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Rate-distortion theory provides bounds for compressing data produced by an information source
down to a specified encoding rate that is strictly less than the source’s entropy. This necessarily
entails some lossiness, or distortion, between the original source data and the best approximation
after decompression. The so-called Information Bottleneck Method achieves a lossy compression
rate below that of rate-distortion theory, by compressing only relevant information. Which infor-
mation is relevant is determined by the correlation between the information being compressed and
a variable of interest, so-called side information. In this paper an Information Bottleneck Method
is introduced for the compression of quantum information. The channel communication picture is
used for compression and decompression. A lower bound is derived for the rate of compression using
an entanglement assisted quantum channel and the optimum channel achieving this rate for a given
input state is characterised. The conceptual difficulties arising due to differences in the mathemat-
ical formalism between quantum and classical probability theory are discussed and solutions are
presented.

I. INTRODUCTION

One of the most central results in classical information
theory is Shannon’s data compression theorem [1] which
gives a fundamental limit on lossless compressibility of
information. Due to statistical redundancies, informa-
tion can be compressed at a rate bounded below by the
source entropy, such that after decompression the full
information is recovered without loss. Rate-distortion
theory (RDT) is the branch of information theory that
compresses the data produced by an information source
down to a specified encoding rate that is strictly less than
the source entropy [2]. This necessarily entails some lossi-
ness, or distortion, between the original source data and
the best approximation after decompression, according to
some distortion measure. RDT is frequently used in mul-
timedia data compression where a large amount of infor-
mation can be discarded without any noticeable change
to a listener or viewer.

Whilst RDT is an important and widely used concept
in information theory, there are cases where only part
of the information to be compressed is relevant. For in-
stance in speech signal processing one might be inter-
ested only in information about the spoken words in au-
dio data. The Information Bottleneck Method (IBM),
introduced by Tishby et al., achieves a lossy compression
rate even lower than the rate given by RDT by compress-
ing only relevant information [3]. Which information is
relevant is determined by the correlation between the in-
formation being compressed and a variable of interest.
The information to be recovered after decoding is only
the relevant part of the source data. For example, one
might have access to the transcript of an audio recording

which has an entropy by orders of magnitude lower than
the original audio data. This side-information can be
used to compress the audio data further than what can
be achieved by RDT, without increasing the distortion
of the relevant information.

Loss of information in the context of a compression-
decompression scheme is mathematically equivalent to
transmission of information through a noisy channel.
Rather than characterising the information lost by encod-
ing, one characterises the information lost during trans-
mission. The Information Bottleneck Method is formu-
lated as a communication problem with the relevant vari-
able acting as side information. Iterative algorithms to
compute the optimum channel achieving the task are also
provided in [3].

In this paper we extend the Information Bottleneck
Method to the quantum case by considering the transmis-
sion of quantum information through a quantum channel
with side information. We derive a bound for the rate at
which quantum information can be sent through a lossy
quantum channel with side information and given distor-
tion. The optimum quantum channel that can achieve
this rate is also characterised.

A quantum extension to RDT was introduced by Bar-
num [4]. However, the results were unsatisfactory, since
the bound on the rate was given in terms of coherent
information which can be negative. The results were
improved and a complete characterisation of quantum
channels achieving rate-distortion coding in a number of
settings was given by Datta et al. [5]. Various settings of
quantum RDT in the presence of auxiliary information
were discussed in the work of Wilde et al. [6]. However,
the specific question of transmitting relevant information
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asked in the IBM with its choice of distance measure and
the specifics of the optimisation problem have not been
considered before the present work.

The paper is organised as follows. Section II pro-
vides preliminary information and discusses the difficul-
ties arising due to the fundamental structure of quan-
tum information theory as opposed to classical informa-
tion theory, and how to overcome these difficulties. Sec-
tion II A gives the lower bound on the rate of information
transfer by a quantum channel in the Information Bot-
tleneck setting. In Section III the optimum channel for
this protocol is presented as a Lagrangian optimisation
problem. We are concluding with some open questions.
All proofs as well as numerical computations of the rate
functions for some examples are given in the appendix.

II. THE BASIC CONCEPTS, INTUITIONS AND
CHALLENGES

The setting of the classical IBM is as follows. A cor-
related pair of random variables X and Y is given with
a joint probability distribution P (x, y). The task is to

find the optimum channel with input X and output X̃,
such that X̃ retains a fixed amount of correlation, C,
with variable Y . The amount of correlation is quan-
tified by the Shannon mutual information I(X̃;Y ) :=

H(X̃) +H(Y )−H(X̃Y ), where H(·) is the Shannon en-
tropy. For a successful completion of the IBM task it is
required that I(X̃;Y ) ≥ C. Representing the channel by
the conditional probability distribution P (x̃|x), one can
show that the classical rate of compression for a given
minimum amount of correlation C, Rcls(C), is given by

Rcls(C) = min
P (x̃|x):I(X̃;Y )≥C

I(X; X̃). (1)

Notice that in the case of noiseless transmission the ran-
dom variables X and X̃ are identical, the mutual infor-
mation reduces to the Shannon entropy, and the problem
reduces to a rate distortion problem.

The IBM, however, is concerned not with an output
distribution close to the input distribution but with an
output characterised by its vicinity to some other vari-
able Y . The task of the IBM is to find the lowest value
of I(X; X̃) such that I(X̃;Y ) is still above some given

threshold. The value of I(X; X̃) can be reinterpreted as
a communication rate, namely, the number of transmit-
ted bits needed to specify an element of X̃, per element
of X [3, Sec. 2]. Minimising the mutual information with
respect to all channels that satisfy the threshold criterion
achieves the task.1

1 Note that the analogy of IBM to RDT is only in spirit. The
technical difference is the distortion measure, which is a function
on the output alphabet in the case of RDT while it is a function
on the probability distributions of the outputs in the case of IBM.

