
                          Simplicio, P., Santos, N., Costa, A., & Sanguino, J. (2010). Uncoupled GPS
Road Constrained Positioning based on Constrained Kalman Filtering. In
13th International Symposium on Wireless Personal Multimedia
Communications (WPMC 2010): Oct 11, 2010 - Oct 14, 2010, Recife,
Pernambuco, Brazil.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via http://iecom.dee.ufcg.edu.br/~wpmc2010/index.html. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/83929844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/uncoupled-gps-road-constrained-positioning-based-on-constrained-kalman-filtering(99dc4d61-0c5b-40de-b084-f7d056ee39dc).html
http://research-information.bristol.ac.uk/en/publications/uncoupled-gps-road-constrained-positioning-based-on-constrained-kalman-filtering(99dc4d61-0c5b-40de-b084-f7d056ee39dc).html


The 13th International Symposium on Wireless Personal Multimedia Communications (WPMC 2010) 

UNCOUPLED GPS ROAD CONSTRAINED POSITIONING BASED ON 

CONSTRAINED KALMAN FILTERING 

Pedro Simplício, Nuno Santos, Alexander Costa, José E. Sanguino 

IT - Instituto de Telecomunicações, 

Instituto Superior Técnico, Technical University of Lisbon, Portugal 

ABSTRACT 

Car navigation systems take advantage of the synergies 

between the Global Positioning System (GPS) and digital 

road maps. For this kind of applications the digital road 

maps can provide a priori information to improve the 

positioning accuracy. 

This paper presents a method for the estimation of the 

user’s position, based on GPS positioning estimates, 

constrained to a road map. A low-cost GPS receiver was 

assumed as being the source of the positioning 

information. The techniques used in the proposed 

estimator were developed taking in consideration that the 

platforms where typically they would be implemented are 

characterized by having reduced computational 

capabilities. 

The algorithm’s positioning accuracy was 

characterized based on real data from a low-cost GPS 

receiver installed in a car. Different scenarios were used in 

the field trials in order to evaluate the impact of the 

satellite constellation visibility and geometry in the 

algorithm’s performance. 

I. INTRODUCTION 

OWADAYS, most car navigation systems rely mainly on a 

GPS receiver for positioning. For this kind of 

application, the required positioning accuracy can be achieved 

by most of the low-cost GPS receivers, available today. 

However, when the GPS positioning estimate is presented 

over a digital map, the user gets an additional perception of 

the positioning errors that should not be ignored.  
Displaying the user’s car position on the wrong lane, or 

even off-road, when the user knows he is on the right lane, 

would lead to a lack of confidence on the system. This a 

priori knowledge about the car possible positions, given by a 

road map, can be used to improve positioning accuracy. This 

approach is usually referred as road-constrained positioning. 

Several strategies have been used to address the 

road-constrained positioning problem. Those strategies have 

lead to solutions based on multiple model (MM) approaches, 

[1-2], and/or particle filtering, [3-4]. Those strategies are 

characterized by requiring high computational loads, which 
may impair their use in small platforms with reduced 

computational capabilities. 

In terms of positioning sensor measurements, two 

different possible strategies can be used to integrate the data 

from a GPS receiver. One strategy (coupled) is to use the 

receiver to satellite pseudorange measurements directly in the 

constrained positioning estimation. Another strategy 

(uncoupled) is to use the unconstrained positions, estimated 

by the GPS receiver, as observations for the constrained 

positioning estimation. 

The former strategy requires the use of a GPS receiver 

with raw data output (satellite ephemeris and receiver to 

satellite pseudoranges), whereas the latter strategy can be 

used with low-cost GPS receivers, with standard NMEA data 
output (latitude, longitude, altitude...). 

Taking in consideration that, the automotive navigation 

market is shifting from embedded systems, installed in cars, 

to personal navigation handheld devices, that user’s can carry 

with them, the development of competitive solutions should 

be based on the integration of platforms with reduced 

computational capabilities and low-cost GPS receivers. 

With this in mind, the approach presented in this paper 

explores the use of a constrained Kalman filter, [5], which 

application was already shown promising in theory [6]. The 

proposed algorithm aims to constrain the user’s position to a 
digital road map, based on real unconstrained positioning 

estimates of a low-cost GPS receiver. The digital map here 

used is able to describe roads with a relatively complex shape. 

