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Micro-mechanical cantilevers are increasingly being used as a characterisation tool in both material and
biological sciences. New non-destructive applications are being developed that rely on the information encoded
within the cantilever’s higher oscillatory modes, such as AFM techniques that measure non-topographic
properties of a sample. However, these methods require the spring constants of the cantilever at higher
modes to be known in order to quantify their results. Here, we show how to calibrate the micro-mechanical
cantilever and find the effective spring constant of any mode. The method is uncomplicated to implement,
using only properties of the cantilever and the fundamental mode that are straightforward to measure.

Keywords: MEMS, AFM, Atomic Force Microscope, Cantilevers, Calibration, Higher Modes, Multifrequency,
Non-Topography

The use of micro-mechanical sensors (MEMS) has in-
creased dramatically over the last fifteen years, becoming
a vital tool in fields such as diagnostics, photothermal
spectroscopy, and mass and chemical detection; they are
also at the heart of scanning probe microscopy, such as
the atomic force microscope (AFM)1–5. AFMs have been
used extensively to map sample topography to nanome-
tre resolution, and new techniques are extending their
operating potential beyond topography to include mea-
surements of properties such as the hardness, viscoelas-
ticity and stiffness of a sample6,7. These non-topographic
techniques have already been applied within material and
biological sciences to both hard and soft samples; the
ability to find non-topographic properties is of particular
importance when seeking to minimise damage8.

Non-destructive techniques often use micro-cantilevers
with low spring constants to avoid potential damage, by
exciting the cantilever until the effective stiffness at a res-
onant frequency matches that of the sample or the sur-
rounding medium9,10. Then, the combination of the shift
in resonant frequency at a specific mode and a suitable
model of the cantilever-sample interaction leads to mea-
surements of the investigated property. However, meth-
ods that utilise the higher modes have been restricted
to relative results11,12; their quantification requires the
ability to determine with confidence the effective spring
constant of a cantilever oscillating free from a sample at
arbitrary mode number. In this paper, we describe a
method that resolves this problem in a way that is both
repeatable and straight-forward.

Many calibration methods exist for finding the spring
constant at the first or fundamental mode13. They typ-
ically seek to avoid using properties of a cantilever that
are difficult to measure, such as thickness or density. For
example, conventional AFM probes have a total thickness
of less than a micron and include a gold layer, to boost re-
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flectiveness, that has a thickness of some tens of nanome-
tres. The composite structure and small thicknesses are
challenging to quantify accurately, and so many exist-
ing techniques instead use indirect means of calibration.
For example, the Sader method14 uses fluid dynamics to
estimate the hydrodynamic effect on a cantilever’s reso-
nant frequencies, and does not require knowledge of the
thickness, density or Young’s modulus of the cantilever.
Alternatively, the thermal method15 uses the equiparti-
tion theorem to relate the power spectrum of a thermally
excited cantilever to its resonant energy in order to find
the spring constant, also avoiding reliance on difficult to
measure properties.

While these methods can be applied to determine the
stiffness of higher modes of the cantilever, they face lim-
itations as the mode number increases. The reliance
on thermal excitations means that the thermal method
restricts calibration in practice to only the first few
modes for many micro-mechanical cantilevers. The Sader
method depends on the accuracy of theories that describe
flow around a cantilever, which are difficult to verify ex-
perimentally at high mode number. Issues include the as-
sumption that the Reynolds number of the flow is small,
and that the method (in its simplest form) considers
only two-dimensional flow across the cantilever width14.
However, at high mode number both the Reynolds num-
ber increases and flow along the length of the cantilever
has been shown to dominate16. While extensions to
the fluid theory have been proposed to address these
limitations17,18, we instead show how the material prop-
erties of the cantilever can be found and used to circum-
vent such difficulties.