The channel that achieves the rate in Eq. (1) can be
found by the Lagrangian technique. The Lagrangian is
defined as

Lcls = I(X; X̃)− βI(X̃;Y )−
∑
x,x̃

λ(x)P (x̃|x), (2)

where β is the Lagrange multiplier for the information
constraint and λ(x) are the Lagrange multipliers for the
normalisation constraint of the conditional distribution
P (x̃|x). Taking the derivative of the Lagrangian with
respect to the channel and setting it to 0 gives the ex-
pression for the channel as

P (x̃|x) = P (x̃)
e−βD(P (y|x)||P (y|x̃))

Z
. (3)

D(.||.) in the exponent on the right hand side is the
Kullback-Leibler divergence of two conditional probabil-
ity distributions P (y|x) and P (y|x̃) and Z is the normal-
ising factor.

The setting of the quantum IBM is as follows. The
input to the channel is the system X which is in an en-
tangled state ρxy with the side information Y . The chan-
nel acts on the X part of this state, ρx. The output of
the quantum channel is the system X̃ which is also an
entangled state with the side information Y , ρx̃y. En-
tanglement of the state ρx̃y is measured by the von Neu-

mann mutual information I(X̃;Y ) := S(X̃) + S(Y ) −
S(X̃Y ) where S(·) is the von Neumann entropy to base
e. The bottleneck constraint in the quantum case is
I(X̃;Y )ρx̃y ≥ J , that is a minimum amount of entan-
glement J with system Y . In Secs. II A, II B and III the
quantum equivalent of Eqs. (1)–(3) will be developed and
an expression for a lower bound for compression rate of
the quantum IBM will be given. Finding the relevant La-
grangian equations with respect to the quantum channel
turns out to be non-trivial as discussed below. Details
are given in the appendix.

A. The Rate Function for the Bottleneck Method

In RDT, any rate-distortion (r, J) where r ≥ 0 is the
rate and J ≥ 0 is the distortion, is called achievable if a
lossy channel exists such that it can transmit a message,
i.e., a state of the given input system, by sending r bits
with at most J amount of distortion. The rate function,
R(J), is defined as

R(J) := inf{r : (r, J) is achievable}. (4)

An expression for this rate was found using the quan-
tum Reverse Shannon coding theorem [7]. This theo-
rem states that it is possible to simulate the action of a
quantum channel which causes non-zero distortion J by
noiseless classical communication, in the presence of an
unlimited resource of shared entanglement. It also pro-
vides a protocol that achieves the task. Therefore, if the
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quantum Reverse Shannon theorem holds for a particular
situation, it immediately gives an achievable rate. Ben-
nett et al. in [7] provide a quantum Reverse Shannon the-
orem for sending the state of a system X through a lossy
channel with a constant amount of distortion. They show
that a rate of r = I(X ′; X̃)τx′x̃ can be achieved, where
the mutual information is computed using the state

τx′x̃ := (Ix′ ⊗Nx→x̃)(τx′x). (5)

The input of the channel is described by the state ρx with
a purification τx′x. In Appendix A it is shown that their
protocol satisfies the conditions of the IBM and that the
rate I(X ′, X̃) is optimal up to a technical assumption.
Therefore the rate function for the quantum IBM is given
by

R(J) = min
Nx→x̃:I(X̃;Y )ρx̃y≥J

I(X ′; X̃)τx′x̃ . (6)

Remark 1 : In Eq. (6) the quantum Reverse Shannon
theorem is used, which in addition uses shared entangle-
ment (“entanglement assistance”) to generate a protocol
that achieves the rate. However, the requirements for
the quantum Reverse Shannon theorem are much more
stringent than those of the Bottleneck method. There-
fore, it might be possible to find a rate function without
entanglement assistance. This is still an open problem.

Remark 2 : Generally, rate distortion functions ob-
tained from the definition in (4) are nonincreasing func-
tions of the distortion, whereas both Eqs. (6) and (1)
are nondecreasing functions. This is not a fundamen-
tal difference between RDT and the Bottleneck method.
It is merely due to the fact that in the IBM the con-
straint of minimisation is chosen to be the amount of
correlation preserved, I(X̃;Y ) ≥ J ; while in RDT, the
constraint of minimisation is the average loss of informa-
tion, 〈d(x; x̃)〉 ≤ D, for some fixed D and some distortion
measure d(x; x̃).

The formulation of the IBM can easily be changed
to using a constraint on the loss of correlation such as
I(X;Y )− I(X̃;Y ) ≤ D, in which case the rate function
is a non-increasing function of D. Rather than changing
it, the structure of the minimisation constraint is kept in
line with the classical IBM. Next, the question of how to
perform the channel optimisation using the Lagrangian
method will be addressed.

B. How to perform the channel optimisation

As discussed above, in a lossy compression-
decompression protocol the minimisation is performed
over all channels satisfying a certain criterion, see
Eq. (6). In some cases we might be interested in com-
puting the actual value of the channel, as it is crucial in
various tasks in electrical engineering. In the quantum
case there are several ways of representing a channel,
e.g., the Kraus operators or the Choi-Jamio lkowski rep-
resentation. It turns out that indeed the most compact

and convenient way to compute the derivatives of the
Lagrangian is with respect to the Choi-Jamio lkowski
representation defined as

Ψx′x̃ :=
(
Ix′ ⊗Nx→x̃

)
(Φx′x), (7)

where Φx′x :=
∑d−1
i,j=0 |i〉〈j|x′ ⊗|i〉〈j|x. For the rate func-

tion given in Eq. (6), one can write the Lagrangian

L := I(X ′; X̃)τx′x̃ − βI(X̃;Y )ρx̃y

−Trxx̃(ΨTx
xx̃(Λx ⊗ Ix̃)), (8)

where β is the Lagrange multiplier for the constraint of
minimisation and the Hermitian operator Λx is the La-
grange multiplier to guarantee the normalisation of the
channel. The states in Eq. (8) can be written as func-
tions of the Choi-Jamio lkowski state of the channel Ψxx̃.
The joint state τx′x in Eq. (8) can be written as

τx′x̃ = Trx
{

ΨTx
xx̃τx′x

}
= (ρxx′ ⊗ Ix̃)1/2Ψ

Tx′
x′x̃(ρxx′ ⊗ Ix̃)1/2,

(9)
where ρxx′ is the same state as ρx acting on the Hilbert
space Hx′ of the system X ′.