In order to test the developed algorithm, several field trials 

were conducted with a low-cost GPS receiver installed in a 

car. Since the accuracy of the GPS (unconstrained) 

positioning is extremely dependent on the geometry of the 

visible satellite constellation, field trials were carried out to 

evaluate the algorithm’s performance for different satellite 

configurations. This is particularly important in urban 

navigation, more prone to the canyon effect. 

This paper is organized as follows. In section II the 
theoretical framework behind the constrained positioning 

estimation is presented. Section III describes the main blocks 

of the constrained positioning algorithm. In section IV the 

results of the experimental field trials are presented and 

analyzed. The paper ends with conclusions in section V.  

II. THEORETICAL FORMULATION 

The following sub-sections present the main tools required to 

constrain a set of GPS positioning estimates into a known 

track, given by a digital road map. 

A. Coordinates Frames 

Typically, GPS receivers express their position estimates in 

Latitude, Longitude and Altitude (LLA). However, since all 

the processing required in the road constrained positioning 
algorithm was developed in terms of cartesian coordinates, 

the GPS LLA positioning estimates are converted to a local 

East, North, Up cartesian frame (ENU). The algorithms to 

convert from LLA frame to the ENU frame and vice-versa 

can be found in [7] and [8]. 

N 
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B. GPS Estimation Errors 

Besides the interference of factors like multipath and 

ionospheric delays in the propagation of GPS signals, its 

estimation error also depends strongly on the relative position 

between the receiver and the visible satellite constellation 
when the measurements are made. This dependence can be 

quantified by dilution of precision parameters, such as 

Position Dilution of Precision (PDOP), which shall be as low 

as possible in order to provide more accurate estimates, [9]. 

This can be achieved in places with an unobstructed view of 

the sky, allowing line-of-sight communication with more 

satellites and also larger dispersion among them. 

C. Unconstrained Kalman Filtering 

The Kalman filter [5] is a useful algorithm to estimate the 

state vector  of a system based on a group of noisy 

observations , thus providing a smooth evolution of its 

behaviour. On the other hand, it is also capable of quantifying 

the error covariance matrix  inherent to that estimation. This 

linear filter is an iterative discrete process consisting in the 

following steps per iteration: 

   (1) 

   (2) 

  (3) 

  (4) 

  (5) 

The matrices  and  are related with the kinematics of 
the receiver. Assuming its movement is not subjected to high 

accelerations, the value of the position  and velocity  in 

each spatial coordinate can be iteratively determined 

from [10]: 

   , (6) 

where  is the sampling interval (1 second between two 

consecutive GPS estimates) and  the acceleration noise 

with zero mean and variance . This value must be carefully 

adjusted, taking into account the movement characteristics, to 

assure an optimal performance of the algorithm. It 

corresponds approximately to 

   , (7) 

where  is the expectable speed variation per sampling 

interval. 

In order to estimate the position of a receiver in a 

bi-dimensional map, the adopted state vector is 

, yielding: 

   , (8) 

   . (9) 

The initial state vector  and its uncertainty  shall also 

be defined to start the filtering process. 

The matrices  and  are established by the observations 

model. Since the GPS receiver express its position estimates 

in LLA, after converting them to ENU cartesian coordinates, 

the relation between these measurements and the state vector 

is given by: 

   (10) 

 represents the observation noise in each iteration and, 

assuming that both spatial coordinates are affected with a 

typical standard deviation of ,  

   . (11) 

D. Constrained Kalman Filtering 

The objective of this subsection is to determine the most 

probable receiver position on a road. Such goal can be 

achieved through the minimization of a cost function , 

proportional to the deviation between a specific state vector  

and the one coming from Kalman filtering . Furthermore, it 
must be given more tolerance, i.e. less cost, to those variables 

estimated with more uncertainty. Based on the weighted least 

squares method,  can be defined as 

   , (12) 

where  is a symmetric positive defined weighting matrix. 

Accordingly to [6], when , the constrained state 
estimate reaches the minimum error covariance for this type 

of approach. 

The domain of the cost function is, however, to be 

confined to the road path. Thus, with the purpose of modeling 

curved roads, it can be defined as a second-order constraint 

function: 

   . (13) 

Usually, it is easy to determine a univariate quadratic 
regression with the following structure: 

 . (14) 

It suffices to most cases, although it is not possible to 

represent paths with several ordinates for the same abscissa. 

