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The aim of ultrasonic non-destructive evaluation
includes the detection and characterization of defects,
and an understanding of the nature of defects is
essential for the assessment of structural integrity
in safety critical systems. In general, the defect
characterization challenge involves an estimation of
defect parameters from measured data. In this paper,
we explore the extent to which defects can be
characterized by their ultrasonic scattering behaviour.
Given a number of ultrasonic measurements, we show
that characterization information can be extracted
by projecting the measurement onto a parametric
manifold in principal component space. We show
that this manifold represents the entirety of the
characterization information available from far-field
harmonic ultrasound. We seek to understand the
nature of this information and hence provide
definitive statements on the defect characterization
performance that is, in principle, extractable from
typical measurement scenarios. In experiments, the
characterization problem of surface-breaking cracks
and the more general problem of elliptical voids are
studied, and a good agreement is achieved between
the actual parameter values and the characterization
results. The nature of the parametric manifold enables
us to explain and quantify why some defects are
relatively easy to characterize, whereas others are
inherently challenging.

1. Introduction
The aim of ultrasonic non-destructive evaluation and
structural health monitoring includes the detection and
characterization of defects [1–5], and an understanding

2017 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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of the nature of defects is essential for the assessment of structural integrity in safety critical
systems [6]. There are several types of defects that can potentially occur in a structure,
whose effects need to be treated differently. Cracks are commonly regarded as ‘the defects
of most concern’ [7] because they can lead to rapid growth and hence failure of a structure
[8]. For this reason, characterization of cracks has been studied extensively in the literature,
including measurements based on single element transducers [9,10] and transducer arrays [11,12].
The proposed approaches include measuring the scattered amplitude [10], the time-of-flight
diffraction technique [13], image-based characterization [11,14] and characterization using the
scattering matrix [11,12], which gives a far-field scattering amplitude for every combination of
incident and scattered directions.

Once a defect has been non-destructively detected, the next requirement is to characterize it
and hence to discover its physical nature. In the absence of any characterization information, the
worst case scenario is assumed, which is often to classify the detected defect as an unfavourably
(w.r.t. the loading) oriented surface-breaking crack. Here, the worst case defect is one that will
most rapidly result in a failure of the structure. Improved defect characterization information
allows the worst case scenario to be replaced by a more accurate representation of reality. Of
course, in some cases the characterization may confirm the worst case scenario, but in others the
detected defects can be relatively benign, for example rounded pores or inclusions introduced in
the manufacturing process. Whatever the characterization result, the outcome of more accurate
characterization is a better prediction of the remaining life of a structure.

There are two main approaches to the defect characterization problem seen in the literature.
The first attempts to reconstruct the defect geometry without any preliminary assumptions about
the defect. For example, an iterative method can be applied, in which a defect geometry is
iteratively updated and a forward scattering model is used to calculate a scattering matrix until
a match with the measured data is reached [15]. In some cases a model-based inversion, which
makes use of an approximate analytical expression for the forward scattering problem, can be
applied. This approach is widely used in guided waves tomography for the reconstruction of
the thickness map of corrosion damage [16]. Alternatively, semi-analytical inversion schemes
have been developed [17]. However, a regularization procedure is required in general inversion
approaches [18] in order to deal with the ill-posedness of the studied problem, and issues
including numerical stability and convergence need to be addressed [19]. This has led researchers
to consider more targeted approaches, and the second approach makes use of the fact that there
is only a limited number of possible defect types that can occur in practice. Each defect type
can then be efficiently described by a limited set of parameters. In this case, the characterization
problem becomes one of estimating this smaller set of defect parameters from the measured
scattering data. Typically, the method of solution adopted is to form a large database from
many forward simulations and then compare experimental data with that in the database, i.e.
the database is searched and the closest match is used to characterize the defect. In these
database search methods, use can be made of the vast body of the literature on classification
algorithms and their applications [20–24]. Neural networks and the support vector machine
are examples of the widely used classification approaches. Their use can be found in a range
of applications, including radar target recognition [25], underwater target classification [26],
classification of electroencephalogram signals [27] and in bioinformatics (e.g. gene selection for
cancer classification [28]). Using this classification algorithm approach to the characterization
problem, good results have been achieved on simulated data and in idealized experiments
containing machined notches [12] and volumetric elliptical voids [29]. In addition, the effect of
coherent grain noise on these classification schemes was explored [30].

However, there is a philosophical problem with the use of the above classification approach—
the classification algorithms are ‘black-boxes’ completely defined by the training data. In addition,
the classification approach relies on subjective choices such as the defect class definition and the
number of defect classes, which limits the generalizability of the approach, especially when three
or more parameters need to be determined from the inversion process. In this paper, a new defect
characterization method is proposed to address the above issues. The crucial observation is that
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the defect database can be represented by a parametric manifold in the measurement domain,
and can be approximated to any resolution with a finite number of training samples using
interpolation schemes. As such, any characterization procedure is fully determined by the shape
of the parametric manifold, which also determines the achievable characterization accuracy.

The proposed approach has some important practical benefits. Firstly, the characterization
is performed in the principal component domain. In this case, only a few largest principal
components can be taken, which resolves the issues related to high dimensional characterization
spaces. Secondly, the manifold representation of the parametric defect space provides a
much more intuitive/insightful geometric understanding and helps to ‘visualize’ the defect
characterization problem. The proposed method naturally handles any measurement scheme (e.g.
arrays, multiple probes and scanning) and allows us to consider different defect types. Thirdly, in
practice, the available measurement information is always limited, and, in this case, an estimation
of the characterization uncertainty is critical. The proposed approach naturally introduces the
method for the characterization uncertainty estimation, so the final characterization result is
represented by the probability density distribution in the defect parameter space.

Here, we focus our efforts on the use of an ultrasonic array to characterize two different defect
types: surface-breaking cracks and elliptical voids. All defects are assumed to be two dimensional
and a one-dimensional linear ultrasonic array is used to perform relevant measurements.
However, it should be stressed that the characterization procedure proposed in the paper
is independent of the dimensionality of defects and potentially can be directly applied to
characterize three-dimensional defects. As stated above, cracks are detrimental to structural
integrity, and the detection and characterization of surface-breaking cracks is of particular
industrial interest. Volumetric voids (pores) are also important because they can be potential
initiation sites of cracks [31], and ellipses provide a reasonable simplification of a wide range
of volumetric voids. Surface-breaking cracks can be described by two parameters: size and
orientation angle. For elliptical voids, besides size and orientation angle, a third parameter—
aspect ratio—is needed to define the shape. Hence, the characterization of elliptical voids
naturally extracts the aspect ratio, which is a measure of sharpness and could be useful in fatigue
life predictions.

2. Defect characterization problem
Figure 1 shows a typical ultrasonic array inspection configuration for surface-breaking cracks
located on the back face of a flat plate. The incident and scattering angles and the orientation angle
of surface-breaking cracks are all defined with respect to the back surface normal, and are positive
if measured clockwise. In the example shown here, the material is aluminium (Young’s modulus,
69 GPa; Poisson’s ratio, 0.334; density, 2700 kg m−3), and the thickness of the test specimen is
40 mm. A 2.5 MHz, 64-element array is used as an example throughout this paper, and the element
pitch of the array is 0.50 mm (i.e. 0.2λ at the centre frequency). In figure 1, the array is moved away
from the crack by 30 mm, because otherwise the crack would be obscured by the high-intensity
reflection from the back wall in the image.

