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Abstract—Mobile operators are integrating WiFi into their cel-
lular networks as a way to address the issue of mobile data deluge.
Although prominently used for its high data rates and unlicensed
frequency band of operation, WiFi’s contention based medium
access does not guarantee that a user’s quality of service will
necessarily be met, especially if mobile devices simply ‘offload’
to WiFi in preference to cellular. A network selection algorithm
offers a way to enhance user experience, by always selecting the
best radio access network for the user. In the literature, several
techniques have been applied to the network selection problem.
While most proposals aim to optimise quality of service for the
user, the impact on resource utilisation for the networks is often
neglected. This work proposes a network selection algorithm
which attempts to find a good trade-off between user quality
of service and efficient resource utilisation and elaborates on
its performance evaluation through a simulation based study.
Findings indicate that the proposed algorithm is able to provide
enhanced QoS to the user as compared to conventional algorithms
in terms of achieving higher throughput, lower delay as well as
a higher overall system performance.

Keywords-3GPP LTE; WiFi 802.11; mobile data offloading;
QoS

I. INTRODUCTION & RELATED WORK

Operators have been evolving their networks to provide
increased data speeds and deploying small cell solutions
to meet with the increased demand. They have also been
offloading traffic to WiFi access points (APs) since Wi-Fi
offers high data rates and has the advantage of operating
in an unlicensed frequency band. However, when offloading
users to WiFi, maintaining the quality of service (QoS) for
the user remains a big challenge [1]. This ultimately depends
on the network selection algorithm which aims for choosing
the best network for the user given the choice of radio access
technologies (RATs) in its coverage area. At the same time,
radio resources should also be used efficiently.

Provisions for cellular/WLAN interworking have existed
for a while, providing options for both tightly and loosely
coupled architectures to enable mobile operators to take ad-
vantage of WLAN offloading, either through deploying their
own WiFi APs or through partnering with a WLAN Internet
Service Provider (ISP). To assist user equipment (UEs) in
discovering Wi-Fi APs and understanding their capabilities
before associating with it, the Wi-Fi Alliance introduced its
Hotspot 2.0 specification, which also incorporates the IEEE
802.11u amendment (interworking with external networks).
IEEE 802.11u allows an AP to advertise extra information

about its WLAN network to the UE (via its beacon frames)
but also allows a UE to query an AP, should other information
be required. The main purpose of the Hotspot 2.0 specification
is to assist with seamless roaming between the cellular and
WLAN network by making the process of discovering, se-
lecting, authenticating and connecting to the WLAN network
unnoticeable to the user [2].

To provide operators with some control over which WiFi
APs could be discovered and selected by the UE, 3GPP has
also introduced its Access Network Discovery and Selection
Function (ANDSF) [3]. It includes a WLAN selection policy
which allows an ANDSF server located in the mobile core
network to provide a policy to the UE, with rules for dis-
covering and selecting Wi-Fi APs. ANDSF and Hotspot 2.0
actually complement each other and could be envisaged to
operate in unison whereby an operator’s ANDSF policy rule
could be applied to a UE, allowing it to only associate with the
WiFi AP provided the Hotspot 2.0 measurements/information
meet a certain threshold/criteria. Even though the standards
have defined the framework for interworking, the problem of
network selection has been left out of the standard and has
been the subject of a lot of research.

Several techniques have been proposed. These solutions
have been realised either at the UE (distributed) or at the BS
(centralised) and often aim to optimise a particular objective.
Toni et al. proposed a decentralised network selection solution
based on a multi-criteria utility function in [4] which aims
to maximise the users quality of experience (QoE). Criteria
such as monetary cost, network load, link quality, UE ve-
locity and battery life are considered in the decision making
process although no mention is made of how attainable all
the parameters are or what happens in the absence of any.
Moreover, since the network providing the highest utility is
always selected for the user, this can lead to one network
being ‘popular’, thus some networks could be heavily utilised
while others could be under utilised. Multi Attribute Decision
Making (MADM) based approaches to network selection have
been proposed in [5] [6]. Similar to the utility based approach,
these too have the tendency to choose the most ‘popular’
alternative thereby leading to load imbalance across the dif-
ferent networks. Hon et al. [7] model the network selection
problem as a non-cooperative game amongst users wherein
users try to maximise their throughput. The algorithm being
centralised requires additional signalling between the BS and