Moreover, problems are expected whilst calculating 

high-slope functions due to the finite range of its coefficients. 

Combining (13) and (14) and assuming  is symmetric 

leads to: 

   (15) 

   (16) 

   (17) 

The Lagrangian multiplier method was then used in order 

to find the optimal constrained estimate. It is based on the 

minimization of the Lagrangian function, given by: 



The 13th International Symposium on Wireless Personal Multimedia Communications (WPMC 2010) 

   , (18) 

being  the Lagrangian multiplier. For positions subjected to 

the constraint (13),  and its minimum 

corresponds to the state vector that nulls the first derivative of 

the Lagrangian function. This method yields the following 

solution, depending on an unknown  though: 

   . (19) 

For such, it was assumed that  is invertible. 

Replacing (19) in (13) it is possible to obtain a non-linear 

expression to calculate : 

 (20) 

  . 

To find its roots it was chosen the Newton-Raphson 

method, which is known for its good commitment between 

complexity and quick convergence, whenever initialized near 

the desired root. Knowing the first derivative of the constraint 

function: 

 (21) 

  , 

the iterative process is based on: 

   (22) 

Once , the procedure stops and  is 

replaced in (19). In the following tests,  and the 

initial estimate  was set to zero, since the Lagrangian 

multiplier may assume either positive or negative values. 

 III. ALGORITHM DESCRIPTION 

Combining the mathematical tools presented in the previous 

sections, an application in MATLAB was developed, to 

process positioning coordinates obtained with a low-cost GPS 

receiver installed on a car. The operational diagram of this 

application is shown on Fig. 1. 

In the block A, a set of LLA coordinates is converted in 

ENU positions. These points are registered in a 

Comma-Separated Values (CSV) file and correspond to spots 

along the roads to be analyzed. 

The goal of block B is to create two objects with the 

information of all mathematical tracks to process. The first 
one keeps the validity domain of each track (defined by the 

user) and the coefficients of the regression concerning the 

points within each domain (the user can choose between 

linear and quadratic regression). In the other object is 

registered the identification of every track contiguous with 

each one. 

The block C allows to load a CSV file containing the GPS 

measurements and also to convert them to an ENU frame, 

with the same origin used in block A. 

An iterative process along all the observations is now 

started, with the Kalman filtering performed in block D. For 
that, it is necessary to use the parameters defined in 

section II.C and to know the first point of the map, and 

therefore the initial estimation. 

 

Figure 1: Algorithm overview. 

The constraints are then applied, in block E, to each track 

and everyone contiguous with it, accordingly to section II.D. 

If one projection does not belong into the domain of validity 
of the track under analysis, it is suppressed. The amplitude of 

this domain is here raised by a safety coefficient, assuring 

mathematical continuity between every track. This situation 

will be addressed in detail along the next section. 

In block F, the quadratic error between the observation 

and the projection, in each track, is calculated. As it was done 

with the cost function, the latter error is weighted with . 

The algorithm chooses the projection that minimizes the error 

and records the correspondent track for the next iteration. 

The projections are then transformed into LLA 

coordinates by block G. 

Block H writes a Keyhole Markup Language (KML) file, 
readable by Google Earth, [11]. This allows the user to 

visualize, in the Google Earth application, both the trajectory 

obtained with the GPS receiver (unconstrained) and the result 

of the road constrained positioning algorithm, proposed here. 
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IV. EXPERIMENTAL RESULTS 

After the algorithm development, several trials with real GPS 

data were made in order to evaluate its performance in 

different scenarios. In this section, an analysis of the results is 

presented. Using a Qstarz BT-Q1300 low-cost GPS receiver, 

the linear and quadratic strands of the algorithm were tested 

under low and high PDOP conditions in Lisbon. 

A. Low PDOP 

In this situation, the tests were made walking through a wide 

area outside the city. In Fig. 2 it is possible to conclude that 

the main objective of constraining the GPS data to the correct 

road is achieved. It is also possible to verify that the Kalman 

filter is an important tool, smoothing the observations and 
contributing to an easier constraint. 