By focussing on the material properties of the can-
tilever, our method is not limited by mode number, and
can be used as a check against other calibration tech-
niques without the need for additional analysis or mea-
surements. It uses only the (experimentally measur-
able) Q-factor and resonant frequency at the first mode,
without the need for additional parameter fitting. The
method is summarised by the following steps:
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FIG. 1: (a) A sample frequency response obtained by driving a rectangular MSNL-10B Bruker cantilever with a
lock-in amplifier, where amplitude is displayed in log scale, with arbitrary units (a.u.) and normalised to the

amplitude of the second mode. The apparent low amplitude of the fundamental mode is due to the use of a 15kHz
high pass filter to improve the signal to noise ratio in higher modes. The amplitude of the fundamental mode was

measured separately without this filter in place. This corresponds to frequency sweep V. (b) Detail of the frequency
response (circles, blue) and simple harmonic oscillator curve fits for modes six to nine (dashed line, red).

• The spring constant depends on the flexural rigid-
ity, the length of the cantilever and the wave num-
ber of the specified mode.

• The flexural rigidity in turn depends on the struc-
ture of the cantilever. In a rectangular AFM can-
tilever, this is determined by the length, breadth,
and two unknown thicknesses — the total thickness
of the cantilever and the thickness of the gold layer
— together with the densities of the two layers.

• To find the unknown thicknesses, we solve two si-
multaneous equations that link the material prop-
erties of the cantilever to the resonant frequency
and Q-factor of the first mode. The first equa-
tion is a combination of the flexural rigidity of a
composite beam with the equation for its resonant
frequency in vacuo and the shift in resonance due
to the surrounding fluid, obtained from standard
cantilever models, while the second is the rule of
mixtures for composite materials.

• The effective stiffness is then found by combining
the length and flexural rigidity of the cantilever
with the wave number of the specified mode.

We demonstrate our method for the case of a rectan-
gular AFM cantilevered probe oscillating in air (though
it is applicable to any cantilever-based sensor), and com-
pare our results against other calibration methods. The
effective spring constant of the nth mode of a rectangular
cantilever is given by the fundamental relation,19

kn = 0.2427µLω2
n,vac, (1)

where µ is the mass per unit length, L is the length
and ωn,vac is the resonant frequency of the nth mode (in
vacuo) of the cantilever. The aim of our approach is to

use information measured at the first mode to calculate
µ and then use an analytic model of the cantilever as a
composite beam to find ωn,vac. The effective spring con-
stant is then given by applying Eq. (1) at any desired
mode. The measured shift in resonant frequency from
ωn,vac can be used to measure the additional effect on
the cantilever due to the surrounding fluid, as described
below.

The mass per unit length, µ = ρchTb, is the product
of the total thickness, hT, width, b, and density, ρc, of
the cantilever. To avoid the need to measure these prop-
erties, we instead use the relation14

µ =
πb2ρf

4
(Q1,RΓi(ω1,R) + Γr(ω1,R)) , (2)

at the first mode, where Q1,R and ω1,R are the measured
Q-factor and resonant frequency at the first mode, ρf is
the density of the surrounding fluid, Γ is the hydrody-
namic loading function14 and subscripts r and i denote
the real and imaginary parts respectively. This is based
on the Sader method which has been shown to find the
effective spring constant at the first mode to within 5%
accuracy20, giving us confidence in Eq. (2).

To find ωn,vac, we choose for simplicity to model the
cantilever as an Euler-Bernoulli beam; the deflection
w(x, t) is given by

∂4w(x, t)

∂x4
+

µ

EI

∂2w(x, t)

∂t2
= F, (3)

for a beam with flexural rigidity EI, driven by a force
F , with boundary conditions w = wx = 0 at x = 0 and
wxx = wxxx = 0 at x = L. Solving gives the resonant
frequency of the cantilever in vacuo

ωn,vac =

(
αn

L

)2
√
EI

µ
, (4)
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FIG. 2: (a) The effective spring constant found our method, the Sader method, and the thermal method. (b) A
zoom in on the effective stiffness and variation for modes 2-5 found using each method. (c) The additional loading

due to the surrounding fluid, ΓEst estimated by Eq. (6), compared to the Sader method14. The dotted line is the real
part of the hydrodynamic function, Γ(ω) and circles are the Reynolds number for each mode.