By similar consideration, one can show that the joint
state

ρx̃y := (Nx→x̃ ⊗ Iy)(ρxy) (10)

can be written as

ρx̃y = Trx
{

ΨTx
xx̃ρxy

}
= Trx′y′

{
(ρxyx′y′ ⊗ Ix̃y)1/2(Ψ

Tx′
x′x̃ ⊗ Φ

Ty′

y′y )(ρxyx′y′ ⊗ Ix̃y)1/2
}
.

(11)

In the third term of (8) the dependence on the channel
state is already explicit. With all the terms in the La-
grangian expressed as functions of the channel state Ψxx̃,
the derivative δL/δΨTx

xx̃ can be performed using standard
techniques of matrix calculus, as shown in Appendix D.

With the technical issues and the proof methods spec-
ified, we will now give a formal account of the quantum
IBM problem and its solution.

III. THE OPTIMUM CHANNEL FOR THE
BOTTLENECK METHOD

The general protocol of the quantum IBM is illustrated
in Fig. 1. The information to be compressed is many
independently and identically distributed (i.i.d) copies,
ρ⊗nx , of the state of the system X. Furthermore, every
copy ρx is entangled with a system Y and the entangled
state is described by the density operator ρxy. The in-
put and output of the protocol share an entangled state
ΦTXTX̃ , where the system TX is with the input and the
system TX̃ is with the output. As mentioned above, the
noisy communication picture is mathematically equiva-
lent to a protocol which first compresses the data, then
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transmits them via noiseless channels, and then decom-
presses the data. The protocol in Fig. 1 is written in the
latter picture. Here, the input state ρ⊗nx and the state of
half of the entangled pair, TX , are acted on by the map
En := EXnTX→W , where W is the output of the noise-
less channels, a classical system of size ≈ enr, where r is
the communication rate. The output of W and the state
of the other half of the entangled pair, TX̃ , is acted on
with the decompression channel Dn := DWTX̃→X̃n

. Re-

call that the task is to compress the state of the system
X, such that the relevant information in that system is
recovered to a good degree after decompression. Defin-
ing the relevant information in X as the information that
this system provides about the system Y , the mutual in-
formation between the two systems is a measure of the
relevant information contained in X. Therefore, the out-
put of the compression-decompression scheme has to be
such that the correlation of system X with the system Y
does not decrease below a certain threshold.

As discussed in Section II A and shown in Appendix A
the rate at which information can be sent through this
compression-decompression channel with input X and
output X̃ is given by

R(J) = min
Nx→x̃:I(X̃;Y )ρx̃y≥J

I(X ′; X̃)τx′x̃ . (12)

The minimisation runs over all channels Nx→x̃ which
meet the constraint I(X̃;Y )ρx̃y ≥ J . Eq. (12) will be
proven under the assumption that the right hand side is
a convex function of J , for which we present numerical
evidence in Appendix C.

Having found the compression rate for the quantum
IBM, an important task left is to give a method for com-
puting the channel that achieves this rate. It can be
found using the Lagrangian method (for details, see Ap-
pendix D): Define

Dβy
xx̃ := β log ρx̃ ⊗ Ix
−β Try

{
(ρ−1/2
x ρxyρ

−1/2
x (log ρx̃y ⊗ Ix)

}
, (13)

and

Λ̃x := ρ−1/2
x Λxρ

−1/2
x . (14)

Taking the derivative of the Lagrangian with respect to
the channel and setting it to zero gives the channel as

ΨTx
xx̃ = (ρx ⊗ Ix̃)−1/2elog ρx̃⊗Ix−Dβyxx̃+Λ̃x⊗Ix̃(ρx ⊗ Ix̃)−1/2.

(15)
Note that this determines Ψxx̃ implicitly since it also ap-
pears on the right and side of this equation in ρx̃ and in

the definition of Dβy
xx̃ (for details, see Appendix C).

Eq. (15) reduces to its classical counterpart in Eq. (3)
in the case of diagonal density operators. To see this,
consider the diagonal case where the density operators
reduce to probability distributions. From Eq. (15) it fol-

FIG. 1: The protocol for entanglement assisted quantum in-
formation Bottleneck method. The compression encoding En

acts on n copies of the state of the system X. The n copies
of the state of the system Y are used as the relevance vari-
able and are entangled with the system X. However, as the
system Y is not transmitted through the channel, we do not
depict the system in the protocol. TX and TX̃ are the two
entangled systems that the input and the output of the pro-
tocol share to assist the transmission. The compressed states
are transferred to the output section for decompression, Dn,
via the noiseless channels “id”. The reference, labeled X ′, is
what purifies the state ρx. The state ρx is the reduced density
operator of the given initial state ρxy.

lows that

P (x̃|x) =
1

P (x)
exp

{
logP (x̃)− β

(
logP (x̃)

−
∑
y

P (y|x) logP (x̃y)
)

+
λ(x)

P (x)

}
, (16)

with λ(x) being the same normalisation Lagrange mul-
tiplier as in Eq. (2). Notice that since H(Y |X = x) =∑
y P (y|x) logP (y|x) depends only on x, but not on x̃, it

can be absorbed into λ(x). Defining

λ̃(x) :=
λ(x)

P (X)
− βH(Y |X = x)− logP (x) , (17)