Firstly, defects with idealized geometries are considered, so the cracks are assumed to be
smooth. In this case, each surface-breaking crack is fully characterized by two parameters—
length and orientation angle. In reality, all cracks have some level of roughness, which is usually
described by RMS height, σrough, and correlation length, λrough [32]. However, if the roughness
level is not too high, so that the RMS height is much smaller than the ultrasonic wavelength, then
the geometry of the crack can still be approximately described by its length and orientation angle.
The defect characterization problem can then be formulated as estimating the crack parameters
from the ultrasonic array measurements.

From the defect characterization point of view, the information that can be extracted from the
ultrasonic array data is the scattering behaviour of the defect. The scattering information can be
represented in the form of a scattering matrix [11]. More specifically, for a unit amplitude plane
incident wave propagating in the direction θin, the scattered wave in the far field of the defect at
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Figure 1. Array measurement configuration in simulation and experiments (for surface-breaking cracks).
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Figure 2. The scattering matrix of a 1λ, 0◦ surface-breaking crack. The dashed box represents the angular range extractable
from the measurement configuration shown in figure 1. (Online version in colour.)

the direction θsc is given by

usc =
√

λ

r
S(θin, θsc, ω) eikr, (2.1)

where λ is the ultrasonic wavelength, k = 2π/λ is the wavenumber, ω is the angular frequency, r is
the distance from the nominal defect centre and S is the scattering matrix. Note that the proposed
characterization method does not depend on the particular testing procedure used to perform
measurements. To illustrate the performance of the characterization method simple direct contact
measurements were used. In this case, the scattering information extracted from the ultrasonic
array data corresponds to the longitudinal waves, and shear waves and mode conversion effects
are not considered. However, the proposed approach is generally applicable to any experimental
configuration and wave mode type.

The scattering matrices of surface-breaking cracks were simulated using an efficient finite-
element model [33], and figure 2 shows the scattering matrix of a 1λ, 0◦ surface-breaking smooth
crack. Although the scattering matrix is shown for the range of [−90◦, 90◦], the maxima around
the incident and scattered angles of ±90◦ are not extractable for the example shown in figure 1
because of the finite size of the array aperture. The dashed box in figure 2 represents the
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angular range extractable from the measurement configuration shown in figure 1. In general, the
scattering matrix is a complex-valued function; however, its phase depends on the position of the
nominal centre of the defect and, as this is not known a priori, it is difficult to extract the phase
from the measurements. Therefore, in this paper only the amplitude of the scattering matrix is
considered. However, it is noted that further information is contained in the phase part of the
scattering matrix and future work could look at how to make use of this reliably.

3. Defect manifold

(a) Principal component analysis
The defect characterization problem consists of estimating the defect parameters from the
extracted components of the scattering matrix. However, before the characterization procedure
is developed, we explore the general structure of the set of the scattering matrices for a certain
defect type.

Let us consider the set of all possible scattering matrices for a particular measurement
configuration

S = {S(θin, θsc, ω), θin,1 ≤ θin ≤ θin,2, θsc,1 ≤ θsc ≤ θsc,2, ω1 ≤ ω ≤ ω2}, (3.1)

which will be referred to as the s-space.
For any defect characterization procedure, some metric is required to quantify the distance

between a measurement and the entire s-space. The distance (or similarity) between two
scattering matrices can be measured in many different ways. For example, the L2 (or Euclidean)
norm can be used as

‖S1 − S2‖ =
√

(S1 − S2, S1 − S2)L2 ,

(S1, S2)L2 =
∫

S1S2 dθin dθsc dω.

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

In practice, the scattering matrix can be measured at a finite number of incident and scattered
angles and frequencies only. For simplicity, it is assumed that the measurement angles, θin,n, θsc,m,
and frequencies, ωk, are equally spaced and there are Nin incident angles, Nsc scattered angles
and Nf frequencies. In this case, each scattering matrix S can be considered as a vector s =
{s1, . . . , sNs }T, sl = S(θin,n, θsc,m, ωk) in an Ns = Nin × Nsc × Nf-dimensional space.

For the typical ultrasonic array inspection Nin, Nsc, Nf ∼ 10, therefore, the dimension of the
s-space is Ns ∼ 103. The analysis of data in such high dimensional space is difficult. However, in
many cases each scattering matrix can be efficiently described by much fewer components. One
possibility to reveal this reduction in dimensionality is to apply principal component analysis
(PCA) [34,35] to the scattering matrices. PCA takes into account the variability of data in different
directions, and chooses a new coordinate system, so each point in the manifold is represented
with fewer coordinates, which are referred to as the principal components hereafter.

The class of defects that can be parametrically described by Np parameters p = {p1, . . . , pNp},
p1n ≤ pn ≤ p2n, n = 1, . . . , Np, is now considered. The corresponding set of scattering matrices is
defined as Sp = S(θin, θsc, ω; p). The set of scattering matrices in the defect class can be represented
by the Ns × M matrix Sp = {sp(p1) − s̄p, . . . , sp(pM) − s̄p} ∈ R

Ns×M, where M is the total number
of scattering matrices in the defect class, vector sp corresponds to the defect scattering matrix
Sp and s̄p is the vector corresponding to the mean scattering matrix of the defect class. The new
coordinate system is obtained by singular value decomposition of the covariance matrix of Sp

R = VDVT, (3.3)

where R is the Ns × Ns covariance matrix of Sp and can be obtained as

R = 1
M − 1

SpST
p . (3.4)
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Figure 3. Eigenvalues of the covariance matrix (25 largest eigenvalues) for surface-breaking cracks.

The diagonal matrix D contains the eigenvalues of R. The coordinate axes of the new coordinate
system are now given by the column vectors of V, so any scattering matrix, s, in the new
coordinate system is represented by the vector s(pc) as

s(pc) = VT(s − s̄p). (3.5)

After the application of PCA, the defect class is effectively embedded in a lower dimensional
space (which we call principal component space, or pc-space), since the first Npc coordinates
account for most of the variation of the set Sp. Normally, we have Npc � Ns, and the value of Npc

can be determined, for example, by setting some threshold as

dn

max dn
≥ d0, n = 1, . . . , Npc, (3.6)

where dn are the eigenvalues of covariance matrix R and d0 is the threshold. Therefore, only
principal components with eigenvalues greater than the threshold are retained.

(b) Structure of defect manifold
The important observation is that the set of defect class scattering matrices represents an
Np-dimensional manifold in the pc-space. This manifold will be referred to as the defect manifold
or d-manifold. The structure of the d-manifold provides a fundamental insight into the defect
characterization problem and determines the achievable characterization accuracy.