where αn is the eigenvalue of the nth mode. The an-
alytic model, Eq. (3), can be adjusted to include other
considerations such as tip mass, tip positioning, irreg-
ular cantilever geometries (e.g., V-shaped), and height
changes21,22. One way to verify the model is to compare
the mode shapes given by calculation of αn and charac-
teristic equation, to measurements of the deflection of the
cantilever taken incrementally across the length using a
laser doppler vibrometer23 (see Supplementary Fig. S1,
which shows good agreement for our chosen AFM probe).
Note, though, that the method is applicable without such
equipment or comparison.

Substituting Eq. (4) into Eq. (1) gives the effective
spring constant, assuming that EI is known. While
this is straightforward for a uniform cantilever, typical
AFM cantilevers also include a thin gold layer. Despite
being neglected in many calibration techniques, it does
have significantly different material properties to typical
MEMS materials such as silicon and silicon nitride, and
can have a sizeable effect as we show below. We assume
that the cantilever is a two-layer composite, with a gold
layer of thickness, hAu, and density, ρAu, added to the
cantilever body, hT, with density, ρSi. Laminar beam
theory24 gives the flexural rigidity of the composite can-
tilever as

EI =
b

24

[
ESi

(
h3T +H3

)
+ EAu

(
h3T −H3

)]
(5)

where H = hT − 2hAu. In order to find hT and hAu, we
use the shift in resonant frequency of the first mode due
to the presence of the surrounding medium14

ω1,vac = ω1,R

(
1 +

(
πb2ρf

4µ

)
Γr(ω1,R)

) 1
2

=

(
α1

L

)2
√
EI

µ
.

(6)
Substituting Eq. (5) into Eq. (6 gives one equation for
hAu and hT; this, together with the rule of mixtures for
composite materials25

b (hAu(ρAu − ρSi) + hTρSi) = µ (7)

gives two simultaneous equations for the two unknown
thicknesses, hAu and hT, in terms of readily measurable
quantities (resonant frequency and Q-factor of the first
mode, ω1,R, Q1,R, length and breadth of the cantilever,
L, b, and the mass per unit length, Eq. (2)):,

b (hAu(ρAu − ρSi) + hTρSi) = µ,

b

24

[
ESi

(
h3T +H3

)
+ EAu

(
h3T −H3

)]
=

µ

(
L

α1

)4

ω2
1,R

(
1 +

(
πρfb

2

4µ

)
Γr(ω1,R)

)
.

(8)

These equations can be solved numerically, and the re-
sults inserted into Eqs. (5), (4) and (1) to give the effec-
tive stiffness.

To demonstrate our technique, we have taken measure-
ments of the spectra of five different MSNL-10B Bruker
rectangular cantilevers, driven by both thermal excita-
tions (using a custom-built AFM at the University of
Bristol26), and also a piezo-electric actuator and a lock-in
amplifier (Zurich Instruments HS2Li); see Figs. 1a, and
S5- S7. Simple harmonic oscillator (SHO) equations were
fitted to each resonant peak (Fig. 1b), and the effective
spring constants found from Eq. (1), using the method
described above. The results are shown in Fig. 2a, to-
gether with those obtained from the Sader and thermal
methods, for comparison.

When calculating the effective spring constant, our
method gave consistent values across repeated measure-
ments; see Table II and Fig. 2a. However, we saw less
variation in the values obtained from our method than
either the Sader method or thermal method. By driving
the cantilever directly with piezo-electric actuators and
the lock-in amplifier, we were able to excite the cantilever
up to 2 MHz, which corresponds to the cantilever’s tenth
bending mode. Again we observed good agreement be-
tween the effective stiffnesses predicted by our method
and those of the Sader method; see Supplementary Ta-
ble SIV. However, the variation between experiments (us-
ing the same cantilever) increases significantly with mode
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number for the Sader method (see Fig. 2a and Table II),
and requires the additional fitting of SHO equations for
each mode. In contrast, our method is able to find the
effective stiffness with consistently low variation, using
only the measured resonant frequency and Q factor at
the first mode. Therefore, we believe that it is robust at
finding the effective spring constant of higher modes.