Eq. (16) becomes

P (x̃|x) = P (x̃)e−βD(P (y|x)||P (y|x̃))+λ̃(x), (18)

which is the same classical channel as Eq. (3), with all
the extra terms being absorbed into the normalisation

factor. This also shows that Dβy
xx̃ is a quantum opera-

tor corresponding to the distance measure in the classi-
cal Bottleneck method. The idea of distance operators
has been used in a number of quantum information pro-

cessing tasks [8, 9], however the Dβy
xx̃ is particular to the

present setting. Eq. (15) can be used in principle to com-
pute numerical values of quantum channels using itera-
tive algorithms, akin to their classical counterparts by
methods introduced by Blahut and Arimoto [10, 11].
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IV. CONCLUSION AND OUTLOOK

This paper introduced the quantum extension of the
Information Bottleneck Method. This method com-
presses only the relevant information with respect to
some given variable. We derive a lower bound to the com-
pression rate of relevant quantum information. The prob-
lem was formulated as a communication channel problem
and the rate was shown to be achievable by explicitly con-
structing a channel achieving it. Just like in the classical
case, the compression rate of the quantum Information
Bottleneck Method is lower than that given by quantum
rate distortion theory. Several conceptual issues arose
from the structural differences between the mathemati-
cal formalism of quantum theory and classical probabil-
ity theory which were discussed and solutions were pre-
sented.

Some open questions remain. Our proof of Eq. (12)
relied on a technical assumption (convexity of the ex-
pression on the right hand side of (12) in J). While this
seems to be fulfilled in examples (cf. Appendix C), a
proof of this property is currently missing.

In Appendix C a simple algorithm is used to compute
the optimum channel and thus the rate function R(J) in

low dimensional systems; but for systems of realistic size
a more efficient algorithm would be required.
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Appendix A: Proof of the Compression Rate

Here we prove that the rate-distortion function for the
Bottleneck method is given by the expression in Eq. (6).
Consider the general protocol illustrated in Fig. 1. The
information to be compressed in system X is represented
by many independently and identically distributed (i.i.d.)
copies, ρ⊗nx , of the density operator ρx, with a purifica-
tion τx′x. The input, however, is entangled with a sys-
tem, Y , which contains our relevant information and the
entangled state is denoted ρxy. The input and output
share an entangled state ΦTXTX̃ , where the system TX
is with the input and the system TX̃ is with the output.
We act on the input state, ρ⊗nx , and the state of half
of the entangled pair, TX , with the compression map
En := EXnTX→W , where W is the output of the noiseless
quantum channels, a classical system of size ≈ enr, where
r is the communication rate. Then, we act on W and the
state of the other half of the entangled pair, TX̃ , with the
decompression channel Dn := DWTX̃→X̃n

. Consider the

overall action of the compression-decompression channel
Fn := Dn ◦ En, and the marginal operation defined by

F (i)
n (ξx) :=

Trx̃1,x̃2,...,x̃i−1,x̃i+1,...,x̃n [Fn(ρ⊗(i−1)
x ⊗ ξx ⊗ ρ⊗(n−i)

x )].
(A1)

Then for any i we can define

σx̃iyi := F (i)
n ⊗ Iy(ρxy), (A2)
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where Iy is the identity channel acting on the system Y ,
and its partial traces are

σx̃i = F (i)
n (ρx), (A3)

σyi = ρy. (A4)

Using Eqs. (A2)–(A4) we can define

Ii(X̃;Y ) := S(σx̃i) + S(σyi)− S(σx̃iyi). (A5)

The mutual information in Eq. (A5), averaged over the
many uses of the channel is

Ii(X̃;Y ) =
1

n

n∑
i=1

(
S(σx̃i) + S(σyi)− S(σx̃iyi)

)
, (A6)

where the bar denotes averaging over i. The quantum
operation Fn defines an (n, r) quantum rate-distortion
code. In the case of the Bottleneck method, for any r, J ≥
0, the pair (r, J) is called an achievable rate-distortion
pair, if there exists a sequence of (n, r) quantum rate-
distortion codes such that

lim
n→∞

n∑
i=1

1

n
Ii(X̃;Y ) > J. (A7)

Notice that Eq. (A7) is the quantum counterpart of
the optimization constraint in the classical Bottleneck
method given in Eq. (1). The rate function is then de-
fined as

R(J) := inf{r : (r, J) is achievable}. (A8)

Given the situation described above, we want to prove
that the rate function R(J) for the Bottleneck method
is given by Eq. (6). To that end, we temporarily denote
the right-hand side as

M(J) := min
Nx→x̃:I(X̃;Y )ρx̃y≥J

I(X ′; X̃)τx′x̃ . (A9)

We conjecture that this function is convex in J . While
we are currently unable to prove this property in general,
we have verified it in numerical examples, which are dis-
cussed in Appendix C. We will base our following result
on this assumption.

We need to show achievability of the rate (R(J) ≤
M(J)) as well as optimality (R(J) ≥ M(J)). We will
consider optimality first. Let (r, J) be an achievable rate-
distortion pair and Fn a corresponding sequence of codes.

We have for large n,

nr ≥ S(W )τx′x
≥ S(W |TX̃)τx′x
≥ S(W |TX̃)τx′x − S(W |X ′nTX̃)τx′x
= I(W ;X ′n|TX̃)τx′x
= I(W ;X ′n|TX̃)τx′x + I(X ′n;TX̃)τx′x
= I(WTX̃ ;X ′n)τx′x

≥ I(X̃n;X ′n)τx′x̃

≥
n∑
i=1

I(X̃i;X
′
i)τx′x̃

≥
n∑
i=1

M(Ii(X̃;Y ))ρx̃y

= n

n∑
i=1

1

n
M(Ii(X̃;Y ))ρx̃y

≥ nM(

n∑
i=1

1

n
Ii(X̃;Y ))ρx̃y

≥ nM(J). (A10)

