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Geometric frustration describes the inability of a local molecular arrangement, such as icosahedra
found in metallic glasses and in model atomic glass-formers, to tile space. Local icosahedral order
however is strongly frustrated in Euclidean space, which obscures any causal relationship with
the observed dynamical slowdown. Here we relieve frustration in a model glass-forming liquid
by curving 3-dimensional space onto the surface of a 4-dimensional hypersphere. For sufficient
curvature, frustration vanishes and the liquid freezes in a fully icosahedral structure via a sharp
‘transition’. Frustration increases upon reducing the curvature, and the transition to the icosahedral
state smoothens while glassy dynamics emerges. Decreasing the curvature leads to decoupling
between dynamical and structural length scales and the decrease of kinetic fragility. This sheds
light on the observed glass-forming behavior in the Euclidean space.

PACS numbers: 61.20.-p, 64.70.Q-, 64.70.P-

The very large increase in viscosity found in glass-
forming liquids upon cooling or compression without sig-
nificant change in structure remains a major outstanding
challenge in condensed-matter physics. Among the key
questions is whether vitrification is linked to an underly-
ing thermodynamic phase transition or whether the pro-
cess is predominantly dynamical [1]. The well-established
phenomenon of dynamical heterogeneities, in the form of
“liquid-like” fast-moving and “solid-like” slow-moving re-
gions whose lifetime and size increase upon supercooling
[2, 3], has been interpreted in favor of an underlying dy-
namical transition [4]. Although arguments have been
put forward to tie slowdown of relaxation and growth of
a static length [5], a strong piece of evidence for a struc-
tural or thermodynamic mechanism would be the identi-
fication of static length scales that grow signifcantly when
approaching the glass transition, at a pace that follows
that of the “dynamical” length scales [6].

In order to define a relevant static length, one needs
to identify a change in the amorphous structure. Differ-
ent types of static lengths have been proposed, as those
related to the growth of some generic amorphous or-
der resulting from the rarefaction of available metastable
states as temperature decreases and captured by point-
to-set correlations [5, 7–11]. Another suggestion for a
subtle change in structure in a supercooled liquid is that
the atoms or molecules organize into locally preferred
structures, i.e., local geometric motifs. For many 3-
dimensional (3-d) systems of spherical particles, the con-
stituents arrange into five-fold symmetric motifs, such
as icosahedra [12–17]. These do not tile 3-d Euclidean
space periodically and may then suppress crystallization.
This idea has been further developed in the framework of
geometric frustration [18–20]. For single-component sys-

tems of spheres, it has been theoretically shown [18, 21]
and observed in simulations [22] that 120 particles on
the surface of a 4-d hypersphere, the “3-sphere” S3, of
a specific curvature (in units of the particle radius) can
realize a perfect tiling of space with every particle at the
center of an icosahedron: the so-called {3, 3, 5} polytope.
Flattening space then induces frustration [23, 24]. How-
ever, at the end of the flattening process, in Euclidean
space, frustration is strong and the growth of icosahe-
dral order is strongly suppressed [16, 25–28]. In particu-
lar, at the degree of supercooling accessible to computer
simulations (and colloid experiments), i.e., the first 4-5
decades of increase of the structural relaxation time τα
relative to the normal liquid, rather limited domain sizes
of icosahedral regions are found and the associated length
scales remain small [14, 17, 27, 28]. Furthermore, these
structural lengths are significantly smaller than the dy-
namical lengths associated with the growingly heteroge-
neous character of the dynamics [16, 17, 25–27]. Despite
many claims or suggestions [14, 17, 19, 29, 30], this calls
into question whether such structures can be the main
cause of dynamic arrest. At the very least, it is fair to
state that the description of the mechanism by which
frustrated icosahedral order influences slow dynamics re-
mains an unresolved problem. To make progress on this
issue, we curve 3-d space to relieve frustration and we use
curvature as an additional control parameter to investi-
gate equilibrium glass-forming liquids. This can only be
achieved in computer simulations and we present here the
first study of this kind for a 3-d system (for a discussion
of the 2-d case [31, 32], see below).

We consider a model glass-forming liquid, the Wahn-
ström model, which is a Lennard-Jones binary mixture
with size ratio σA/σB = 6/5 and which is known to dis-
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FIG. 1. Concentration n of particles found in domains of
icosahedra (see ball-and-stick model) as a function of the in-
verse of the reduced temperature T for several curvatures
characterized by the system size N (see Eq.1). The lines
are hyperbolic-tangent fits, from which the maximum of the
derivative χn = dn/dT can be estimated: see the case
N = 120 in the inset.

play a significant correlation between slow dynamics and
the formation of local icosahedral motifs in Euclidean
space [14, 17, 33–36].