the UE, in particular to obtain information on neighbouring
WiFi networks and to pass the network selection decision back
to the UE. Decentralised game theory based approaches have
also been proposed to address the aforementioned problem,
e.g., [8] [9]. However, this shifts the computational burden
on the UE which may be already constrained in terms of
limited battery life unlike the BS. Also, game theory based
approaches do not have an attractive convergence property.
Stevens-Navarro et al [10] employ MDP to model the network
selection problem and propose a decentralised algorithm to
maximise the QoS for a UE’s entire connection. At each
periodic decision point, a mobile in its current state (using a
network with certain bandwidth and delay conditions) would
take an action to either remain in its current state, or move to
a different state (a different network). The user would then be
rewarded with a particular level of QoS. The reward function
for moving from one state to the next is seen as a function of
its rewarded bandwidth, delay and signalling cost. However,
MDP is known to be computationally intensive and with an
increase in the number of networks, states and actions, the
complexity only increases. Another issue with MDP is that
of the full execution of the algorithm to determine the best
network at each periodic decision point, even when it is not
warranted i.e. even if there is no change in state and it results
in the same present network. Helou et al. [11] use utility theory
to model the problem as a multi-criteria decision, in which the
network providing the highest overall utility is selected. While
they consider several applications, for instance streaming,
elastic and inelastic applications, each with different QoS
requirements and thus different utility requirements, they only
consider the utility gained from throughput and monetary cost
in the decision making. They do not consider other parameters
(e.g. delay) that would be important to some applications.

In summary, a plethora of work has attempted to address the
network selection problem using different techniques. Some
of these optimise a limited set of parameters such as load or
QoS but not both, some others are computationally expensive
with the complexity increasing with scale whilst there are
others that don’t converge. What is desirable is a solution that
optimises not only the QoS of the user but also balances the
load across the networks and is simple from the perspective of
a practical realisation. Such a potential solution is the subject
of the ensuing discussion. A key distinguishing feature of the
proposed solution over the prior art is that it uses network
attributes specific to the QoS class of the application in the
network selection process.

II. PROPOSED NETWORK SELECTION SOLUTION

In a loosely coupled architecture, the time taken for a
cellular BS to receive updated information and make decisions
may be too time consuming as there is no direct link between
cellular BSs and WLAN APs to facilitate direct information
exchange, and as such, this information will have to either be
signalled via the UE or via the mobile core network, causing
both increased signalling load and adding to delays. Given
decisions are to be made at the mobile terminal, there is a

1. Model the problem as a hierarchy of attributes

2. Pairwise compare the attributes to establish their relative priorities

3. Convert the relative priorities to overall weights

4. Calculate a score for each network, after applying the weights

Fig. 1. Overview of the Analytic Hierarchy Process

TABLE I
PAIRWISE COMPARISON OF ATTRIBUTES (SOURCE: [12])

Relative Importance Level 𝑒𝑖𝑗 𝑒𝑗𝑖
𝑖 is equally as important as 𝑗 1 1

𝑖 is slightly more important than 𝑗 3 1/3
𝑖 is more important than 𝑗 5 1/5

𝑖 is much more important than 𝑗 7 1/7
𝑖 is extremely more important than 𝑗 9 1/9

requirement to conserve the devices battery life, thus providing
a solution that is not too complex is absolutely paramount.

Of the techniques mentioned in the previous section, both
MADM and multi-criteria utility offer low computational com-
plexity. However, there is a need to identify ways to improve
loading across the RATs. Thus a method to improve resource
utilisation is required. Additionally, the proposed algorithm
aims to differentiate over the prior art by making use of
network attributes that are specific to the QoS class of the data
application. For instance, instead of simply using an average
user throughput or delay value of a network in the decision
making, it relies on the BS/AP to provide average throughput
and delay values specific to real time, best effort class of users
etc. In being a bit more granular with the attributes used, more
precise decisions should be made, thus leading to enhanced
QoS. Also, load values from the radio access technologies are
incorporated into the decision making in an attempt to achieve
better resource utilisation.

The proposed network selection algorithm is based on
MADM, in which multiple criteria/attributes are considered in
a structured way, to enable more informed decision making.
A MADM problem can be solved by applying a well-known
technique developed by Saaty (1980) [12] referred to as
Analytical Hierarchy Process (AHP) (see Fig. 1).

