http://dx.doi.org/10.2307/1403192
http://dx.doi.org/10.1007/s00348-016-2173-1
http://dx.doi.org/10.1016/j.expthermflusci.2016.08.021
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1088/0957-0233/24/5/057003
http://dx.doi.org/10.2307/1402731
http://dx.doi.org/10.1007/s00348-011-1101-7
http://dx.doi.org/10.1088/0957-0233/25/8/084009
http://dx.doi.org/10.1088/0957-0233/23/6/065302
http://dx.doi.org/10.1007/s00348-008-0481-9
http://dx.doi.org/10.1007/s003480070002
http://dx.doi.org/10.1007/s00348-005-0951-2
http://dx.doi.org/10.1088/0957-0233/8/12/010

	Automated mask generation for PIV image analysis based on pixel intensity statistics
	Abstract 
	1 Introduction
	2 Methodology
	2.1 Normality test
	2.2 Pre-processing
	2.3 Minimum number of images required

	3 Post-processing
	4 Numerical assessment
	5 Experimental case
	6 Limitations
	7 Conclusions
	References