We perform Monte Carlo (MC) simulations of N ∈
[120, 720] particles on the 3-sphere S3, with a modified
Marsaglia method [37, 38] in order to isotropically sample
the surface of the 4-d hypersphere. The results in curved
space are complemented with molecular dynamics (MD)
results in Euclidean space [39]. We fix the reduced den-
sity

ρ̃ =
N

V (R)

Vcap(R, σA) + Vcap(R, σB)

E(σA) + E(σB)
= 1.296σ−3

A , (1)

where N is the total number of particles, V(R) the (hy-
per)area of the 3-sphere, Vcap(R, σ) is the (hyper)area of
a spherical cap of height h = R(1− cosσ/2R) and E(σ)
the Euclidean volume of a particle of diameter σ. At fixed
density the number of particles N and the radius of cur-
vature R are therefore coupled: the range N = 120−720
corresponds to R ≈ 1.666−3.037σA. In the limit R→∞,
one recovers the usual expression ρ̃→ N/V (see the Sup-
plementary Material (SM) for more details [40]).

We first investigate the effect of the curvature on the
structure of the system. To do so, we compute the pair
correlation function g(r) with r the geodesic distance on
the 3-sphere. Its first minimum provides a suitable cutoff
length which is used, together with the Delaunay trian-
gulation obtained from the convex hull of the particle
coordinates, to get the network of nearest neighbors (see
SM for more details). This then allows for the detection
of icosahedral order throughout the system via a modified
topological cluster classification [41].

We find that for N = 120 the bidisperse Wahnström

model abruptly freezes in an ordered icosahedral struc-
ture (the {3, 3, 5} polytope [21]) as the temperature T
is lowered, just like a monodisperse system of spherical
particles [18, 22]. This is illustrated in Fig. 1 where we
plot the concentration n of particles detected in icosahe-
dral domains as a function of 1/T for various curvatures
characterized by the total number of particles N . For
N = 120 a sharp crossover, which is the finite-size ver-
sion of a first-order transition, from an icosahedra-poor
liquid to an icosahedral structure is observed (see also the
inset of Fig. 1). Frustration is thus relieved by curvature
and the concentration fluctuations due to the bidispersity
have no significant influence at this curvature.

As curvature decreases (and N and R increase), the
crossover smoothens: the growth of icosahedral order be-
comes more gradual while the maximum concentration of
icosahedra saturates at lower values, which is a sign of in-
creasing frustration. The temperature range over which
the change takes place broadens and shifts to lower tem-
peratures. The Euclidean case is the end point of this
continuous variation with curvature.

To describe the slowing down of the dynamics while
avoiding the complexity brought by curvature and the
parallel transport along geodesics we consider a simple
time-dependent correlation function derived from the def-
inition of the neighborhood:

C(t) =

〈
1

N

N∑
i=1

~vi(t0 + t) · ~vi(t0)

~v2
i (t0)

〉
t0

, (2)

where ~vi(t) is the indicator vector of length N identifying
the nearest neighbors of particle i at time t. The func-
tion C(t) corresponds to the average fraction of neighbors
that has not changed between time t0 and time t. While
being independent of the local curvature of the space, it
provides a measure of the slow (α) relaxation. Through
a stretched-exponential fit to C(t) − C(∞) (see SM) we
obtain an estimate of the structural relaxation time τ .
In the case of the two larger curvatures, N = 120 and
140, the crossover is so sharp that the relaxation time
jumps from a finite value to an exceedingly large one in
the icosahedral state, which then behaves as a solid for
our purposes. This is much like the dynamical behavior
at a first-order transition, albeit here in a finite-size sys-
tem: the relaxation time does not truly diverge but is
too large to be accessible in a computer simulation. In
contrast for N = 160 and furthermore, the crossover is
smooth enough that we can access the relaxation time
even when the growth of icosahedral order has saturated
and we then see no sign of divergence.