For the example configuration considered in §2 (figure 1), the defect parameter space is defined
as p = {θcrack, acrack}, −60◦ ≤ θcrack ≤ 60◦, 0.5λ ≤ acrack ≤ 2λ, where θcrack is the crack orientation
and acrack is the crack length. The scattering matrices were calculated on a uniform grid in the
parameter space with the parameter steps �θcrack = 2◦, �acrack = 0.1λ. Figure 3 shows the first
25 largest eigenvalues of the covariance matrix R. The threshold of d0 = 0.005 was taken, and
in this case Npc = 5. Figure 4a,b shows the parameter p-space and the shape of the d-manifold
in three-dimensional pc-space, respectively. Each point on the defect manifold corresponds to
some particular point in the defect parameter space. To visualize this mapping, a colour map
in the defect parameter space was used, and the same colour map was then used to plot the
d-manifold. In other words, the same colours in the defect parameter space and the defect
manifold correspond to one particular set of defect parameters. It can be seen (by observing the
red region in figure 4) that, for crack parameters λ ≤ acrack ≤ 2λ, 40◦ ≤ θcrack ≤ 60◦, this surface
is well resolved, suggesting that in this region there is enough information for unique defect
characterization. Note that, at these crack orientation angles, the specular reflection from the
crack can be detected by the array, and, therefore, the measured part of the scattering matrix
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Figure 4. Surface-breaking cracks: (a) parameter space; (b) d-manifold in three-dimensional pc-space.

contains its maximum peak. For other parameters of the crack the shape of the d-manifold is more
complex, which can be explained by the following factors. Firstly, the corresponding regions of
the d-manifold are defined by more than three principal components and cannot be visualized
in the three-dimensional pc-space. Secondly, in this case, the specular reflection from the crack is
not detected by the array, and the measured part of scattering matrix is less sensitive to the crack
parameters. Therefore, the points s(pc), which represent the scattering matrices in pc-space, are
located close to each other and hence defect characterization is more challenging.

We can now explore the global structure of the d-manifold. The distance between two
scattering matrices Sp1 = Sp(p1), Sp2 = Sp(p2) can be measured in pc-space using the L2 norm
defined by (3.2) as

‖Sp1 − Sp2‖pc =
√

(s(pc)
p1 − s(pc)

p2 , s(pc)
p1 − s(pc)

p2 ). (3.7)

Alternatively, the distance metric in pc-space leads to a corresponding distance metric on the
d-manifold. Then, an alternative distance measure between two scattering matrices Sp1, Sp2 can be

taken as the length of the geodesic line between s(pc)
p1 and s(pc)

p2 on the d-manifold, or the minimum

length of all possible paths between s(pc)
p1 and s(pc)

p2 on the d-manifold,

‖Sp1 − Sp2‖d = min
∫ s(pc)

p2

s(pc)
p1

|ds(pc)
p |. (3.8)

The physical meaning of the metric (3.8) is illustrated in figure 5a. The d-manifold distance
metric is given by the length of the geodesic line (the shortest distance) connecting two points on
the d-manifold. It can be seen that the manifold distance (3.8) between any two scattering matrices
is always greater than the Euclidean distance (3.7) between the same scattering matrices in pc-
space, ‖ · ‖d ≥ ‖ · ‖pc. Then, the geometry of the d-manifold can be characterized by the following
dimensionless parameter Id, which is referred to as the d-index:

Id(p) = min
q

‖Sp(p) − Sp(q)‖pc

‖Sp(p) − Sp(q)‖d
, (3.9)

where p, q are parameter vectors from the defect parameter space. The d-index is always less than
1, 0 ≤ Id ≤ 1, and characterizes the stability of the characterization result. Qualitatively, a small
value of the d-index at the point p means that there exists another parameter vector q which is
not located in the vicinity of p, but the scattering matrices Sp(p) and Sp(q) are very similar to each
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Figure 5. (a) Schematic of distance metric in the pc-space, ‖ · ‖pc, and on the d-manifold, ‖ · ‖d ; (b) map of the d-index
for the surface-breaking cracks. (Online version in colour.)

other. Therefore, at such parameter points the defect characterization will be sensitive to noise
and unique defect characterization could be difficult.

Figure 5b shows the d-index of the defect manifold as a function of surface-breaking crack
parameters (orientation angle and crack length). The calculations of (3.8) were performed using
Dijkstra’s algorithm [36]. It can be seen that in the region λ ≤ acrack ≤ 2λ, 40◦ ≤ θcrack ≤ 60◦ of the
parameter space the d-index is high, suggesting that the characterization result will be stable with
respect to noise. However, characterization in all other points will be more sensitive to noise and,
therefore, more uncertain. Note that this result agrees with the three-dimensional shape of the d-
manifold shown in figure 4b, but also allows us to quantitatively characterize the structure of the
d-manifold in higher dimensional spaces.

4. Defect characterization method
Note that each defect class consists of a database of defects with idealized geometries, for example
straight cracks with different lengths and orientations. An experimentally measured scattering
matrix always contains some noise compared with the scattering matrices in the defect database.
This noise can be a random experimental noise, but also coherent noise which is caused by the
differences between real defect geometries and those of the defect in the database, for example
surface roughness of the crack. There are also a number of other sources of coherent noise apart
from the defect roughness. For example, noise can arise from interference from other defects and
structural features located near the defect of interest. This noise is the result of imperfect focusing
due to the finite array aperture and the diffraction limit. Another possible reason for coherent
noise is the limitations of the two-dimensional model of the ultrasonic array and defect scattering.
In any case, this means that, in practice, it will be impossible to achieve an exact match between
an experimentally extracted scattering matrix and the scattering matrices from some idealized
defect class.

Based on the analysis performed above, it can be seen that any experimental scattering matrix

can be represented by a vector s(pc)
exp in pc-space. However, in general, this vector is not necessarily

located on the d-manifold of the defect class because of the combined effects of random and
coherent experimental noise. This can be expressed as

s(pc)
exp = s(pc)

p + n(pc)
p , (4.1)

where the vector s(pc)
p corresponds to the scattering matrix of the defect with the parameter p

and n(pc)
p represents a noise perturbation of this scattering matrix in pc-space.

It is assumed that the noise is described by some statistical model, so the noise vector n(pc)
p in

expression (4.1) represents one particular realization of the noise. Then, the defect characterization
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problem can be formulated in the following way: given the occurrence of the measured scattering

matrix s(pc)
exp , what is the probability that this scattering matrix can be represented by the defect

parameter p? Note that the defect parameter p represents a continuous variable. Therefore, the

probability is given by ρp(p | s(pc)
exp )dp, where ρp(p | s(pc)

exp ) is the conditional probability density
function of the defect parameter p and dp = �p1 × · · · × �pNp is a volume element in parameter
space.

Alternatively, this question can be formulated in a different form: given the defect parameter
p, what is the probability that, for some particular noise realization, the perturbed scattering

matrix s(pc)
p + n(pc)

p will match the experimental measurements s(pc)
exp ? Similar to the previous case,

this probability is described by ρS(s(pc)
exp | p)ds(pc), where ρS(s(pc)

exp | p) is the conditional probability

density function of the vector s(pc)
exp in pc-space and ds(pc) is a volume element in pc-space.

