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Abstract—In this paper, we present an extensive study on
encoding statistics of videos with different texture types. These
statistics were extracted from HEVC test model (HM), and
include, among others, mode selection, partitioning, motion
vectors and bitrate allocation. For this study, a new dataset
of homogeneous static and dynamic video textures, HomTex, is
proposed. A comprehensive analysis of the results revealed a
significant variability of coding statistics within dynamic textures,
suggesting that this category should be further split into two
relevant subcategories, continuous dynamic textures and discrete
dynamic textures. This case was then supported by an unsu-
pervised learning approach on the statistics extracted. Finally,
following the results obtained, some suggestions of improvements
in texture coding are presented.

I. INTRODUCTION

The latest video coding standard, High Efficiency Video
Coding (HEVC) has achieved significant gains compared to its
predecessor thanks to a number of incremental improvements
to the hybrid video coding model including larger block sizes
and more flexible partitioning [1]. While this model already
considers some perceptual characteristics of human vision,
namely in the selection of the transform for residual coding,
increased gains could be achieved by further exploiting texture
masking. In the context of video compression, textures are
typically categorized into two different classes: static and
dynamic [2–6]. However, the classification of dynamic textures
lacks consistency and is usually very broad, with a large
range of diverse content being included in the same class,
such as water, leaves, smoke and trees. This might not be
efficient when trying to apply and optimize coding strategies,
such as texture synthesis [3–6], which to the best of the
authors’ knowledge, treat all dynamic textures equally. This
motivates us to examine more closely how HEVC encoding
performs with different texture types as well as to investigate
and propose more robust definitions of texture classes.

In particular, this paper makes the case for classifying
textures in three types for coding purposes, namely: static
textures, continuous dynamic textures and discrete dynamic
textures. Multiple contributions concerning the classification
of dynamic textures have been recently published [7, 8].
However, their aim is to classify textures based on semantic
content. That is not always useful for coding. The distinction
between continuous and discrete dynamic textures has already
been made by the authors of [9] when annotating the DynTex
database. In order to characterize these texture types and to
support our case, we performed a detailed analysis of a large

number of HEVC encoding statistics using a homogeneous
video texture dataset. A homogeneous dataset allows the
statistics to be directly associated to a single texture without
the need for segmentation. A number of papers have recently
included analysis of encoding statistics [10–13]. However,
the number of statistics examined was very limited and the
objective was not specifically texture coding.

The first contribution of this work is a dataset of homo-
geneous video textures that is fully available online1. An
important feature of this dataset is that it is representative of
broadcasting video content, as suggested by the methodology
proposed by [14] (Section II). The second contribution of this
paper is to offer a better understanding of the performance of
HEVC on different texture classes. This assists in identifying
potential improvements that could be introduced in upcom-
ing standards. The final contribution is a characterization of
different types of textures based on their encoding statistics,
helping to build a better texture taxonomy.

The rest of the paper is organized as follows. Section II
describes the proposed dataset, including how it was annotated.
Section III presents the experimental design and the statistics
extracted from coding the proposed dataset with HEVCs test
model (HM). Section IV describes the analysis performed
and discusses the results obtained. Finally, conclusions are
presented in Section IV-D.

II. A HOMOGENEOUS TEXTURE DATASET

Due to the lack of a dataset for both static and dynamic
homogeneous textures, a new dataset, the Homogeneous Video
Texture Dataset (HomTex), has been developed. In the context
of this dataset, homogeneity means that the textures are spa-
tially and temporally consistent. It comprises 120 sequences
with a spatial resolution of 256×256 pixels. The low resolution
was chosen considering the size of the dataset to keep the en-
coding time manageable. Most of the sequences were obtained
by cropping those from two existing datasets: DynTex [9] and
the BVI Texture dataset [2]. DynTex contains a large variety of
dynamic texture content in over 650 PAL resolution sequences
and has been extensively used by the research community as a
benchmark for dynamic texture classification and for synthesis.
The BVI texture dataset was recently developed and contains
both static and dynamic textures at HD resolution.