Choice of attributes: Each network was assessed and
ranked based on a set of attributes. The attributes considered
were - 1) average throughput pertaining to the application

TABLE II
PREFERENCE MATRIX FOR REAL TIME VOICE APPLICATION

Tput Delay Cost Load SINR
Tput 1 1/5 7 1 5
Delay 5 1 7 3 5
Cost 1/7 1/7 1 1/7 1/5
Load 1 1/3 7 1 3
SINR 1/5 1/5 5 1/3 1

TABLE III
PREFERENCE MATRIX FOR NON-REAL TIME BULK TRANSFER

APPLICATION

Tput Delay Cost Load SINR
Tput 1 7 5 1 3
Delay 1/7 1 1 1/7 1/5
Cost 1/5 1 1 1/7 1/5
Load 1 7 7 1 5
SINR 1/3 5 5 1/5 1



QoS class, 2) average delay pertaining to the application
QoS class, 3) monetary cost, 4) SINR and 5) BS/AP load
values. These attributes were chosen based on a reasonable
assumption that they represent a fair set of parameters to form
a basis for the decision making, but also due to the ability to
realistically measure them in practice. Both throughput and
delay are vital QoS parameters to be considered. Their values
specific to the application QoS class were used based on
the intuition that they would give a better indication of the
anticipated performance of the network for that particular type
of application. For instance, consider the case of a bulk transfer
application for which throughput is the main QoS measure. A
candidate network could advertise a high average throughput,
but this could be due to real time video conferencing and real
time gaming applications having high throughput with non-
real time bulk transfer applications having low throughput.
Thus using the average throughput on the network would not
be a good indication of the typical experience for that type of
application. However, using the average throughput specific
to bulk transfer application on that network would be more
appropriate. In addition to the main QoS parameters, monetary
cost is also taken into account. Although a subscriber will be
satisfied if his/her QoS is good, a subscriber would also be
satisfied if his/her monetary cost is lower, thus monetary cost
is included. Last but not least, in an attempt to achieve better
resource utilisation across the networks, the BS/AP load values
are considered in the decision making.

Pairwise comparison of attributes: This process involves
comparing all the attributes against each other and assigning
a value using a 9 point scale as shown in Table I where
𝑒𝑖𝑗 represents an element in a matrix of row 𝑖 and column
𝑗. To ensure consistency when comparing two attributes, the
rule 𝑒𝑖𝑗 = 1/𝑒𝑗𝑖 is enforced. The attributes throughput, delay,
monetary cost, SINR and load are compared against each other
to determine a preference matrix for the particular QoS class.
For a real time voice service application, having minimal delay
is more important than attaining high throughput. Also, for
the load on the network to have an impact on the decision
making, it is assumed to be equally as important as throughput.
Thus, comparing the attributes led to the preference matrix for
real time voice application as shown in table II. Similarly, for
background non-real time services, for instance a file transfer
application, throughput is more important than delay. Again,
comparing the attributes for a non-real time bulk transfer
service led to the preference matrix as shown in table III.

Translating attribute priorities into weights: The overall
weightings for the attributes are then determined by using
a method based on eigen vectors. By solving the equation
𝐴𝑥 = 𝜆𝑥 for non-trivial solutions (i.e. 𝑥 ∕= 0), where A
represents a square matrix (the preference matrix in this case)
and represents eigenvalues, the corresponding solution to the
equation or ‘eigenvectors’ for the preference matrix can be
found. If the values of an eigenvector are normalised, they
represent the overall weightings for the attributes, values of
which add up to 1. The eigenvector solutions to the preference
matrices for the real time and non real time applications

TABLE IV
WEIGHTS OBTAINED FROM THE PREFERENCE MATRICES

Tput Delay Cost Load SINR
Real time app. 0.2047 0.4952 0.0320 0.1871 0.081

Non-real time app. 0.3378 0.0441 0.0478 0.4154 0.155

TABLE V
DECISION MATRIX

Tput Delay Cost Load SINR
WiFi 6.5Mbps 50ms 0 0.4 18dB
LTE 3Mbps 5ms 1 0.65 12dB

were calculated in Matlab and were based upon the largest
eigenvalue being used. The resulting normalised eigenvector,
i.e., weighting for the real time voice service attributes and
non-real time bulk transfer service attributes are shown in table
IV.