The first inequality follows from the fact that the en-
tropy of uniform distribution, nr, is the upper bound of
S(W ). The second inequality follows because entropy
is nondecreasing under conditioning. The third inequal-
ity follows because the state of the system WX ′nTX̃ is
separable with respect to the classical system W and
therefore S(W |X ′nTX̃) ≥ 0 [13, footnote 10]. The first
equality follows from the definition of mutual informa-
tion. The second equality follows since the state ΦTXTX̃
is in a tensor product with the state of the remaining in-
put and therefore I(X ′n;TX̃) = 0. In the third equality
we use the chain rule for mutual information. The fourth
inequality follows from the data processing inequality.
The fifth inequality follows from superadditivity of quan-
tum mutual information. The sixth inequality follows
from the definition of M(J), where we use the channel

Nx→x̃ = F (i)
n . In the seventh inequality we have used

convexity of M . Finally the last inequality follows for
large n from Eq. (A7), using that M(J) is a nondecreas-
ing function of J . The rate function is nondecreasing in
J , because for any J ′ > J the domain of minimisation
in Eq. (6) becomes smaller, which implies that the rate
function can only become larger.—Now, since (r, J) was
arbitrary, (A10) implies R(J) ≥M(J).

Achievability follows from an application of the quan-
tum reverse Shannon theorem. Specifically, fix J > 0
and let Nx→x̃ be the optimum channel at which the min-
imum in Eq. (A9) is attained. For a given ε > 0, we
use the quantum reverse Shannon theorem in the form
of [7, Theorem 3(a)] to construct a sequence of channels
Fn = Dn ◦ En with the following properties:

(a) They are close to an n-fold application of Nx→x̃, in
the sense that

‖σx′nx̃n − τ⊗nx′x̃‖1 ≤ ε, (A11)
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where

τx′x̃ := (Ix′ ⊗Nx→x̃)(τx′x) (A12)

is the effect of the channel Nx→x̃ and

σx′nx̃n := Ix′n ⊗Fn(τ⊗nx′x). (A13)

(b) They use a classical communication rate of (at

most) r = I(X ′; X̃)Nx→x̃,τx′x̃ , cf. the resource in-
equality in Eq. (17) and Fig. 2 in [7].

From (a) and the fact that I(X̃;Y ) ≥ J for the channel
Nx→x̃, one can show (see Lemma 2 in Appendix B) that
Eq. (A7) is fulfilled with J − δ instead of J , where δ → 0
as ε→ 0. Hence, (r, J − δ) is achievable and R(J − δ) ≤
M(J).

We have now shown that

∀δ > 0 : M(J − δ) ≤ R(J − δ) ≤M(J). (A14)

From this it follows that

lim
δ↘0

R(J − δ) = M(J). (A15)

Since R is nondecreasing by (A7) and (A8) and M is
continuous (a property that follows from convexity), then
M(J) = R(J) for all J . Let us summarize the result:

Proposition 1. Suppose that for a given input state ρxy,
the function M(J) is convex in J . Then M(J) = R(J).

Appendix B: Lemmas for the proof of the
Bottleneck rate function

The following lemma is relevant for the proof of achiev-
ability of the communication rate. It has the same ap-
plication as in Theorem 19 of [14] and Lemma 1 of [5],
but has been adapted to the distortion criterion for the
quantum Bottleneck method.

Lemma 2. Let η(λ) := −λ log λ. There exists a constant
k > 0 depending only on the dimension of Hx̃y such that
the following holds:

Let 0 < J ≤ I(X;Y ) be fixed. Let a quantum channel
Nx→x̃ be such that if we apply the channel to the system
X and an identity channel Iy on the system Y the effect

will meet the condition I(X̃;Y )ρx̃y ≥ J , where ρx̃y is
given by (10). Further, let Fn be a sequence of quantum
channels from the space of density matrices D(H⊗nx′x) to

D(H⊗nx′x̃) such that

‖σx′nx̃n − τ⊗nx′x̃‖1 ≤ ε (B1)

for some 0 ≤ ε < 1
e and large enough n, where τx′x̃ and

σx′nx̃n are given by (A12) and (A13), respectively.
Then, for large enough n and δ := kη(ε) we have

Ii(X̃;Y ) ≥ J − δ. (B2)

Proof. Adding and subtracting I(X̃;Y ) to the left hand
side of Eq. (B2) and using the triangle inequality, we
obtain

Ii(X̃;Y ) = |I(X̃;Y )−
(
I(X̃;Y )− Ii(X̃;Y )

)
|

≥ |I(X̃;Y )| − |I(X̃;Y )− Ii(X̃;Y )|. (B3)

Since we assumed that I(X̃;Y ) ≥ J , what we need to
show is that

|I(X̃;Y )− Ii(X̃;Y )| ≤ kη(ε) =: δ (B4)

with some k > 0 and η as above. Inserting Īi given in
Eq. (A6), we have

|I(X̃;Y )− Ii(X̃;Y )| =∣∣∣ 1
n
n
(
S(ρx̃) + S(ρy)− S(ρx̃y)

)
− 1

n

n∑
i=1

(
S(σx̃i) + S(σyi)− S(σx̃iyi)

)∣∣∣. (B5)

Hence, it suffices to show that for all 1 ≤ i ≤ n,

|S(ρx̃) + S(ρy)− S(ρx̃y)− S(σx̃i)

−S(σyi) + S(σx̃iyi)| ≤ kη(ε). (B6)

In particular, we will prove bounds of the above type on
|S(ρx̃)−S(σx̃i)| , |S(ρx̃y)−S(σx̃iyi)| and |S(ρy)−S(σyi)|
for all i. We start with the first of these. To prove this
inequality, we recall that τx′x is a purification of ρx. Now
let ρx′y′xy be a purification of ρxy, then there is a Hilbert

space Ĥ and a unitary U : Hx′ ⊕ Ĥ → Hx′y′y such that

(Ix ⊗ U)τx′x(Ix ⊗ U)† = ρx′y′xy, (B7)

where τx′x is extended to the orthogonal complement of
Hx′ by zeros. Then, (B1) implies