The developed HomTex dataset was manually annotated
by experts considering three different visual characteristics:

1https://data.bris.ac.uk/data/dataset/1h2kpxmxdhccf1gbi2pmvga6qp
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Fig. 1: Examples of sequences from HomTex, classified as: a) static textures,
b) continuous dynamic textures, c) discrete dynamic textures.

TABLE I: Annotation of the HomTex based on three characteristics.

Dynamics Structure Granularity Num. of sequences Total

static

continuous
high 0

25

medium 1
low 4

discrete
high 2

medium 6
low 12

dynamic

continuous
high 4

45medium 18
low 23

discrete
high 9

50medium 32
low 9

dynamics, structure and granularity. A brief description of each
characteristic is presented below:

• Dynamics: whether the texture has inherent motion (dy-
namic) or the texture is still and the only motion present
is due to a moving camera (static).

• Structure: whether the nature of the texture is one of
continuous deformable media (continuous) or the texture
is composed of a collection of structured discernible parts
(discrete) [9].

• Granularity: related to the size of the smallest recog-
nizable repetitive object observed, known as a texture
primitive. A texture with smaller size primitives has a
high granularity level, while a texture with a larger size
primitives has a low granularity level [15].

The number of sequences grouped according to these char-
acteristics is presented in Table I. Moreover, Fig. 1 shows
the first frame of some examples of sequences from HomTex
under the three major categories defined.

Further characterisation of the HomTex dataset was per-
formed using the methodology of [14], which offers a way of
measuring how well a given dataset reflects the characteristics
of broadcast consumer video. The dataset was parameterised
using low level features, which were then transformed into
orthogonal factors. The frequency distribution for the most
relevant factors, Naturalness and Movement, was then com-
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Fig. 2: Distribution comparison between BBC Redux and HomTex.

pared with that of a large-scale database containing modern
broadcast content, BBC Redux [16]. These distributions are
shown as Cumulative Distribution Functions (CDF) in Fig.
2. Then, the hypothesis that both distributions could come
from the same continuous distribution was vallidated using
the two-sample Kolmogorov-Smirnov test [17] (shown in
Fig. reffig:distribution). These results indicate that HomTex is
indeed representative of the characteristics found in broadcast
video content.

III. ENCODING STATISTICS

HEVC encoding statistics were extracted using the test
model version HM16.2. All the sequences from the HomTex
dataset were encoded using the Main profile and three con-
figurations: Random Access, Low Delay and All Intra. The
initial quantization parameter (QP) was set to five commonly
used values 22, 25, 27, 32 and 37. A total of 37 statistics
were obtained from the encoding process at the Coding Tree
Unit (CTU) level. These were then post-processed to obtain
features per sequence, for various QP values and frame types
(I, B and P). For the purpose of this work, P frames are defined
as using only past frames for reference and B frames as using
both past and future frames. The encoding analyser proposed
in [18] was used as the basis for the code that was written to
extract the HM statistics.

Table II shows a summary of all the statistics that were
extracted grouped into different categories along with a short
description of each. For the measure of correlation between the
original and the residual frames, only the luminance compo-
nent of the frames (L1, L2) was considered. The 2-D Pearson
product-moment correlation coefficient was used, which is
computed by the following equation [17]:

r =

∑m
i=1

∑n
j=1(L1i,j − L1)(L2i,j − L2)√

(
∑m

i=1

∑n
j=1(L1i,j − L1)2)(

∑m
i=1

∑n
j=1(L2i,j − L2)2)

where (i, j) are the pixels coordinates of the frames, m×n is
the spatial resolution, L1 = 1

mn

∑m
i=1

∑n
j=1 L1i,j and L2 =

1
mn

∑m
i=1

∑n
j=1 L2i,j .

IV. ANALYSIS AND RESULTS

The analysis performed and the results obtained are pre-
sented in four sub-sections. Section IV-A describes the obser-
vations made through examination of the distribution of the
statistics of the different classes. Section IV-B analyses the ef-
fect that the different levels of granularity have on the encoding
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Fig. 3: Distribution of several encoding statistics for the static (magenta), continuous dynamic (purple) and discrete dynamic (green) textures. These results
were obtained using Random Access configuration and a QP value of 25.