Scoring and ranking the networks: In this work, a
heterogeneous network comprising LTE and WiFi radio access
technologies was considered. Each network to be compared
is represented by a row vector of attributes and is placed
into a decision matrix as shown in a hypothetical example in
table V. The network attribute values are then normalised to a
common scale between 0 and 1, to enable comparisons across
them to be made. Throughput and SINR are upward attributes,
i.e., the higher the value, the more benefit brought to a sub-
scriber. Thus, those attribute values were normalized against
the highest value for that attribute across the networks being
compared (normalised value = attribute value / max(attribute
value across networks)). However, delay, monetary cost and
AP/BS load are downward attributes. Thus, a higher value
is actually worse for a subscriber and can be normalised
as normalised value = (max(attribute value across networks)
- attribute value)/max(attribute value across networks). For
instance, a delay of 5ms on the LTE network, where the
max delay was 50ms (on WiFi), the normalized LTE delay
is (50ms-5ms)/50ms = 0.9. The normalised version of the
decision matrix depicted in Table V is shown in Table VI.

In order to score each network, the overall weighting (ac-
cording to the service application), is applied to the normalised
decision matrix and the sum is taken. For instance, if the
application was a non-real time bulk transfer application, when
applied to the hypothetical normalised decision matrix, the
score is determined by matrix multiplication (values in Table
VI with the values corresponding to non real time application
shown in Table IV to yield the scores of 0.700 for Wifi and
0.297 for LTE. The network with the highest score is then
selected, in this case WiFi. To recap, the proposed network
selection algorithm works as follows: Get the attributes for
networks within range of the UE, determine QoS class level
when an application arrives, apply weights associated with
this class to the network attributes to score and rank networks
and finally choose the best network.

TABLE VI
NORMALISED DECISION MATRIX

Tput Delay Cost Load SINR
WiFi 1 0 1 0.384 1
LTE 0.46 0.9 0 0 0.66



Fig. 2. Topology considered in the simulation study (axes unit - metres)

III. PERFORMANCE EVALUATION METHODOLOGY

A Monte Carlo ‘snapshot based’ system level simulator was
developed in Matlab. A simulation took the form of multiple
‘snapshots’ of a model LTE/WLAN heterogeneous system
in which UEs were randomly distributed in the simulation
area and generating traffic according to statistical models.
Only downlink performance was considered as typically traffic
in the downlink is significantly higher than the uplink. The
overall performance was then averaged across the multiple
independent snapshots. The simulated network consisted of
a LTE mobile network complemented by WLAN hotspots.
19 cells in a hexagonal arrangement were used to represent
the coverage area of LTE macro base stations in a simu-
lated environment, in accordance with 3GPP TR36.942 [13].
ENodeBs, each with a height of 30m, were placed in fixed
locations at the centre of the hexagonal cell with an inter-
site distance (ISD) of 1000 metres. A fixed number of Wi-Fi
Access Points, with a fixed height of 3m, were then placed
at random co-ordinates within each LTE BS area. In initial
simulations, 2 Wi-Fi APs per BS cell were used. However,
this was a variable parameter in the simulation. 60 UEs, with
a height of 1.5m were then distributed randomly, according
to a uniform distribution within each hexagonal cell, with
a fraction of UEs being located within the range of Wi-Fi
APs. A fraction of 8/15 was used, however, this was also a
parameter that was varied in the simulation. The Cartesian
(x, y, z) co-ordinates of all LTE BSs, Wi-Fi APs and UEs
within the simulation environment were known. Given this
information, the separation distances and thus propagation
losses due to distance were then calculated. Fig. 2 shows the
topology and Table VII and VIII highlight the values of the
simulation parameters chosen based on the 3GPP and IEEE
802.11 simulation scenarios captured in [13] and [14].

Real time voice and non real time bulk transfer traffic was
considered in the simulations. The real time voice session
was characterised by a source generating packets at a rate of
12.2kbps with a frame size of 36bytes. The non real time bulk
transfer source was characterised by a 0.5MB file download
with a frame size of 1500bytes. Session arrival rate for both
the traffic types was assumed to be Poisson distributed with
mean arrival time of 𝜆 which was varied from 0.5 to 2.5 (in
steps of 0.5) during the simulation. A round robin scheduler
was employed in the case of both LTE and WiFi. Given the
large frame size for the bulk transfer application, RTS-CTS

TABLE VII
LTE SIMULATION PARAMETERS

Environment Urban
Cellular layout 19 BSs in a hexagonal grid with the

base station at the centre of the cell
(omni-directional antennas)

Carrier Frequency 2 GHz (3GPPs simulations for EUTRA
are based on 2GHz)

BS Antenna Gain 15 dBi
UE Antenna Gain 0 dBi
BS Antenna Height 30 m
Inter-site Distance 1000 m
Path-loss Model 128.1 + 37.6 log10 (R) + 𝜒 (where

R represents the UE/BS separation dis-
tance in km, 𝜒 represents the log normal
shadowing term)