The results for the relaxation time are shown in Fig. 2
(a). For T & 2 curvature has little or no influence on the
relaxation (see also the SM). But this is no longer true at
lower temperature. While the two largest curvatures ex-
hibit an abrupt freezing to a solid icosahedral phase, the
transition appears to be avoided for weaker curvatures
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FIG. 2. (a) Logarithm of the relaxation time (a) and Effec-
tive activation energy ∆Eeff = T log τ/τ∞ (b) versus 1/T for
several curvatures. The vertical dashed lines approximately
indicate the temperatures at which the N = 120 and N = 140
systems freeze into a solid icosahedral phase.

and a continuous increase of the relaxation time is found
over the accessible range, as in the Euclidean space.

In order to assess the change with curvature of the ki-
netic fragility, i.e., the degree of super-Arrhenius temper-
ature dependence of the relaxation time, we consider the
effective activation energy ∆Eeff = T log(τ/τ∞) where
τ∞ is the relaxation time at high T ,: it is shown in Fig. 2
(b). The two curvatures where freezing takes place be-
have very differently from the others. For N ≥ 160 to
the Euclidean limit, ∆Eeff is found to increase contin-
uously with increasing 1/T , which is the signature of a
super-Arrhenius, fragile, behavior. The differences be-
tween the curvatures are not dramatic but there is a clear
trend toward a monotonic decrease of fragility as curva-
ture decreases. Since the high-T behavior is independent
of curvature, this can be seen unambiguously and with-
out data-fitting by comparing the effective activation en-
ergies (or the relaxation times) at low T (see Fig. Fig. 2):
The kinetic fragility decreases as the curvature decreases
(and at the same time frustration increases, consistently
with previous work [42, 43]).

As mentioned above, the emergence of slow dynam-
ics in glass-forming systems is often attributed to the
growth of spatial correlations in the dynamics and the
statics [6]. The former manifest themselves as dynami-
cal heterogeneities [2]; the latter are found through in-
vestigations of point-to-set correlations or through some
characterization of the growth of the local order [6, 28].
As also already stressed, for most glass-formers studied
by computer simulations, including the Wahnström mix-
ture, one finds a rapid increase for the dynamical lengths
but a modest increase of the static lengths [17, 25, 44].
One is of course limited by the range accessible to com-
puter simulations, so that it is hard to attain the deeply
supercooled regime near the glass transition. In addition,
it is hard to conclude on the origin of the observed de-
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FIG. 3. (a) Radial distribution functions gslow(r; τ) (continu-
ous) and gicos(r) (dotted) for N = 160, 720 and T = 0.8. (b)
Rescaled dynamic length versus the rescaled structural length
for different curvatures, down to the Euclidean limit.

coupling. We cannot improve the accessible range but by
adding a new control parameter, the curvature, we can
shed more light on this decoupling.

In order to explore dynamic correlations, we focus on
low-mobility (slow) particles, following [45]. To do so, we
define a neighbor-dependent mobility and use a thresh-
olded persistence function of the indicator neighbor vec-
tors vi in order to identify the slow particles. The number
of slow particles is then defined as

Nslow(t) =

〈
N∑
i=1

Θ[~vi(t0 + t) · ~vi(t0)− Ñ ]

〉
t0

(3)

where Θ(x) is the Heaviside function and Ñ the minimum
number of neighbors of a particle that must not change
for this particle to be taken as slow: we chose Ñ = 8 but
we checked that the results are not very sensitive to the
choice of this particular threshold (5 ≤ Ñ ≤ 10). We can
then study the average of the number of slow particles
during time t and the fluctuations, characterized by the
susceptibility χ(t) = (1/N)(〈N2

slow(t)〉 − 〈Nslow(t)〉2).
To extract a dynamic length, we work in real space [46]:

we compute the radial distribution function restricted to
the particles that are slow at t = τ , gslow(r; τ). From
it we estimate a typical correlation length via an expo-
nential fit, gslow(r; τ) ∼ exp[−r/ξslow(τ)]/r + c, where
c is a long-range normalization constant depending on
the finite-size limitations of our systems: see Fig.3 (a)
and the SM. The resulting length, after a rescaling by its
high-temperature value, is shown in Fig. 3 (b) for several
curvatures. It grows as T decreases, which indicates in-
creasing spatial correlations in the dynamics and bigger
dynamical heterogeneities, and does so more slowly as
curvature is reduced, down to the Euclidean case (with
again a markedly different behavior for N = 120, 140).
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We find a qualitatively similar behavior for the peak value
χmax of the dynamic susceptibility χ(t), which occurs for
t ≈ τ as generically found in glass-formers and can loosely
be taken as a relative measure of the number of dynam-
ically correlated particles [47]: see the SM.