TABLE II: Statistics extracted from HM during the encoding process.

Category Statistics Description

Prediction
modes

intra (%)

Percentage and standard deviation
of the percentage of Coding Unit
(CU), scaled by size and predicted
by each mode

stdIntra
Skip (%)
stdSkip
merge (%)
stdMerge
inter (%)
stdInter

Reference
indexes

ref0 (%) Percentage of CU (scaled by size)
that use each order of image from
the reference picture list

ref1 (%)
ref2 (%)
ref3 (%)

Partitioning avgPart Average and standard deviation of
the number of partitions per CTUstdPart

Bits avgBits Average and standard deviation of
bits per pixelstdBits

Distortion avgDist Average and standard deviation of
distortion (SAD) per pixelstdDist

Bit
allocation

bitsModeSignal (%)

Percentage of bits spent to en-
code mode selection, partitioning,
intra modes, merge indexes, resid-
ual coding and others

bitsPart (%)
bitsIntraDir (%)
bitsMergeIdx (%)
bitsMotionPred (%)
bitsResidual (%)
bitsOthers (%)

Residual
Statistics

avgMSEresi Average and standard deviation of
the MSE of the residual (original
- predicted frame), the MSE of
the reconstructed frame, correla-
tion between original and residual
frames, correlation between resid-
ual and coded residual (recon-
structed - predicted frame)

stdMSEresi
avgMSERecError
stdMSERecError
avgCorrResi
stdCorrResi
avgCorrCodedResi
stdCorrCodedResi

Intra mode

DCIntra Percentage of Intra predicted CU
that use DC and planar mode. Av-
erage and standard deviation of the
Intra mode direction

PlanarIntra
avgIntraDir
stdIntraDir

Motion
Vectors

avgLengthMV Average length of the motion vec-
tors. Standard deviation of the dis-
tribution of motion vector’s direc-
tions

stdDistMV

behaviour. Section IV-C presents a clustering analysis that was
employed with the aim of finding the inherent structure of the
data. Finally, Section IV-D makes some suggestions for areas
of further work that have the potential to offer compression
performance improvements.

A. Effect of dynamics and structure on the encoding behaviour

Herein we split our data into the three classes mentioned
previously (static, continuous dynamic and discrete dynamic),

which are based on the dynamics and structure characteristics
of the textures present. In particular, we compute texture-class
specific distributions for each of the extracted statistics with
the aim of identifying texture-class related patterns in the
behaviour of the encoder. Figure 3 depicts the distributions
of a sub-sample of the statistics for the B frames of the
Random Access configuration, using a QP value of 25. Having
examined the results fully, a number of observations were
made. These are described in detail bellow:

The prediction modes selected per CU vary significantly
for different texture types. Unsurprisingly, static textures are
associated with a high percentage of Skip mode due to the
simplicity of the motion present (camera panning or zooming).
Continuous dynamic textures are mostly coded using Intra
mode, implying that the motion compensation fails to produce
a good predictor for these textures. Discrete dynamic textures,
on the other hand, exhibit distinct motion and are mainly coded
using motion compensation, i.e. using all modes except Intra.

The Rate-Distortion (RD) performance of the encoder varies
with texture type. Again, as expected, static textures require
a smaller amount of bits to encode compared to dynamic
textures and exhibit less distortion (SAD of residual) for the
same QP. Of more interest is the fact that discrete dynamic
textures, on average, require a higher bitrate compared to
continuous textures and result in higher distortion.

The number of CTU partitions varies with texture type,
with the lowest number of partitions being observed for static
textures (median of 4 partitions per CTU) and the highest for
discrete dynamic textures (median of 35 partitions per CTU).
As for continuous dynamic textures, they require few partitions
(median of 9 partitions per CTU). In general, if the CTUs are
highly split, then the content is more likely to be finely textured
and have fewer spatially regular regions.