‖ρ⊗nx′y′x̃y − (Ix ⊗ U†)⊗nσx′nx̃n(Ix ⊗ U)⊗n‖1 ≤ ε, (B8)

where ρx′y′x̃y = (Nx→x̃ ⊗ Ix′y′y)(ρx′y′xy). Further, one
computes that

(Ix ⊗ U†)⊗nσx′nx̃n(Ix ⊗ U)⊗n = σx′ny′nx̃nyn , (B9)

σx′ny′nx̃nyn := (Ix′ny′nyn ⊗Fn)(ρ⊗nx′y′xy). (B10)

To summarize, we found that

‖ρ⊗nx′y′x̃y − σx′ny′nx̃nyn‖1 ≤ ε. (B11)

Using monotonicity of the trace norm under partial trace,
we find that

‖ρx′y′x̃y − σx′iy′ix̃iyi‖1 ≤ ‖ρ
⊗n
x′y′x̃y − σx′ny′nx̃nyn‖1. (B12)

Moreover,

‖ρx̃ − σx̃i‖1 ≤ ‖ρx′y′x̃y − σx′iy′ix̃iyi‖1. (B13)
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again using the monotonicity of the trace norm under
partial trace. This implies that ‖ρx̃ − σx̃i‖1 ≤ ε.

Now, by Fannes Inequality the following bound holds
for all 1 ≤ i ≤ n:

|S(ρx̃)− S(σx̃i)| ≤ log(k′)‖ρx̃ − σx̃i‖1

+
1

log(2)
η
(
‖ρx̃ − σx̃i‖1

)
, (B14)

where k′ is the dimension of Hx̃. Then, using the bound
‖ρx̃ − σx̃i‖1 ≤ ε, we find for all 1 ≤ i ≤ n,

|S(ρx̃)− S(σx̃i)| ≤ ε log(k′) +
η(ε)

log(2)

≤ k̂′η(ε), (B15)

where the last inequality uses the fact that η(ε) ≥ ε for

0 ≤ ε < 1
e , and where k̂′ is defined in terms of the con-

stants in the first inequality, including k′.
With a similar method, one can prove that for all 1 ≤

i ≤ n,

|S(ρx̃y)− S(σx̃iyi)| ≤ k̂′′η(ε), (B16)

|S(ρy)− S(σyi)| ≤ k̂′′′η(ε), (B17)

where k̂′′, k̂′′′ also depend on the dimensions of Hx̃y and
Hy, respectively.

Combining Eq. (B15), (B16) and (B17) we find for all
1 ≤ i ≤ n that Eq. (B6) holds for a constant k that
includes the constants in the three estimates above and
depends only on the dimension of Hx̃y.

Hence, we obtain for large enough n that Ii(X̃;Y ) ≥
J − kη(ε).

Appendix C: Numerical examples

The aim of this appendix is to compute the commu-
nication rate as a function of J for some examples, us-
ing a numerical optimisation algorithm for evaluating the
right-hand side of Eq. (12). In particular, in all these ex-
amples the rate function turns out to be convex in J .
Consider the following normalized version of the rate

R̂(J) := min
Nx→x̃:

I(X̃;Y )ρx̃y
I(X;Y )ρxy

≥J

I(X ′; X̃)τx′x̃
I(X ′;X)τx′x

, (C1)

where now 0 < J < 1. In the following examples the sys-
tems X and Y are described by two-dimensional Hilbert
spaces spanned by the basis |↑〉, |↓〉.

To find the optimum numerically, a simple random
search algorithm is used [12]. It initially chooses a num-
ber of channels at random (in terms of their Krauss
operators) and computes the related mutual informa-
tion, then randomly varies those channels with the lowest
I(X ′, X̃) further until a stable optimum is reached.

FIG. 2: The function R̂(J) (in red) for the initial state ρ
(1)
xy

with (p1, p2, p3, p4) = (0.1, 0.2, 0.3, 0.4).

This algorithm is applied to three classes of input
states ρxy: The first example is a “classical” state, i.e., a
state without entanglement between the systems X and
Y , given by the density matrix

ρ(1)
xy := p1|↑↑〉〈↑↑|+ p2|↓↑〉〈↓↑|+ p3|↑↓〉〈↑↓|+ p4|↓↓〉〈↓↓| ,

where p1, p2, p3, p4 are nonnegative numbers with p1 +
p2 + p3 + p4 = 1. The second example is a state with
entanglement between X and Y , namely,

ρ(2)
xy =

1

2
|↑↑〉〈↑↑|+ 1

4
|↑↑〉〈↓↓|+ 1

4
|↓↓〉〈↑↑|+ 1

2
|↓↓〉〈↓↓|.

Finally, the third example is again a state with entangle-
ment defined as

ρ(3)
xy = p1|v〉〈v|+ p2|w〉〈w|

with the normalized vectors

v =
1√
2

(
|↑↑〉+ |↓↓〉

)
, w = |↓↓〉

and nonnegative numbers p1, p2 with p1 + p2 = 1. The
plots presented in Figs. 2–5 show the rate as a function
of distortion. The blue lines correspond to the curves
R̂(J) = J and R̂(J) = 1

2J , and are introduced for com-
parison with the actual result (red line).

The four plots show that the function R̂(J) given by
(C1) is indeed a convex function in J for the specific
choices of initial state ρxy made, and within the limits
of the numerical approximation. Note that in Figs. 3–
5, the graph does not appear to be differentiable at the
point R̂ = 1

2 . This seems to be a common feature of
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FIG. 3: The function R̂(J) (in red) for the initial state ρ
(2)
xy .