It is easy to show that the probability density functions ρp(p | s(pc)
exp ) and ρS(s(pc)

exp | p) are directly

related to each other. According to Bayes’ theorem, the posterior probability ρp(p | s(pc)
exp ) is given

by

ρp(p | s(pc)
exp ) = ρS(s(pc)

exp | p)
ρp(p)

ρS(s(pc)
exp )

, (4.2)

where ρp(p) is the marginal probability density distribution of the defect parameters p and

ρS(s(pc)
exp ) is the marginal probability distribution of the measured scattering matrix. In the rest

of this paper, it is assumed for simplicity that all defect parameters from the defect class and
all possible measured scattering matrices are equally probable. In other words, probability

distributions ρp(p) and ρS(s(pc)
exp ) are uniform. In this case

ρp(p | s(pc)
exp ) = CρS(s(pc)

exp | p), (4.3)

where the normalization constant C is given by integration of the conditional probability over
the parameter space

C =
(∫

ρS(s(pc)
exp | p) dp

)−1
. (4.4)

Note that in a given industrial inspection some additional information might be available
about possible defect types and defect parameters. This information can be naturally incorporated
into the characterization procedure by using non-uniform marginal probability density
distributions of the defect parameters. Once the probability density function is estimated,
the characterization result is given by the defect parameters pc with the highest probability

ρp(p | s(pc)
exp ).

However, practically it is more convenient to calculate the probability density function

ρS(s(pc)
exp | p) at each defect parameter point p first, and then calculate the function ρp(p | s(pc)

exp )
using expressions (4.3) and (4.4). The conditional probability density function ρS(s(pc) | p) as a
function of the vector s(pc) describes the distribution of noise in pc-space. This function can be
estimated from an experiment, or calculated using some assumed noise model. In any case, the
defect characterization result and the corresponding confidence level depend on the choice of the
noise model. Therefore, the knowledge of ρS(s(pc) | p) is critical for defect characterization.

Generally, the maximum probability point pc has to be estimated numerically. However, one
important case when this point can be easily found is for isotropic noise distribution in pc-space.
This means that the probability density function ρS(s(pc) | p) depends on the distance between

the experimental (noisy) scattering matrix s(pc) and the scattering matrix s(pc)
p of the defect with

parameter p only. If in addition the probability density function ρS(s(pc) | p) is independent of the
parameter point p, then

ρS(s(pc) | p) = h(|s(pc) − s(pc)
p |). (4.5)
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The most probable defect parameter pc corresponds to the point s(pc)
pc on the d-manifold. If the

function h(r) monotonically decays as r → ∞, then the point s(pc)
pc corresponds to the nearest point

or simply the projection of the testing point s(pc)
exp onto the d-manifold. It is possible to derive a

semi-analytic expression for the projection point on the d-manifold and the correspond result is
given in appendix Aa. Finally, the characterization parameter vector pc can be found by mapping

the point s(pc)
pc back into defect parameter space.

5. General model of coherent noise
It has been noted earlier that the conditional probability density function ρS(s(pc) | p) describes
the distribution of noise in pc-space. This function defines the defect characterization result
and, therefore, plays a central part in the defect characterization procedure. Practically, the noise
distribution can be estimated from experimental testing under realistic measurement conditions.
However, this approach requires many samples with real defects in order to measure the statistics
of the noise. Alternatively, the function ρS(s(pc) | p) can be simulated using some assumed noise
model. The difficulty is that, in general, there are many different factors which contribute to the
noise. Detailed analysis of the different noise models is beyond the scope of this paper and will
be performed in a separate publication. Here, we just note that usually random noise can be
suppressed by averaging and also the PCA acts as an additional filter [12]. Therefore, in practice,
the coherent noise makes the main contribution to the total noise level. In this section, a general
coherent noise model is proposed.

Figure 6a shows the experimentally measured absolute value of the scattering matrix for a
surface-breaking crack of 1.13λ length and 45◦ orientation. The experimental set-up is the same
as described in §2 (figure 1). The difference between the measured scattering matrix and the
simulated scattering matrix for the crack with the same parameters (noise part of the scattering
matrix) is shown in figure 6b. It can be seen that the noise is coherent, different components of
the noise scattering matrix are not independent and are seen to be correlated with each other.
Moreover, in this particular case the structure of the noise scattering matrix is very similar to the
structure of the scattering matrix itself. Note that here we do not specifically comment on the
source of the noise and attempt to develop a general model.

The noise part of the scattering matrix can be considered as a rough two-dimensional surface
and, hence, various models of surface roughness can be applied to model the coherent noise. In
this case, the amplitude of each component of the noise scattering matrix is described by some
probability density function, and the correlation between different components is described by
a correlation function. In this paper, a Gaussian model of correlated noise is chosen.

Note that generally the noise affects both the amplitude and phase of the scattering matrix,
or its real and imaginary parts. The experimental complex-valued scattering matrix Sexp(θin, θsc)
can be represented in the form

Sexp = Sp + Scoh,1 + iScoh,2, (5.1)

where Sp is the noiseless scattering matrix. The real functions Scoh,n, n = 1, 2, are now statistically
described by the same probability density function ρcoh(S). For simplicity, it is assumed that the
mean value of each component of the noise scattering matrix is zero. This also implies that the
average value of the noise scattering matrix is zero, so

〈Scoh,n〉 = 0, n = 1, 2, (5.2)

where the angled brackets denote averaging over incident and scattered angles.
The correlation function represents the extent to which the noise at one point (θin, θsc)

determines the noise at some point (ζ1, ζ2) away, and is defined as

C(ζ1, ζ2) = 1

σ 2
coh

〈Scoh,n(θin, θsc)Scoh,n(θin + ζ1, θsc + ζ2)〉. (5.3)
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Figure 6. Scattering matrix of a surface-breaking crack with parameters acrack = 1.13λ, θcrack = 45◦: (a) measured scattering
matrix; (b) noise part of the scattering matrix; (c) one realization of Gaussian coherent noise with parameters σcoh = 0.1,
λ1coh = 30◦,λ2coh = 10◦ andφcoh = −45◦. (Online version in colour.)

To simplify analytical manipulations, both the noise amplitude distribution and correlation
functions are regarded as Gaussian. In this case, the probability density function ρcoh ∼N (0, σ 2

coh),
where σcoh is the standard deviation of noise amplitude. The two-dimensional correlation
function C(ζ1, ζ2) can be written in the form

C(ζ1, ζ2) = exp

(
− ζ̃ 2

1

λ2
1coh

− ζ̃ 2
2

λ2
2coh

)
(5.4)

and (
ζ̃1
ζ̃2

)
= R

(
ζ1
ζ2

)
, R =

(
cos φcoh sin φcoh

− sin φcoh cos φcoh

)
. (5.5)

Here, the isolines of the correlation function represent ellipses with the axes λ1coh, λ2coh, rotated
by the angle φcohwith respect to the coordinate system (ζ1, ζ2).

A particular realization of a coherent noise can be simulated by the convolution of the
correlation function, with uncorrelated unit variance and zero mean Gaussian white noise
ng(θin, θsc)

Scoh,n(θin, θsc) = (C(θin, θsc) ⊗ ng(θin, θsc) − μ′)
σcoh

σ ′ , (5.6)

where ⊗ is the convolution operator, and μ′ and σ ′ are, respectively, the mean and standard
deviations of the convolution C ⊗ ng over incident and scattered angles [37].
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In this paper, only an amplitude of the scattering matrix, |Sexp|, is considered. If the noise
amplitude is small, σcoh � |Sp|, then the amplitude of the scattering matrix can be approximately
written as

|Sexp| = |Sp| + Scoh, Scoh = �[Sp]
|Sp| S1coh + �[Sp]

|Sp| S2coh. (5.7)

Because the sum of two independent normally distributed variables also has a normal
distribution, then from (5.7) it follows that Scoh is also described by the model (5.6).