To obtain a structural length scale, we use a similar ap-
proach to that for the dynamic one, except that we con-
sider only particles in icosahedra: we compute the cor-
responding restricted radial distribution function gicos(r)
and extract ξicos through an exponential fit (see Fig. 3 (a)
and the SM). The same comment as before is in order for
N = 120, 140 and one finds a reduction of both the ex-
tent and the rate (with decreasing temperature) of the
growth of icosahedral correlations as curvature decreases
and frustration increases. This is in line with the results
shown in Fig. 1.

The dynamic and structural lengths are compared in
Fig. 3 (c), once rescaled to their high-temperature value.
One observes a clear trend with increasing curvature (i.e.,
decreasing N): while a significant decoupling is found in
the Euclidean space, this decoupling decreases and ap-
pears to vanish for N = 240 and less. When the icosahe-
dral order becomes less frustrated, dynamical and struc-
tural lengths go hand in hand as the relaxation slows
down. The growth of the local order then seems to
fully determine the properties of the dynamics. On the
other hand, as frustration increases, this one-to-one cor-
respondence is blurred and other mechanisms, possibly
related to the mean-field description of glass-forming liq-
uids [48, 49], must be considered in addition. Note that
we do not expect the decoupling to be a mere effect of
the finite size of the curved systems. It has indeed been
shown (in Euclidean space) that in the range accessible to
dynamical simulations the dynamics of 3-d glass-formers
is not very sensitive to size effects [50, 51], quite contrary
to 2-d systems [52, 53].

To summarize: We have studied the structure and the
dynamics of a supercooled liquid in curved 3-d space, us-
ing curvature as a way to tune the degree of frustration of
the local order. Through this additional control param-
eter we shed light on the otherwise limited information
one has on the role of local order in glass formation, more
specifically on the role of icosahedral order in 3-d sys-
tems such as the Wahnström model. Evidence for some
correlation between the slowing down of relaxation and
the growth of icosahedral order in this model has been
reported [14, 17, 36], but it is hard to get an in-depth
picture considering the limited range that is accessible
to simulations and the strong frustration. Starting from
The Euclidean limit and curving space, we find a continu-
ous evolution with an increase of the extent and of the in-
fluence of the local icosahedral order on the physics of the
liquid under cooling, including an increase of the kinetic
fragility, until one encounters a low enough frustration
that allows freezing in an ordered icosahedral structure
and thereby prevents glass formation.

Interestingly, the increase of frustration with decreas-
ing curvature is accompanied by the decoupling of the
temperature evolution of the dynamical and structural
lengths. This suggests that while the collective behavior
of the system is controlled by the growth of the icosahe-
dral order and the proximity to an underlying (avoided)
ordering transition for sufficiently weak frustration, the
slowing down is no longer uniquely dominated by the
local order when frustration increases: the observed de-
coupling appears as a signal that other mechanisms come
into play. The behavior found in the Euclidean space is
the end point of this process with only remnants of the
role of icosahedral ordering.

Finally, we contrast the situations in d = 2 and d = 3.
The change of behavior with curvature observed in the
present study is profoundly different from that found in 2-
d systems of spherical particles, where 6-fold local bond-
orientational order is prevalent. In the latter case, the
ordering transition in the absence of frustration (which
in 2-d means in the Euclidean plane) is continuous or
weakly first-order [54, 55]. In 3-d, the transition appears
strongly first-order and is accordingly characterized not
by the continuous divergence of the relaxation time or
the correlation length but by jumps from finite to infi-
nite values in these quantities. (These jumps are more-
over rounded by the intrinsic finite size of the systems.)
By curving 2-d space [31, 32, 43, 56] one then encounters
an avoided continuous transition near which the correla-
tion length can be very large. Here instead, by flatten-
ing 3-d space, we see the effect of an avoided first-order
transition, with a broadened crossover and limited cor-
relation lengths. The collective behavior generated by
the proximity of an avoided ordering transition is more
prominent in 2-d than in 3-d, which may explain why the
decoupling phenomenon between the dynamical and the
static lengths appears to be absent in many 2-d liquids
[42, 56, 57] and why finite-size effects are more dramatic
in 2-d than in 3-d glass-formers [52]. On top of this, the
influence of growing structural correlations on the relax-
ation slowdown may also be different: in 2-d, the defects
in the local 6-fold order are point-like while in 3-d icosa-
hedral order one expects defect lines, whose dynamics
may then be strongly constrained [24]. This deserves
further investigation.
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