FIG. 4: The function R̂(J) (in red) for the initial state ρ
(3)
xy

with (p1, p2) = (0.4, 0.6).

the examples ρ
(2)
xy , ρ

(3)
xy , but we do not currently have an

analytic explanation for this behaviour. Note that in
Fig. 2, one has M(1) = 1

2 , while in Figs. 3–5, one has
M(1) = 1. In other words, in the case of a “classical”
(non entangled) state ρxy, there is a channel such that

I(X̃;Y ) = I(X;Y ) and I(X̃;X ′) = 1
2I(X;X ′). To ob-

tain an analytic expression of this channel we proceed as
follows.

The initial state is ρ
(1)
xy . Then, ρ

(1)
x = Try ρ

(1)
xy = (p1 +

p3)|↑〉〈↑| + (p2 + p4)|↓〉〈↓| and a purification is given by

FIG. 5: The function R̂(J) (in red) for the initial state ρ
(3)
xy

with (p1, p2) = (0.2, 0.8).

τ
(1)
x′x = |w〉〈w| with |w〉 =

√
p1 + p3|↑↑〉 +

√
p2 + p4|↓↓〉.

Our ansatz for the channel is

Nx→x̃(ρ) =
1

2

2∑
i=1

KiρK
†
i (C2)

with K1 := |↑〉〈↑| − |↓〉〈↓| and K2 := |↑〉〈↑|+ |↓〉〈↓|. Ap-

plying this channel to ρ
(1)
xy and τ

(1)
x′x, we obtain ρ

(1)
x̃y = ρ

(1)
xy

and

τ
(1)
x′x̃ = (p1 + p3)|↑↑〉〈↑↑|x′x̃ + (p2 + p4)|↓↓〉〈↓↓|x′x̃.

Note that here τ
(1)
x̃ = τ

(1)
x′ = τ

(1)
x = ρ

(1)
x as matri-

ces, but they act on different Hilbert spaces. With
this choice of channel and initial state it is clear that
I(X̃;Y )

ρ
(1)
x̃y

= I(X;Y )
ρ
(1)
xy

. In order to show that

I(X̃;X ′)
τ
(1)

x′x̃
= 1

2I(X;X ′)
τ
(1)

x′x
we compute the von Neu-

mann entropies in I(X̃;X ′) = S(X̃) + S(X ′) − S(X̃X ′)
and in I(X;X ′) = S(X)+S(X ′)−S(XX ′) using the fact

that S(XX ′) = 0, since τx′x is pure, and that ρ
(1)
x , τ

(1)
x′x̃

are diagonal. After evaluating the matrix functions, we
obtain

I(X̃;X ′) = −(p1+p3) log(p1+p3)−(p2+p4) log(p2+p4)

=
1

2
I(X;X ′)

as desired. Therefore, R̂(1) ≤ 1/2 for this class of states,
consistent with the graph.

This somewhat unexpected feature may be understood
as follows: In order to transmit the X part of the non-

entangled state ρ
(1)
xy perfectly, a classical channel of 1
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bit capacity is sufficient. By the usual quantum telepor-
tation result, this corresponds to a quantum channel of
only 1

2 qbit capacity, if shared entanglement is available
in abundance.

In this appendix a simple algorithm was used to com-
pute the optimum channel and thus the rate function
R(J) in low dimensional systems; but for systems of re-
alistic size a more efficient algorithm would be required.
One way forward is as follows. To find the optimum
channel, Eq. (15) needs to be solved iteratively for Ψxx̃.
Note that the unknown Lagrange multiplier Λx, which is
associated with the normalization constraint, is still con-
tained in this equation. An algorithm that recursively
computes the channel might work as follows. Starting
with a guess for the channel Ψxx̃ and normalizing it,
this guess is inserted into Eq. (D15) to compute a self-
consistent value for Λx. This would allow to compute ρx̃
and ρx̃y from the channel, and hence give an approxima-
tion for all quantities that enter the right hand side of
Eq. (15). Thus a new approximation for the left-hand
side is obtained, i.e., the channel Ψxx̃. When this pro-
cedure is repeated iteratively, an optimal channel Ψxx̃ is
obtained at a given value for β. Repeating this proce-
dure for different values of β and optimizing under the
constraint I(X̃;Y )ρx̃y ≥ J yields the minimum in (6).

Appendix D: The Optimal Map

In this appendix we compute the derivative of the fol-
lowing Lagrangian with respect to the channel that trans-
forms system X to X̃, described in Section II. Setting the
derivative equal to zero, we find the optimal channel. We
use the Lagrangian in Eq. (8),

L := I(X ′; X̃)τx′x̃ − βI(X̃;Y )ρx̃y

− Trxx̃(ΨTx
xx̃(Λx ⊗ Ix̃)). (D1)

We use the Choi-Jamio lkowski representation

Ψx′x̃ :=
(
Ix′ ⊗Nx→x̃

)
(Φx′x) (D2)

of the channel in order to compute the derivative of

the Lagrangian, where Φx′x :=
∑d−1
i,j=0 |i〉〈j|x′ ⊗ |i〉〈j|x

is the Choi-Jamio lkowski matrix corresponding to the
identity channel from the Hilbert space Hx′ to Hx, and
Nx→x̃ is the channel that simulates the compression-
decompression process. Λx, an operator on the Hilbert
space Hx, is the Lagrange multiplier introduced for the
normalisation of the channel ΨTx

xx̃. Considering the defini-
tion of the mutual information, to compute the derivative
δL
δΨTxxx̃

of the Lagrangian, we need to compute the follow-

ing derivatives,

δS(X ′)τx′x̃
δΨTx

xx̃

,
δS(Y )ρx̃y

δΨTx
xx̃

, (D3)

δS(X̃)τx′x̃
δΨTx

xx̃

,
δS(X̃)ρx̃y

δΨTx
xx̃

,
δS(X ′X̃)τx′x̃

δΨTx
xx̃

,

δS(X̃Y )ρx̃y

δΨTx
xx̃

,
δTrxx̃(Ψxx̃(Λx ⊗ Ix̃))

δΨTx
xx̃

. (D4)