The bit allocation for both types of dynamic textures shows
that the majority of bits are spent on residual coding (more
than 80% of the bits generated). This implies that the bits
used for coding additional information such as motion vectors
and mode signalling are nearly irrelevant to the final bitrate
of the encoded sequence. This leads to the conclusion that
the residual for dynamic textures typically exhibits very high
energy, which is further confirmed by the high distortion and



Fig. 4: Visualization of some encoding statistics of three different sequences.

high correlation between the original frame and the residual. In
contrast, for static textures, the bit allocation is more evenly
distributed among the control data, the motion data and the
residual, reflecting the ease in achieving better predictions.

Motion vectors exhibit different characteristics for different
texture types. Static textures are associated with small magni-
tude motion vectors that show directional consistency. Discrete
dynamic textures have generally small magnitude motion vec-
tors with high directional irregularity. In contrast, continuous
dynamic textures are associated with large magnitude motion
vectors with slightly less irregularity in directions.

Figure 4 presents a graphical visualization of a portion of
the extracted statistics for three sequences, corresponding to
a different texture class: BricksTiling (static), CalmingWater
(continuous dynamic) and LampLeaves (discrete dynamic).
The results shown are representative of the patterns identified
for each texture type, including the dominance of Skip mode
for static textures and Intra mode for continuous dynamic
textures, the high partitioning of discrete dynamic textures and
the high energy in the residual of dynamic textures.

B. Effect of granularity on the encoding behaviour

In order to determine how granularity affects encoding, a
study of pairs of sequences with different granularities was
conducted. For intra frame coding, it was found that higher
texture granularity leads to higher average bitrates. This is
explained by the fact that textures with higher granularity
result in a large number of high frequency coefficients in the
residual. For inter frame coding, where the temporal aspect of
the texture plays a significant role, changes in texture granu-
larity have a more distinct effect on encoding behaviour. For
static and discrete dynamic textures, higher granularities result
in decreased bitrates, whereas for continuous dynamic textures,
the bitrate tends to increase slightly for higher granularities.
The former result (static and discrete dynamic textures) is
down to the lower amplitude of the motions in the scene, which
results in a more efficient motion estimation, thus decreasing
the percentage of CUs coded using Intra mode. In the case
of continuous dynamic textures, the prevalence of the intra
coding mode leads to similar observations being made as with
the case of intra frame coding.

TABLE III: Clustering performance of several clustering algorithms on all the
statistics extracted from HM for a QP of 25 and Random Access configuration.

Config. Clustering method Silhouette Purity NMI ARI

Random
Access

K-Means 0.45 0.84 0.56 0.57
Hierarchical Clustering 0.36 0.80 0.51 0.48
Spectral Clustering 0.44 0.84 0.57 0.56
PCA + K-Means 0.45 0.84 0.56 0.57

C. Validation of class descriptions through clustering

The previous section demonstrated that there are significant
differences between the encoding statistics of static, contin-
uous dynamic and discrete dynamic textures. However, this
outcome alone is insufficient proof that these three classes
represent the optimal classification for coding. For this reason,
an unsupervised learning technique, clustering, was applied
to all the extracted statistics. It is important to note that in
clustering analysis, the sequences are not labelled with a class.
This ensures that the clusters are obtained solely based on the
features themselves, i.e. the encoding statistics.

Three widely used clustering algorithms were employed,
K-Means, Hierarchical Agglomerative clustering (using com-
plete linkage) and Spectral clustering [19]. Additionally, Prin-
cipal Component Analysis (PCA) was also applied for feature
extraction, followed by K-Means using the 10 first principal
components (80% of the total variance). The input features
were 33 statistics of the Random Access B frames at a QP
value of 25. Other settings were also tested, and have achieved
similar findings. Since the majority of the algorithms used
require the number of clusters to be pre-determined, a simple
analysis was conducted using a plot of the sum of within-
cluster distances. The number of clusters is often decided
by the ”elbow” of this plot, which in this case, hints at the
existence of three clusters.

The clustering performance evaluation was conducted using
four popular cluster validity indices; one internal index (the
average Silhouette) and three external indexes (Purity, Nor-
malized Mutual Information (NMI) and the Adjusted Rand
Index (ARI)) [19]. The later methods used the manual class
annotations mentioned in previous sections with a values of 0
and 1 representing a random and a perfect clustering, respec-
tively. The clustering performance is presented in Table III
and indicates that using three clusters is a good representation
of the data, since most indices have high values. Additionally,
it can be noted that the performance is consistent among the
different algorithms employed.