Figure 6c shows one realization of the coherent noise for the parameters σcoh = 0.1, λ1coh = 30◦,
λ2coh = 10◦ and φcoh = −45◦. It can be seen that the structure of the simulated noise scattering
matrix is very similar to the experimental noise scattering matrix shown in figure 6b.

In pc-space, each scattering matrix is represented by an Ns-dimensional vector, so
expression (5.7) can be written in a form similar to expression (4.1)

s(pc)
exp = s(pc)

p + n(pc)
coh , (5.8)

where the noise vector n(pc)
coh corresponds to the noise scattering matrix Scoh. Below, it is assumed

for simplicity that the noise is independent of the defect parameter point and described by the
same parameters σcoh, λ1coh, λ2coh and φcoh for all points on the d-manifold.

The defect characterization method requires the knowledge of the probability density function

ρS(s(pc)
exp | p). Using expression (5.8) and taking into account that the noise does not depend on the

defect parameter p, the function ρS can be written as

ρS(s(pc)
exp | p) = ρS(s(pc)

p + n(pc)
coh | p) = ρn(n(pc)

coh ), (5.9)

where ρn is the probability density function of the noise vector n(pc)
coh . An important advantage of

the proposed coherent noise model is that the function ρn(n(pc)
coh ) can be written in an explicit

form and the details are given in appendix Ab. Moreover, as shown in appendix Ab, the
characterization result (defect parameters corresponding to the highest probability) can be found
by the projection of the measurement point on the d-manifold in the normalized noise pc-space,
which represents the rotated and scaled defect class pc-space. Or, alternatively, this projection
can be performed in defect class pc-space, but using a different metric, which corresponds to the
distance in the normalized noise pc-space.

To illustrate the distribution of noise in pc-space the d-manifold for surface-breaking cracks
is considered. The experimental set-up is assumed to be the same as in §2 (figure 1). The
noise probability density function was calculated using expression (A 10) with noise parameters
σcoh = 0.1, λcoh,1 = 30◦, λcoh,2 = 10◦ and φcoh = −45◦. Figure 7 shows the noise distribution around
the point on the d-manifold corresponding to the crack parameters acrack = 1.13λ and θcrack = 45◦.
It can be seen that the noise distribution in the defect class pc-space has the shape of an
ellipsoid which is rotated relative to the defect class principal components coordinate system.

Then, the position of the measurement point s(pc)
exp inside this ellipsoid defines the probability

density function ρS(s(pc)
exp | p), p = {acrack, θcrack}, and hence the probability that the measurement

corresponds to a particular set of defect parameters.
Note that the Bayesian statistical approach described in §4 is similar to the method previously

used in [15] for characterization of corrosion defects in plates. However, the method proposed
in this paper has several major differences. Firstly, the characterization is performed in pc-space,
which provides a simple geometrical interpretation of the characterization process and also allows
us to filter random experimental noise from the measurements [12]. Secondly, the fact that the
characterization uncertainty defined by the noise model is highlighted and a general model of the
coherent noise is developed.
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Figure 7. Probability density function (normalized to its maximum value) of Gaussian coherent noise ρS(s(pc) | p) in the pc-
space of surface-breaking cracks at the crack’s parameter point acrack = 1.13λ, θcrack = 45◦. Noise parameters are σcoh = 0.1,
λcoh,1 = 30◦, λcoh,2 = 10◦ and φcoh = −45◦. Colourmap of the manifold is given by figure 4a; colourbar is related to the
probability density function.

6. Experiments

(a) Experimental characterization procedure
Experimentally, the performance of the characterization method is studied on two different
defect types: surface-breaking cracks and elliptical voids (see figure 8 for the sample geometries).
As discussed earlier, both defects are of particular industrial interest, and they have different
numbers of parameters of interest (two for surface-breaking cracks and three for elliptical voids).
The true defect parameters are given in tables 1 and 2. In both cases, the s-spaces include the
scattering matrices of defects with sizes between 0.5λ and 2λ, as the scattering matrix is most
informative within this size range [11]. For defects larger than 2λ, their characterization should be
possible directly from high-resolution ultrasonic images, such as the ones obtained with the total
focusing method (TFM) [38]. The considered angle range of surface-breaking cracks is from −60◦
to 60◦. For elliptical voids, aspect ratios between 0.1 and 0.9 and ellipse orientation angles between
−90◦ and 90◦ are considered. Note that the orientation angle of elliptical voids is measured with
respect to the array direction, and the angle of a horizontal ellipse is 0◦. Therefore, orientation
angle of the crack, θcrack, is related to the orientation angle of the void, θvoid, by

θcrack + θvoid = 90◦. (6.1)

In this paper, the sub-array imaging technique [39] is used to extract the scattering matrices
from experimental data. In this case, the amplitude of the scattering matrix also needs to be
normalized by comparing with a reference scatterer. Here, the back wall of the specimen was
used as a reference scatterer. The corresponding array data can be simulated using the hybrid
model introduced in [40]. To extract the absolute amplitude of the scattering matrix correctly,
the experimental array data are multiplied by a constant gain, which makes the maximum TFM
image amplitude of the reference scatterer for experimental and simulated data equal.

Note that the sub-array imaging technique introduces a specific coherent noise to the extracted
scattering matrices. In particular, the value of the scattering matrix at any incident and scattered
angles is represented by an averaging of the array data from several consecutive array elements
(i.e. sub-array). This results in a ‘smoothing’ effect relative to the true scattering matrix [39].
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Figure 8. (Dimensions are in millimeters.) Experimental sample geometries containing: (a) electrical discharge machining
(EDM) notches; (b) elliptical voids.

Table 1. Parameters of the machined notches shown in figure 8a.

parameters

defect size (λ) angle (◦)
1 0.80 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.83 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.92 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1.13 45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.20 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1.24 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1.39 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 1.70 45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since this is a deterministic effect, it can be resolved by constructing a ‘sub-array version’ of the
scattering matrix in s-space. The sub-array scattering matrix, Ssa, can be obtained by

Ssa(θa
in,k, θa

sc,l) = 1

N2
sa

∑
i∈ak ,j∈al

S(θin,i, θsc,j), (6.2)

where ak denotes the kth sub-array aperture with the corresponding incident, θa
in,k, and scattered,

θa
sc,k, angles. The value of the scattering matrix S(θin,i, θsc,j) corresponds to the ith transmitter

element and the jth receiver element in the full array aperture.

To calculate the probability density function ρp(p | s(pc)
exp ) of defect parameters the Gaussian

coherent noise model developed in §5 was used. The noise parameters σcoh, λcoh,1, λcoh,2 and
φcoh were defined from comparison of the measured scattering matrices with modelled scattering
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Table 2. Parameters of the elliptical voids shown in figure 8b. AR represents the aspect ratio.

parameters

defect AR size (λ) angle (◦)
1 0.32 1.00 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.50 1.00 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.80 1.00 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.32 1.00 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.50 1.00 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.80 1.00 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.32 1.00 60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.50 1.00 60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 0.80 1.00 60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

matrices of the defects with ideal geometries using the maximum-likelihood estimation method.
In this case, expression (A 8) for the noise probability density function in the defect class pc-
space was used. For the case of surface-breaking cracks, the maximum of the likelihood function
is achieved for the noise parameters σcoh = 0.1, λcoh,1 = 30◦, λcoh,2 = 10◦, φcoh = 45◦. For the case
of elliptical voids, the noise parameters were estimated as σcoh = 0.1, λcoh,1 = 20◦, λcoh,2 = 10◦,
φcoh = 45◦.

