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Main Results
I We show near-quadratic speedups for the Travelling Salesman

Problem (TSP) when the degree of any vertex is at most 4.

I This is through applying a quantum speedup for backtracking
[Mon15] to two TSP algorithms [XN16a,XN16b].

I We then demonstrate polynomial speedups up to degree-6.

I See Physical Review A 95(3), 032323 (2017)
[arXiv:1612.06203] for further details.

1. The Travelling Salesman Problem

I Let G be a graph with n vertices and m edges.

I A cycle H on G is Hamiltonian if it visits every vertex in G .

I The TSP is to find the shortest Hamiltonian cycle.
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(a) 7 Not a Hamiltonian
cycle.
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(b) 7 Not the shortest
Hamiltonian cycle.
(Length: 3028 Minutes)
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(c) 3 Solution to the
TSP. (Length: 2938
Minutes)

I The best general classical algorithms take exponential time in n.

2. Backtracking algorithms

I Backtracking algorithms are a way of solving constraint
satisfaction problems.

I They have two parts:
1. A predicate, which checks if the constraints are satisfiable;
2. and a heuristic, which chooses the next variable to assign.

I When called with a partial assignment, the predicate checks if
the constraints are satisfiable. If not, we return.

I Otherwise, the heuristic picks a variable which we assign a value
to and recursively call ourselves with this new partial assignment.

I Montanaro [Mon15] developed a quantum backtracking
algorithm which has a quadratic speedup for finding a solution.

3. Quantum speedup for degree-3 graphs

I Backtracking algorithms can solve the TSP with “forced” edges
which me must travel down and “removed” edges which we
must avoid travelling on.

I The predicate checks if a Hamiltonian cycle is possible, and the
heuristic selects another edge to force or remove.

I The best backtracking algorithm on degree-3 graphs runs in
O∗(23n/10) time and polynomial space [XN16a].

I We apply [Mon15] to this algorithm to find a Hamiltonian cycle,
failing to find one when one exists with probability δ, in
O∗(23n/20 log(1/δ)) time, where O∗ hides polynomial factors.

I We find the shortest Hamiltonian cycle with bounded error
(finding a sub-optimal cycle or no cycle) via binary search with
O(log L log log L) overhead, where L is the longest edge length.

4. Example backtracking step
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I Forcing bc , as shown on the left, means that b and c are
incident to two forced edges, so ci and bd are removed. Now d
and i are of degree 2, so edges df , dg , hi and ij are forced.

I Removing bc , as shown on the right, means that b and c are of
degree 2, so edges bd and ci are now forced.

5. Expanding to higher-degree graphs
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Figure: Ways of splitting a vertex of degree 5 or 6 into two lower-degree vertices.

I For degree-4 graphs, we apply the same technique to the
algorithm of [XN16b] in O∗(1.301n log L log log L) time.

I Other speedups can be found by breaking higher-degree vertices
into degree 4 vertices connected by forced edges.

I We find the shortest way of splitting each vertex via [DH99].

I For degree-5/6 graphs, there are 10 ways of splitting each
vertex, of which 6 will preserve the shortest Hamiltonian cycle.
Thus we get an additional O((10/6)n/2) overhead.

I For degree-7 graphs, this method is slower than classical
algorithms for the general TSP [HK62, Bjö14].
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[DH99] C. Dürr and P. Høyer, arXiv:quant-ph/9607014 (1999)
[HK62] M. Held and R. Karp, Journal of the Society for Industrial
and Applied Mathematics, 10(1):196–210, (1962)
[Mon15] A. Montanaro, arXiv:1509.02374 (2015)
[XN16a] M. Xiao and H. Nagamochi, Algorithmica 74(2):713–741,
(2016)
[XN16b] M. Xiao and H. Nagamochi, Theory of Computing Systems,
58(2):241–272, (2016)