 

Figure 2: Comparison between the GPS estimates and the unconstrained and 

constrained Kalman filter estimates, for the linear regression. 

Firstly, a linear regression was used and so a large number 

of segments were created and analyzed, as follows in Fig. 3. 

Due to an adoption of a linear strand of the algorithm and 

since each of these regressions is made with 2 points, the 

continuity between segments is practically assured. Therefore, 
a small safety coefficient was chosen. One last point should 

be enhanced at this stage and it is related with the occurrence 

near the hundredth iteration, which corresponds to a crossroad 

point. The algorithm appears to be in doubt between two 

segments, being this one of the major problems in the 

constraining subject. Anyhow, it is possible to observe that 

this small hesitation is negligible and the following result is 

completely reliable.   

After this test, a quadratic regression was used and no 

significant differences were observed when comparing to the 

linear case. However, it was possible to conclude that much 
less segments were assumed due to the fact that more points 

of the map were used in each regression and, as a result, the 

computational load was reduced. Apart from this, a new 

problem arises in the transition of two quadratic segments, 

because significant discontinuities often appear, requiring a 

wise choice of the safety coefficient.        

 

Figure 3: Road segment analysis in each iteration. 

B. High PDOP 

In order to test the algorithm in an urban scenario, with 

reduced view of the satellite constellation, a car circuit was 

selected in the town centre. The linear strand result is 

presented in Fig. 4. Again, the constraint is successfully 
obtained, even though the GPS estimates are sometimes quite 

off the road, due to multipath effects in the surrounding 

buildings.   

 

Figure 4: Google Earth view of the results with linear regression. In blue the 

GPS estimates and in red the constrained Kalman filter solution. 

In Fig. 5 and 6 are presented the results obtained within 

the yellow rectangle of Fig. 4 using linear and quadratic 
constraints, respectively. For quasi-vertical roads it is 

impossible to choose an infinite slope for a univariate 

function and, as for an infinitesimal  axis fluctuation a 

tremendous  variation is verified, the function that 

represents the road should be carefully designed. Comparing 

the linear with the quadratic case, it is easy to verify that 

between different road segments it is more difficult to the non 

linear case to guarantee continuity and so different safety 

coefficients should be used. In the linear strand, 80 cm is 

enough to obtain optimal results. However, the discontinuous 
sections are bigger in the quadratic form and so, 2 m were 

adopted to ensure that the constrained solution does not fit in 

a discontinuity. 
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Figure 5: Enlargement of a critical vertical path, with linear regression. 

 

Figure 6: Enlargement of a critical vertical path, with quadratic regression. 

Analyzing Fig. 7, there is one point to enhance for both 

linear and quadratic variants and it lies in the deviation at the 

crossroad. As presented, as the observations get closer to the 

cross, the algorithm has a small doubt and instantly assumes 

the upright road as the correct one, because the values are 

closer to this road instead of the real one. Anyhow, as the 

movement proceeds, it realizes that a wrong assumption was 
made and a correct constrain takes place again. 

 

Figure 7: Google Earth view of the results with linear regression in linear 

crossroads. In blue the GPS estimates and in red the constrained Kalman 

filter solution. 

V. CONCLUSIONS 

The success of the results obtained in both low and high 

PDOP trials supports the effectiveness of the proposed 

algorithm. The Lagrangian multiplier method was revealed 

capable of solving the problem of constraining a set of 

observations to a road path. Results not presented in this 

paper also showed that, the performance of the 

Newton-Raphson method, in this context, was very efficient.  

Thus, the proposed algorithm provides a fast and simple 

algorithm, applicable to car navigation systems, with reduced 

computational capabilities, and based on low-cost GPS 
receivers. 

When using a linear regression to model the roads, a 

higher number of tracks has to be defined (increasing the 

complexity of the problem), but a closed-form (and, therefore, 

faster) solution exists, [6]. Despite assuring good results in all 

studied scenarios, this kind of regression is particularly useful 

in rectilinear paths. 

On the other hand, the quadratic regression allows a more 

accurate description of the road with a fewer number of tracks 

required, but in order to guarantee mathematical continuity 

between them, adjustments have to be carefully done. 
Considering these adjustments, in the safety coefficient and in 

the tracks limits, this type of regression contributes to an 

optimization of the algorithm, especially when dealing with 

curved roads. 
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