For each defect the probability density map corresponding to each defect class (surface-
breaking cracks and elliptical voids) was calculated using expressions (4.3), (4.4), (5.9) and (A 8).
Note that if the d-manifold for the defect class is defined by some sampling scheme, then any
point in the parameter space can be mapped into the principal components pc-space. Practically,
this means that, although the sampling of the d-manifold is finite, the probability density map in
the parameter space can be calculated with any resolution.

It should be stressed that the developed defect characterization approach does not give just a
single answer. The method provides quantitative information about possible defect parameters
and, more importantly, about the confidence level of the characterization result. The main
output of the characterization procedure is the probability density map of the defect parameters,

ρp(p | s(pc)
exp ). The characterization result is then given by the most probable parameters, pc, where

the probability density function has the maximum value.
The structure of the probability function in the defect parameter space can be characterized by

the square root of the second moment of the probability distribution about the characterization
point pc,

σ
(p)
i =

√∫
(pi − pc,i)2ρp(p | s(pc)

exp ) dp, (6.3)

where the index i denotes the ith component of the vectors p and pc, and the integral is calculated

over all parameter space. The physical meaning of the value σ
(p)
i is a standard deviation of the ith

defect parameter about the characterization point.
The relative noise amplitude, or the relative error of the characterization result, can be

defined as

ãnoise = |s(pc)
exp − s(pc)

c |
|s(pc)

c |
, (6.4)

where the vector s(pc)
c corresponds to the characterization point on the d-manifold in the pc-space.

Note that the relative noise amplitude can also be used to compare the characterization results
in two defect classes.
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Figure 9. Map of the d-index for the elliptical voids corresponding to the −45◦ ≤ θin, θsc ≤ −23◦ part of the scattering
matrix. Each figure represents a slice at constant aspect ratio equal to (a) 0.1, (b) 0.3, (c) 0.6, (d) 0.9. (Online version in colour.)

Another important characteristic of the uncertainty of the characterization result is the d-index
of the defect class at the characterization point. The d-index is defined by expression (3.9) and
describes the sensitivity of the characterization result to the noise. For each defect class, the d-
index characterizes the structure of the defect class d-manifold and depends on the amount of
information in the measured part of the scattering matrix. Application of these parameters for
interpretation of the characterization results is illustrated in the next section.

(b) Results for surface-breaking cracks
The aluminium test specimen shown in figure 8a contains eight EDM notches. The vertical depth
of defects 1–4 is 2 mm, and defects 5–8 have the same vertical depth of 3 mm. The actual size
of the defects can be calculated as d/cos(α), where d and α represent the vertical depth and the
orientation angle, respectively. As a result, the studied defects have sizes between 0.8λ (defect 1)
and 1.7λ (defect 8), and angles between 0◦ and 45◦. The array measurement configuration is
shown in figure 1. Note that the array is moved away from the crack by 30 mm, because
otherwise the crack would be obscured by the high-intensity reflection from the back wall in the
image. Therefore, the scattering matrix for each crack was measured for the −45◦ ≤ θin, θsc ≤ −23◦
angular interval.

The d-indexes for the surface-breaking cracks and elliptical voids corresponding to the
measurement angular interval are shown in figures 5b and 9, respectively. Taking into account
the relationship (6.1) between crack and void orientation angles, it can be seen that, in both cases,
the most stable parameter regions correspond to the similar defect geometries: 1λ ≤ acrack ≤ 2λ,
40◦ ≤ θcrack ≤ 60◦ for the cracks and 1λ ≤ avoid ≤ 2λ, 30◦ ≤ θvoid ≤ 50◦ for narrow elliptical voids
with aspect ratio between 0.1 and 0.3. Note that for these defect orientation angles the measured
part of the scattering matrix contains the specular reflection and, therefore, it seems reasonable
that this is the most informative part from the defect characterization point of view.
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Figure 10. Probability maps of the machined notches shown in figure 8a for defects 1 (a,b) and 4 (c,d), characterized in the
surface-breaking crack s-space (a,c) and in the void s-space (b,d). The red dots indicate the maximum probability point; the
green dots are the true parameter values. The probabilities shown here are normalized to the maximum value.

The characterization results of the machined notches in the surface-breaking crack defect class
are summarized in table 3. The corresponding probability density functions of defect parameters
are illustrated in figure 10 for defects 1 and 4.

Firstly, it is noted that, for all defects, the correct defect parameters are located in the range
of the probability density function (see figure 10 as an example). Therefore, true parameters
represent a possible characterization point in the parameter space, although this point does not
always correspond to the highest probability.

From table 3, it can be seen that the standard deviations of defect parameters about the
characterization point are well correlated with the values of the d-index. This confirms that the
confidence level of the characterization results is defined by the global structure of the d-manifold.
According to the discussion on the d-index, defects 4 and 8 are favourably oriented, i.e. have
high d-index values. Consequently, the characterization results show that these two defects are
correctly characterized with high confidence (figure 10c for defect 4). For the defects 1–3, 5 and
6, the d-indexes are low. This is in agreement with probability maps (figure 10a for defect 1),
which show that, for these defects, there exist multiple regions of high probability in the defect
parameter spaces and, therefore, the characterization uncertainty is large.

Now, the characterization of crack defects in the elliptical void defect class is considered. The
corresponding results are given in table 4. The probability density in this case is a function
of three parameters and is shown in figure 10b,d for defects 1 and 4. The characterization
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Table 3. Characterization results of themachinednotches shown infigure 8a in the surface-breaking crackdefect class.σ (p)
l and

σ
(p)
θ correspond to the standard deviation of defect size and angle about the characterization point.

characterization results, cracks in crack database

defect size (λ) angle (◦) d-index σ
(p)
l (λ) σ

(p)
θ (◦) ãnoise

1 0.77 14.88 0.024 0.32 33.92 0.033
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1.10 −15.00 0.035 0.28 28.75 0.080
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.97 27.87 0.059 0.35 46.96 0.078
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1.21 47.03 0.150 0.14 2.45 0.063
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.31 15.00 0.033 0.27 19.30 0.480
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1.79 10.00 0.035 0.82 21.44 0.250
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1.44 30.33 0.040 0.04 1.40 0.090
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 1.70 46.71 0.230 0.06 0.11 0.140
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Characterization results of the machined notches shown in figure 8a in the void defect class. AR represents the
aspect ratio; σ (p)

AR , σ
(p)
l and σ

(p)
θ correspond to the standard deviation of the defect aspect ratio, size and angle about

the characterization point, respectively.

characterization results, cracks in void database

defect AR size (λ) angle (◦) d-index σ
(p)
AR σ

(p)
l (λ) σ

(p)
θ (◦) ãnoise

1 0.29 1.89 −11.72 0.013 0.260 0.88 45.66 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.25 1.10 5.68 0.010 0.260 0.43 56.29 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.21 1.25 56.96 0.140 0.210 0.39 45.58 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.19 1.21 42.68 0.180 0.070 0.13 1.76 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.11 1.85 53.46 0.230 0.460 0.72 66.00 0.39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.16 1.77 55.83 0.210 0.490 0.73 79.47 0.40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.27 1.08 7.29 0.014 0.260 0.43 50.34 0.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.10 1.86 43.13 0.610 0.009 0.07 0.14 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

results for different defect classes can be compared using the relative noise amplitudes of the
characterization results, ãnoise, and the characterization defect class is defined as the class with
the minimum value of ãnoise. Note that ãnoise = 0 for defects 1–3. Geometrically, it means that the

corresponding experimental point s(pc)
exp is exactly located on the d-manifold.