Notice that the functions in the numerator of the ex-
pressions in (D3) are independent of the channel and
hence the derivatives are zero. For the five remaining
ones, we note that for an Hermitian operator, A, and a
function, f , which is analytic on the spectrum of A, the
directional derivative of Tr[f(A)] is given by

δTr[f(A)]

δA
[B] = Tr[f ′(A)B], (D5)

with the direction given by the operator B and f ′ being
the first derivative of the function f . (This follows from
analytic functional calculus, expanding Tr f(A + εB) in
a Taylor series around ε = 0.) Specifically, let us define
f(z) := z log(z). Since the derivative of our function f is
given by f ′(·) = (1 + log)(·), using (D5) and (9), we have

δS(X̃)τx′x̃
δΨTx

xx̃

[Bxx̃] = −Trx′x̃
{[

(Ix̃+log τx̃)⊗Ix′
]
E
}
, (D6)

where

E := Trx
(
Bxx̃τx′x

)
. (D7)

Likewise, we can compute

δS(X ′X̃)τx′x̃
δΨTx

xx̃

[Bxx̃] = −Trx′x̃

{[
(Ix′x̃ + log τx′x̃)

]
E
}
.

(D8)

In order to compute the derivative for S(X̃)ρx̃y and

S(X̃Y )ρx̃y we use (11) and (D5), we find

δS(X̃)ρx̃y

δΨTx
xx̃

[Bxx̃] = −Trx̃y

{[(
Ix̃ + log ρx̃

)
⊗ Iy

]
G
}

(D9)

and

δS(X̃Y )ρx̃y

δΨTx
xx̃

[Bxx̃] = −Trx̃y

{(
Ix̃y + log ρx̃y

)
G
}
, (D10)

where

G := Trx
(
Bxx̃ρxy

)
. (D11)

For the last derivative we have

δTrxx̃
{

ΨTx
xx̃(Λx ⊗ Ix̃)

}
δΨTx

xx̃

[Bxx̃] =

Trxx̃
{

(Λx ⊗ Ix̃)Bxx̃
}
. (D12)
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Putting all the terms together we have

δL
δΨTx

xx̃

[Bxx̃] =
δS(X̃)τx′x̃
δΨTx

xx̃

[Bxx̃]−
δS(X ′X̃)τx′x̃

δΨTx
xx̃

[Bxx̃]

−β
δS(X̃)ρx̃y

δΨTx
xx̃

[Bxx̃] + β
δS(X̃Ỹ )ρx̃y

δΨTx
xx̃

[Bxx̃]

−δTrxx̃(ΨTx
xx̃(Λx ⊗ Ix̃))

δΨTx
xx̃

[Bxx̃]

= Trx′x̃

{[
− Ix′ ⊗ (Ix̃ + log τx̃)

+ (Ix′x̃ + log τx′x̃) + βIx′ ⊗ (Ix̃ + log τx̃)
]
E
}

−β Trx̃y

{
(Ix̃y + log ρx̃y)G

}
−Trxx̃

{
(Λx ⊗ Ix̃)Bxx̃

}
.

Setting this expression to zero ( δL
δΨTxxx̃

[Bxx̃] = 0), we find

Trx′x̃
{

log τx′x̃E
}

= Trx′x̃

{[
Ix′ ⊗ log τx̃

−βIx′ ⊗ log τx̃
]
E
}

+β Trx̃y

{
log ρx̃yG

}
+ Trxx̃

{
(Λx ⊗ Ix̃)Bxx̃

}
.

Rearranging left and right hand sides of this equation,
we find

Trxx̃

{
Bxx̃ Trx′

{
τx′x(log τx′x̃ ⊗ Ix)

}}
=

Trxx̃

{
Bxx̃ Trx′

{
τx′x

[(
Ix′ ⊗ log τx̃ − βIx′ ⊗ log τx̃

)
⊗ Ix

]}}
+ β Trxx̃

{
Bxx̃ Try

{
ρxy
(

log ρx̃y ⊗ Ix
)}}

+ Trxx̃

{
Bxx̃(Λx ⊗ Ix̃)

}
. (D13)

This holds for all directions Bxx̃, which implies

Trx′
{
τx′x(log τx′x̃ ⊗ Ix)

}
= Trx′

{
τx′x

[(
Ix′ ⊗ log τx̃ − βIx′ ⊗ log τx̃

)
⊗ Ix

]}
+β Try

{
ρxy
(

log ρx̃y ⊗ Ix
)}

+Λx ⊗ Ix̃. (D14)

By performing the partial trace on the left hand side of
this expression, we obtain

ρ1/2
x (log τxx̃)Txρ1/2

x = τx
(

log τx̃ − β log τx̃
)

+β Try

{
ρxy
(

log ρx̃y ⊗ Ix
)}

+ Λx ⊗ Ix̃. (D15)

Simplifying this expression further, we find

(log τxx̃)Tx = Ix ⊗
(

log τx̃ − β log τx̃
)

+β Try

{
ρ−1/2
x ρxyρ

−1/2
x

(
log ρx̃y ⊗ Ix

)}
+ρ−1/2

x Λxρ
−1/2
x ⊗ Ix̃. (D16)

Let us denote

Dβy
xx̃ := βIx⊗log τx̃−β Try

{
ρ−1/2
x ρxyρ

−1/2
x

(
log ρx̃y⊗Ix

)}
,

(D17)

and the normalisation term Λ̃x := ρ
−1/2
x Λxρ

−1/2
x . Expo-

nentiating both sides of (D16), we obtain

τTxxx̃ = elog τx̃⊗Ix−Dβyxx̃+Λ̃x⊗Ix̃ . (D18)

Using Eq. (9), we arrive at the expression for the Choi-
Jamio llkowski matrix corresponding to the channel,

ΨTx
xx̃ = (ρx ⊗ Ix̃)−1/2elog τx̃⊗Ix−Dβyxx̃+Λ̃x⊗Ix̃(ρx ⊗ Ix̃)−1/2.

(D19)
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