Given the large number of features, visualization of the
data is a challenge. One way to do this is to represent
the data as an undirected graph where each sequence is a
node. The edges that connect two nodes of the graph consist
of the n nearest neighbors of each sequence, based on the
Euclidean distance (the value of n was chosen to be 15). This
representation is depicted in Fig. 5, where static, continuous
dynamic and discrete dynamic textures are distinguished by
the colors magenta, purple and green, respectively. Looking
at the representation, it is possible to identify three distinct
clusters in the data in addition to a number of centrally located
nodes. These nodes correspond to textures that do not fit into



Fig. 5: Undirected graph representation of the sequences.

only one class due to its characteristics. An example is the
CalmSea sequence, which depicts water flowing very slowly,
making it easier to apply motion compensation and bringing
it closer to a static texture for some of the statistics such as
avgBits and Skip (%). Additionally, for some sequences the
manual class annotations do not agree with the ones of its
nearest neighbours. One example is the RiceField sequence,
which although discrete in nature, is treated as a continuous
dynamic texture by the encoder due to its fine structure and
motion patterns.

D. Suggested areas of improvements in texture coding

Based on the conducted analysis and the results presented in
the previous sections, it is clear that dynamic textures represent
a challenging problem for the compression model of HEVC.
In the case of discrete dynamic textures, better local motion
estimation could lead to more accurate temporal predictions,
reducing the energy of the residual. On the other hand, for
continuous dynamic textures, a more robust motion compensa-
tion technique may not be sufficient due to the random nature
of this type of texture. However, approaches such as texture
synthesis may prove helpful in reducing the resulting bitrate by
allowing the generation of content without the need to code
any residual. Alternatively, given that for dynamic textures
the majority of bits are spent on residual coding, future work
could focus on developing texture-adaptive residual coding
techniques.

V. CONCLUSION

This paper has presented an extensive and detailed study of
different texture types from the perspective of the encoding
statistics of HEVC. Since textures represent an important part
of video content, knowledge about how HEVC handles tex-
tures is key to creating a solid foundation for the development
of innovative tools to be added to upcoming standards.

Additionally, the proposed dataset of homogeneous video
textures, HomTex, will aid future research by providing a
large variety of homogeneous textures for testing new coding
approaches. This dataset was proven to be representative of

broadcast video content and is annotated considering three
different characteristics: dynamics, structure and granularity.

Finally, a clustering analysis of the encoding statistics
revealed a clear structure in the data, with a separation
between static, continuous dynamic textures and discrete dy-
namic textures. Following this analysis, some suggestions of
improvement were identified for each class, which will serve
as a basis for future work.
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[4] J. Ballé, A. Stojanovic, and J.-R. Ohm, “Models for static and dynamic
texture synthesis in image and video compression,” IEEE Journal of
Selected Topics in Signal Processing, vol. 5, no. 7, pp. 1353–1365, 2011.

[5] M. Bosch, F. Zhu, and E. J. Delp, “Segmentation-based video compres-
sion using texture and motion models,” IEEE Journal of Selected Topics
in Signal Processing, vol. 5, no. 7, pp. 1366–1377, 2011.

[6] P. Ndjiki-Nya, T. Hinz, and T. Wiegand, “Generic and robust video
coding with texture analysis and synthesis,” in IEEE Inter. Conf. on
Multimedia and Expo. IEEE, 2007, pp. 1447–1450.

[7] F. Yang, G.-S. Xia, G. Liu, L. Zhang, and X. Huang, “Dynamic texture
recognition by aggregating spatial and temporal features via ensemble
svms,” Neurocomputing, vol. 173, pp. 1310–1321, 2016.

[8] Y. Sun, Y. Xu, and Y. Quan, “Characterizing dynamic textures with
space-time lacunarity analysis,” in IEEE Inter. Conf. on Multimedia and
Expo. IEEE, 2015, pp. 1–6.
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