From table 4, it can be seen that only defects 6 and 7 are classified as surface-breaking cracks.
According to the minimum relative noise amplitude criterion, all other defects should be classified
as voids. However, it can be seen that, in the elliptical void class, all surface-breaking cracks are
characterized as narrow ellipses with small aspect ratio (e.g. 0.2). Also, the results for defects 1–3,
5 and 6 have very large uncertainty in both defect classes, confirming that, for these defects, the
amount of information in the measured part of the scattering matrix is not enough for unique
defect characterization.

On the other hand, the characterization results of defects 4 and 8 in the void class have similar
sizes and orientation angles to the true crack parameters. So, in this case, the characterization
result in the void defect class brings confidence, confirming that the defects are crack-like
and the method is providing correct defect parameters. Physically, this means that, for these
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Figure 11. Mapof thed-index for the elliptical voids corresponding to the−30◦ ≤ θin, θsc ≤ 30◦ part of the scatteringmatrix.
Each figure represents a slice at constant aspect ratio equal to (a) 0.1, (b) 0.3, (c) 0.6, (d) 0.9. (Online version in colour.)

defects, the influence of the back wall on the scattering behaviour in the considered angular
measurement range is small. Consequently, the measured parts of the scattering matrices for
surface-breaking cracks and isolated cracks are very similar to each other. Note that, in practice, a
more sophisticated model of defect class prior probability ρp(p) can be adopted based on specific
measurement scenarios. For example, if a defect is found near the surface, then it is more likely
to be a surface-breaking crack than a void.

(c) Results for elliptical voids
The array measurements of the specimen containing elliptical voids were performed by
positioning the array exactly above each defect. For this experimental configuration the measured
part of the scattering matrix corresponds to the angles −30◦ ≤ θin, θsc ≤ 30◦. As in the previous
section, all defects were characterized in the two defect classes: elliptical voids and surface-
breaking cracks. However, for all elliptical defects the relative noise amplitude was smaller for
the characterization results corresponding to the void defect class. Therefore, all defects were
characterized as voids, and, below, the results only for the void defect class are discussed.

The d-index for the elliptical void defect class is shown in figure 11. From this figure, it follows
that the defect parameters can be estimated with relatively high confidence for ellipses with aspect
ratios between 0.1 and 0.6, sizes between 1λ and 2λ, and orientation angles between −30◦ and 30◦.
Note that, for these defect orientation angles, the measured part of the scattering matrix contains
specular reflection.

The characterization results of the elliptical voids are summarized in table 5 and the probability
density functions for defects 1 and 9 are shown in figure 12. Note that, similar to the surface-
breaking crack characterization, all true defect parameters are located in the range of the
corresponding probability density functions in the defect parameter space. It is seen that the
confidence level of the characterization is correlated with the values of the d-index. For example,
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Figure 12. Probability maps of the elliptical voids 1 (a) and 9 (b) (figure 8b) characterized in the void s-space. The slice through
the three-dimensional probabilitymap at the constant aspect ratio, corresponding to themaximumprobability point, is shown.
The red dots indicate themaximumprobability point and the green dots are the true parameter values. The probabilities shown
here are normalized to the maximum value.

Table 5. Characterization results of the elliptical voids shown in figure 8b in the void defect class. AR represents the aspect ratio;
σ
(p)
AR , σ

(p)
l and σ

(p)
θ correspond to the standard deviation of the defect aspect ratio, size and angle about the characterization

point, respectively.

characterization results, voids in void database

defect AR size (λ) angle (◦) d-index σ
(p)
AR σ

(p)
l (λ) σ

(p)
θ (◦) ãnoise

1 0.43 1.09 1.56 0.53 0.08 0.20 2.75 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.51 1.11 4.00 0.38 0.17 0.38 13.18 0.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.77 1.17 8.00 0.12 0.10 0.40 41.23 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.34 1.80 36.81 0.16 0.12 0.64 8.26 0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.54 1.05 24.83 0.12 0.15 0.47 21.83 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.78 0.97 14.38 0.06 0.10 0.51 46.94 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.42 0.95 60.65 0.09 0.13 0.46 29.17 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.61 0.72 51.47 0.04 0.15 0.56 30.74 0.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 0.87 0.99 66.00 0.08 0.17 0.44 42.27 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the characterization result of defect 1 has the highest d-index, and this defect is correctly
characterized with high confidence. The corresponding probability density function in figure 12a
is focused around the true parameter point in the defect parameter space.

On the other hand, the value of the d-index for defect 9 is very low, which results in the high
characterization uncertainty seen in figure 12b. Note that the scattering matrix of voids with an
aspect ratio close to 1 is insensitive to defect orientation angle, so low values of the d-index in this
case correspond to uncertainty with respect to the orientation angle. It is also seen that, although
the defect size is correctly characterized, its uncertainty is also large. However, the aspect ratio is
estimated correctly and the corresponding standard deviation is small.

 on June 28, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


21

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170056

...................................................

7. Conclusion
A new defect characterization approach which can potentially be applied to any defect databases
(on condition that the defects are parameterized with several continuous variables) has been
proposed in this paper. In this method, the defect database has the form of a parametric
manifold, and can be approximated to any resolution from a finite number of samples. The
characterization problem can be formulated as calculating the posterior probability ρp(p | Sexp)
for every possible parameter value p given the occurrence of the measured scattering matrix Sexp.
The result is dependent on the specific noise model which is described by a probability density
function ρS(Sexp | p) of the measured scattering matrix given the occurrence of the defect with
parameters p. A general Gaussian coherent noise model is proposed, and the analytical expression
for the corresponding probability density function is derived.

The defect characterization data provided by the developed method can be represented in
different forms and described by different parameters. For example, the probability distribution
in the defect parameter space can be quantified by the standard deviation of defect parameters
about the characterization point (see expression (6.3)). The sensitivity of the characterization
result to noise can be described by the value of the d-index, which captures the structure of
the d-manifold. To assess the general confidence of the characterization result and compare
results obtained in the different defect classes, the relative noise amplitude (expression
(6.4)) can be used, which describes how closely the experimental S-matrix matches the
characterization result. Moreover, the developed defect characterization method allows us to
define other quantitative characterization parameters, which can be useful for specific practical
applications.