Log Normal Shadow Variance 10 dB
Minimum Coupling Loss 70 dB
White Noise Power Density -174 dBm/Hz
System Bandwidth 10 MHz FDD
BS Max Tx Power 46 dBm
UE Noise Figure 9dB
Traffic Model Finite Buffer
Resource Block Size 180kHz

TABLE VIII
WIFI SIMULATION PARAMETERS

AP Tx Power 20 dBm
Carrier Frequency 5 GHz
System Bandwidth 20 MHz
AP Antenna Gain 0 dBi
AP Antenna Height 3 m
Distance based
Pathloss

For distances d<10m (PL = 40.05 + 20
log10(fc/2.4) + 20 log10(d) + 𝜒), For distances
d>10m (PL = 40.05 + 20 log10(fc/2.4) + 20
log10(d) + 35 log10(d/10) + 𝜒) where and fc is
the carrier frequency in GHz

Shadowing 5 dB standard deviation

was enabled. On the other hand this was disabled for the
voice application due to the small frame size. Following four
algorithms were considered in the simulation study:

∙ Wifi Preferred: UE selects WiFi whenever it is within
WiFi coverage.

∙ Least Loaded Network: UE selects the least loaded
network

∙ LTE Only: UE always selects LTE even though it may
be in WiFi coverage.

∙ Proposed Algorithm: UE ranks networks and chooses
the best as per criteria explained earlier.

In general, a simulation consisted of 200 snapshots in order
to cover a wide range of UE locations within the simulation
area. In each snapshot, 60 UEs were placed randomly within
each BS cell area and the traffic generated within a 5 second
period (i.e. 5000 subframes) was simulated. For the baseline
scenario, there were 2 APs in each BS cell area, roughly half
the number of users within dual coverage and UEs generating
new sessions at an arrival rate of 0.5. The effect of varying
the different parameters within the baseline scenario were
investigated and the performance of the algorithms was then
evaluated. The performance metrics considered in this study
were the average user throughput, medium access queuing
delay and the average system throughput.
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Fig. 4. Average user throughput

IV. RESULTS

In general, the proposed algorithm was shown to provide
a higher average throughput for users compared to the other
algorithms under the baseline simulation scenario across all
200 snapshots as evident from Fig. 3(a). Even when the
number of users per BS cell area was varied, the proposed
algorithm provided a higher average user throughput (Fig. 3(b)
). However, as the number of users in the cell area increases
to 120, the average user throughput provided by the proposed
algorithm began to converge to that of other conventional
algorithms. This is expected, since under increasing load, the
system starts to become saturated and there are limited ways
in which the capacity can be shared across the users.

Fig. 4(a) shows the average throughput for a scenario
wherein the number of APs within each cell area was varied
between 1 and 10, while keeping other parameters in the base-
line scenario constant. The average user throughput provided
by the proposed algorithm was seen to be higher, although
this was seen to converge to that of the other algorithms
with increasing number of APs (8 or more APs). Bearing
in mind that the number of users within each BS cell area
is fixed at 60 and roughly half of the users are in Wi-Fi
(dual) coverage, as the number of APs increase, roughly 30
users are split across the APs. With less users in Wi-Fi (dual)
coverage, it is highly likely that Wi-Fi would be the less
loaded of the two networks and that Wi-Fi would offer better
performance compared to LTE and thus be selected. Thus the
proposed algorithm provides similar performance to the main
conventional algorithms under extremely low load situations
as is the case here with several APs, each with a few users.

Although it is not anticipated for there to be a drop in
average user throughput with increasing number of APs, the
dip in user throughput seen when there are 4 or 8 APs, could
be due to the random distribution of the locations of the APs
within the BS cell area. If APs are located in close proximity

to each other, the interference experienced by a UE would
increase and this would result in both reduced SINR values,
reduced achievable PHY data rates and hence lower achievable
throughput for the UEs. Also, the average user throughput
obtained by using the ‘LTE only’ algorithm should be roughly
the same, regardless of the number of APs within the cell area.
The slight variation seen in average user throughput is simply
due to the random nature of the simulation, since users have
random locations in each snapshot, and by extension, in each
simulation.

Another interesting observation is the similar performance
seen between the ‘Wi-Fi preferred’ algorithm and the ‘least
loaded’ algorithm, especially as the number of APs increase
(evident by the overlap in their plots). This seems to suggest
that the Wi-Fi network was the lesser loaded of the two
networks and was selected by the least loaded algorithm. This
illustrates the point that while the load metrics are able to
provide a view of load on their respective radio networks, they
do not necessarily give an indication of whether there is more
capacity available in order to achieve a higher throughput. A
higher user throughput can be achieved by including other
metrics than simply the load, as evident with the proposed
algorithm.