In addition, we can reliably calculate material proper-
ties of the cantilever. Table I shows our predictions of
cantilever thickness, hT, gold layer thickness hAu, spring
constant, k1 and those given by the manufacturer. The
gold layer is given as (45 ± 5) nm and the total thickness
as (0.55 ± 0.05) µm. Across the five frequency sweeps,
we find the mean total thickness to be 0.537 µm with a
standard deviation of 0.018 nm, and the mean thickness
of the gold layer to be 30.6 nm with a standard deviation
of 9.65 nm. The SEM images showed the total thickness
to be approximately 0.6 µm, but it was difficult to dis-
cern the thickness of the gold layer due to the charging
effects on the insulating silicon. However, when the gold
layer was ignored from our calculations we found that
the frequency of resonance in vacuo, ω∗

vac, was estimated
higher than the measured resonance by as much as 35%,
emphasising that the gold layer has a significant effect.

Eq. (6) can be used to calculate the additional
loading on the cantilever from the surrounding air; we
found it to overestimate the fluid loading predicted by
the hydrodynamic function14 with a large spread of
potential values, predominantly due to small changes in
the measured resonant frequency; see Fig. 2c. However,
the actual shift in measured resonant frequency from the
calculated resonant frequency in vacuo was less than 2%
at the first mode and less than 1% from the fifth mode
onwards. This corresponds to a less than 5% difference
in the effective spring constant. Taken together, these
give confidence that our method does indeed accurately
predict the effective spring constants of any mode of a
micro-mechanical cantilever.

See supplementary material for information about the
experimental measurements of the MSNL-10B Bruker
cantilevers. It includes the deflection of the thermally
excited cantilever as measured with the LDV and
compared to the analytic mode shapes, (Fig. S1), the
SEM images of the cantilever, (Supplementary Figures
S2, S3 and S4), and the additional power spectrum of
the cantilevers (Supplementary Figures S5, S6 and S7).
We also include the tabulated results comparing our
method to the Sader method and the thermal method
(Supplementary Tables SI, SII, SIII and SIV).

The authors gratefully acknowledge the Low Noise
Labs of the NSQI Centre at the University of Bristol
for hosting the custom AFM. Shatil was supported by a
UK Engineering and Physical Sciences Research Council
(EPSRC) CASE award, in collaboration with Sellafield
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TABLE I: The thicknesses, hT and hAu, Q-factor, Q,
measured resonant frequency, ω1,R, and estimated reso-
nant frequency, ω∗

1,vac, found using Eq. (4) and ignoring
the influence of the additional gold layer, as well as the
effective spring constant of the first mode, k1, found using
our method for frequency sweeps I.-V.

hT hAu Q ω1,R ω∗
1,vac k1

(µm) (nm) - (kHz) (kHz) (Nm−1)

Manufacturers 0.55 45 - 15 - 0.0200
I. (Thermal) 0.547 37 21 15.1 20.7 0.0212
II. (Thermal) 0.524 29 19 14.7 18.1 0.0194
III. (Thermal) 0.553 36 21 15.1 18.2 0.0215
IV. (Lock-In) 0.549 36 21 14.9 18.1 0.0217
V. (Lock-In) 0.509 14 17 15.5 18.1 0.0187

TABLE II: Predicted effective spring constant (mean,
standard deviation) of modes 1–5, found using our
method, (kn, σn), the Sader method, (kSader, σSader), and
the thermal method, (kThermal, σThermal). All units are
Nm−1.

Mode kn σn kSader σSader kThermal σThermal

1 0.0205 0.0013 0.019 0.0014 0.0846 0.014
2 0.806 0.0527 0.719 0.249 1.97 0.324
3 6.32 0.413 7.03 2.46 12.0 4.27
4 24.3 1.59 33.8 25.4 37.4 1.98
5 66.3 4.33 110 66.9 59.0 10.8
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