Experimentally, the proposed approach is used to characterize surface-breaking defects and
elliptical voids. Note that one of the advantages of the proposed method is its ability to quantify
the defect characterization uncertainty. In general, the characterization results are accurate, except
for the cases where the defects are unfavourably oriented, which results in a lack of useful
information in the array data. It is also concluded that the characterization results of unfavourably
oriented defects tend to have higher uncertainty. Furthermore, reliable estimation of the noise
parameters are required for accurate quantification of the characterization uncertainty.
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A. Appendix

(a) Sampling of defect manifold
In this section, the problem of practical implementation of the characterization procedure
proposed in §4 is considered. In general, the defect d-manifold cannot be described analytically
and, therefore, has to be defined by some sampling. Firstly, the parameter space is sampled and
then triangulated using, for example, Delaunay triangulation [41,42]. Then, for any parameter
vector p, the position of the point Sp(p) on the d-manifold can be approximately found by using
an interpolation scheme and, hence, the d-manifold can be approximated with any resolution.
Inversely, any point on the d-manifold can be approximately mapped back into the parameter
space. Therefore, the structure of the d-manifold is completely defined by its sampling points.

In pc-space, each Np-dimensional triangle is given by Np + 1 sampling points s(pc)
n , n =

0 . . . , Np and defines a ‘facet’ of the d-manifold. The local coordinate system in each ‘facet’ is

 on June 28, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


22

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170056

...................................................

described by the Np vectors wn = s(pc)
n − s(pc)

0 , n = 1, . . . , Np. Then, any scattering matrix, s(pc), as
a vector in pc-space can be represented in the form

s(pc) = s(pc)
0 + s(pc)

‖ + s(pc)
⊥ , s(pc)

‖ =
Np∑

n=1

bnwn. (A 1)

Here, the vector s(pc)
‖ represents the projection of the vector s(pc) onto the facet subspace and the

vector s(pc)
⊥ is orthogonal to the facet subspace. Therefore, the distance from the point s(pc) to the

facet subspace is equal to |s(pc)
⊥ | = |s(pc) − s(pc)

‖ − s(pc)
0 |. The coefficients bn are the coordinates of

the vector s(pc)
‖ in the facet local coordinate system. Based on (A 1), it can be shown that

b = B(s(pc) − s(pc)
0 ), B = G−1WT, (A 2)

where b = {b1, . . . , bNp }T, and the matrices G, V are given by Gij = (wi, wj), Wij = wi,j.
In §4, it has been shown that if the noise is isotropic in pc-space, then the characterization

point is given by the projection of the measured scattering matrix s(pc)
exp onto the d-manifold.

Expression (A 1) shows that the problem of finding the projection is equivalent to the following
optimization problem:

min
all facets

|s(pc)
exp − s(pc)

exp,‖ − s(pc)
0 |, bn ≥ 0,

Np∑
n=1

bn ≤ 1, (A 3)

where s(pc)
exp is the vector in the pc-space corresponding to the scattering matrix Sexp, the

coefficients bn are calculated from (A 2) and the minimum is taken over all facets. In some cases,
it is possible that the problem (A 3) does not have a solution. Then, the point on the d-manifold
corresponding to the shortest distance is located on the boundary of some facet. In this case, the
minimization procedure (A 3) can be iteratively applied to the boundary of each facet.

Once the projection point is found, it can be mapped back into the parameter space. If the

projection facet is defined by the points s(pc)
n , n = 0, . . . , Np, which correspond to the parameter

vectors pn, s(pc)
n = s(pc)

p (pn), then the characterization parameter vector, pc, is given by

pc = p0 +
Np∑

n=1

bn(pn − p0). (A 4)

(b) Probability density function of coherent noise
In this section, it is shown that the probability density function of the Gaussian coherent noise,

ρn(n(pc)
coh ), can be written in the analytical form. The first step is to apply the PCA to the set of

noise vectors n(pc)
coh . The noise vector in the new noise pc-space will be denoted as n

(pcn)
coh , where

the pcn index specifically indicates that the noise pc-space is different from the defect class

pc-space. Mathematically, the transformation of n(pc)
coh into n

(pcn)
coh is the same as described in §3a

(equations (3.3)–(3.5)). Note that the mean of n(pc)
coh is zero, therefore the transformation of n(pc)

coh

into n
(pcn)
coh is equivalent to the rotation of the coordinate system in the defect database pc-space

and is given by

n
(pcn)
coh = VT

cohn(pc)
coh . (A 5)

The matrix Vcoh is obtained from the singular value decomposition of the covariance matrix R(pc)
coh

of vectors n(pc)
coh

R(pc)
coh = VcohDcohVT

coh, (A 6)

where the diagonal matrix Dcoh = diag{dcoh,1, . . . , dcoh,Ns} contains the eigenvalues of R(pc)
coh .
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Because all operations are linear, then from the noise model (5.6) it follows that each

component of the noise vector n
(pcn)
coh is represented by the linear combination of independent

normally distributed random variables. Moreover, it is easy to check that the covariance matrix

R
(pcn)
coh of vectors n

(pcn)
coh has diagonal form

R
(pcn)
coh = 1

Ncoh − 1
Dcoh, (A 7)

where Ncoh is the number of noise vectors n(pc)
coh . This expression shows that the components of

the noise vector n
(pcn)
coh now represent independent normally distributed random variables, n

(pcn)
coh,i ∼

N (0, dcoh,i), with the variances equal to the eigenvalues dcoh,i, i = 1 . . . Ns.

The noise probability density function ρn(n(pc)
coh ) in the defect class pc-space represents the

multivariate normal distribution and, using relationship (A 5), can be written as

ρn(n(pc)
coh ) = 1√

det(2πDcoh)
exp

[
−1

2
n(pc)T

coh VcohD−1
cohVT

cohn(pc)
coh

]
. (A 8)

If the noise pc-space is normalized with respect to the standard deviations
√

dcoh,i

ñ
(pcn)
coh =

√
D−1

cohn
(pcn)
coh , (A 9)

then each component ñ
(pcn)
coh,i of the vector ñ

(pcn)
coh in the normalized noise pc-space has the standard

normal distribution ñ
(pcn)
coh,i ∼N (0, 1). Therefore, the noise probability density function ρn(ñ

(pcn)
coh )

in the normalized noise pc-space is given by

ρn(ñ
(pcn)
coh ) = 1

(2π )Ns/2 exp
[
−1

2

∣∣∣ñ(pcn)
coh

∣∣∣2] . (A 10)

Expression (A 10) provides an efficient way to calculate the defect characterization parameters.
According to the discussion in §4, the characterization result corresponds to the point on the
d-manifold with the highest probability. Formula (A 10) shows that the noise distribution in
the normalized noise pc-space is isotropic and the maximum probability point corresponds
to the smallest distance from the measurement point to the d-manifold in this space. Therefore,
the characterization result can be calculated as a projection of the measurement point onto the
d-manifold in the normalized noise pc-space. In this case, the method described in appendix Aa
can be used; however, all vectors have to be transformed into the normalized noise pc-space using
expressions (A 5) and (A 9) first. Alternatively, expression (A 8) shows that this projection can also
be performed in the defect class pc-space, but in this case a different metric, corresponding to the
distance in the normalized noise pc-space, must be used.

Finally, it is noted that, similarly to the defect d-manifold, the noise distribution n
(pcn)
coh in the

noise pc-space is described by the relatively small number of the first largest components, so
the noise variances dcoh,i → 0 as i → ∞. Therefore, in order to avoid large errors in calculation

of distances in the normalized noise pc-space, vectors n
(pcn)
coh have to be truncated using some

threshold before applying scaling (A 9).
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