Fig. 4(b) shows the average throughput for a scenario
wherein the percentage of UEs within Wi-Fi coverage was
varied incrementally between 20-100%. Observe that the
proposed algorithm provides higher average user throughput
except for the case in which 20% of users were within Wi-
Fi AP coverage where comparable performance was seen. In
that case, 6 of the 60 users were in each of the 2 Wi-Fi AP
coverage areas and again there was extremely low load on the
APs since not all users would be active simultaneously. Thus,
the Wi-Fi network may be less loaded and may be selected in
preference to LTE by all the main algorithms and thus similar
performance would be seen. It is also interesting to note the
vast difference in performance between the algorithms when
all 60 LTE BS cell users (i.e. 100% of users) are within Wi-
Fi (dual) coverage. The proposed algorithm is able to provide
much higher throughput for users. While the ‘Wi-Fi preferred’
algorithm is only limited to using the capacity available from
the Wi-Fi network amongst users (thus achieving lower aver-
age throughput), the ‘least loaded’ and proposed algorithms are
able to use the capacity provided by both the LTE and Wi-Fi
networks. Thus higher average throughput is achieved by the
‘least loaded’ and proposed algorithm. However, the proposed
algorithm still outperforms the ‘least loaded’ algorithm.

We now turn our attention to the medium access queuing
delay. Fig. 5(a) shows the queuing delay (at the MAC layer)
experienced by the users for the different algorithms for the
baseline scenario. In general, the proposed algorithm provided
lower queuing delays than the conventional algorithms. It
is important to note that for the LTE network, since the
processing delays are ignored, if a packet is generated at the
MAC layer at a particular time instant (subframe time), the
packet can be scheduled during that subframe, once there are
RBs available. Hence the queuing delay would be 0. In all sim-
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Fig. 6. Average system throughput

ulated scenarios, the proposed algorithm was able to provide
low queuing delays compared to the other algorithms. One
of the interesting findings (Fig. 5(b)) was that the proposed
algorithm can provide significantly lower delays compared to
the conventional algorithms when there are only a few APs in
the system. When the number of APs increase, the load per
AP reduces and hence all algorithms achieve a low delay. The
proposed algorithm however still outperforms the other two.

The average system throughput provides an indication of
how well the algorithms are making use of the available
resources. In the simulation, it is measured by summing
the average throughput of a LTE BS cell and the average
throughput of an AP within the simulation area. The system
throughput depends on the offered load provided to the net-
works. Although there are ultimately limitations to the max
achievable LTE cell throughput in the system since only a
round robin scheduler is employed which does not seek to
maximise throughput, the performance achieved while using
the different algorithms can still be compared against each
other. For the baseline simulation across 200 snapshots, the
proposed solution provided slightly higher system throughput
in comparison to the other algorithms as seen from Fig. 6(a).
Even when the number of users within the simulation area
is increased, keeping other parameters constant, the proposed
solution provided slightly better system throughput as evi-
dent from Fig. 6(b). As expected though, this performance
converges to that of the other algorithms as the number of
users increase. The proposed algorithm was also found to
outperform the other algorithms in the scenario where the
session arrival rate was increased. These results have however
been left out due to lack of space.

V. CONCLUSION

Having an algorithm that improves both QoS and resource
utilisation is important in heterogeneous mobile networks

especially as operators deploy Voice over Wi-Fi, where regular
Voice data services have to compete with other data traffic on
a contention based network. In this paper, a network selection
algorithm taking into account class based QoS performance
advertised by the network was presented and was shown to
provide a good trade-off between complexity, QoS provision
and improving system performance. The proposed algorithm
was found to provide enhanced QoS for users compared to
conventional algorithms, such as a ‘WiFi preferred’, by means
of higher throughput and lower delay tailored to the QoS class
of the user. For instance, it exhibited the ability to offer non
real time users higher throughput and real time users lower
delay. The algorithm was also seen to provide significant
performance gains when there was a higher proportion of users
within coverage of more than one network. Looking forward,
future work could investigate enhancements to the algorithm
to include other QoS parameters such as PER and PLR, or
periodic execution during run time so as to assess handover
performance. Also the simulation model could benefit by
modelling mobility or including more QoS classes such as
video and web traffic.
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