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Abstract— The use of sub-grids in the Finite Difference Time 

Domain (FDTD) method to facilitate the analysis of multi-scale 
problems is now well established. However, many of the proposed 
algorithms are restricted to cases where the sub-grid and the 
main grid share the same Cartesian coordinate system and where 
the ratio of the cell sizes in the two grids have a constant integer 
ratio. More recently, it has been shown that sub-grids, based on 
Cartesian grids which are rotated with respect to the main grid, 
can be effectively used but the cell size ratio was still kept 
constant. In this contribution, the method is further generalized 
in order to allow non-uniform sub-grids to be used. This greatly 
increases the range of structures which can be efficiently 
analyzed. The effectiveness of the method is demonstrated by 
application to a 31 element hemispherical array of broadband 
Cavity Backed Slot (CBS) antenna elements. 
 

Index Terms—FDTD methods  
 

I. INTRODUCTION 

HE Finite Difference Time Domain (FDTD) method has 
been widely used for many decades as a versatile and 
effective method of addressing electromagnetic 

problems[1][2]. More recently,  a number of sub-gridding 
schemes have been proposed to address the analysis of 
structures which contain fine geometrical detail and which are 
also electrically large, for instance [3][4][5][6][7]. However, 
these have only been applied to situations where the meshes 
are uniform and in which the cell size of the sub-grid and the 
main grid are in a constant integer ratio. This is a severe 
restriction for cases such as an antenna array where each 
element is, itself, a complicated structure which would be best 
analyzed using a non-uniform mesh. Moreover, with the 
exception of [7], the sub-grids are constrained to share the 
same Cartesian axes as the main grid. For a conformal antenna 
array, this is another severe restriction. An example where this 
is an issue is the hemispherical array of slot antenna elements 
used in the MARIA breast cancer detection system, described 
in [8] and illustrated in Figure 1, which has been previously 
analyzed using other methods [8][9]. 

This array consists of 31 Cavity Backed Slot (CBS) antenna 
elements distributed around a hemisphere of radius 88mm and 
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is designed to have a usable frequency range of 3-10GHz. 
Details of the dimensions of the elements are given in [9]. 

An efficient way to characterize this array is to discretize each 
element using a non-uniform sub-grid which allows a smaller 
cell size in the vicinity of the fine features, such as the feed 
lines, while reducing the computational requirements by using 
a larger cell size in homogeneous regions. In addition, the 
positions of the cell boundaries relative to metal edges can be 
chosen for best accuracy. Each sub-grid is then placed within 
the main grid at the appropriate position and with the 
appropriate orientation in order to create the complete model. 
An illustration of this is given in Figure 2. 

In this contribution, the method of [7] is generalized and 
extended to allow the use of sub-grids which are not only 
rotated with respect to the main grid but which can also be 
non-uniform and independent of the size of the cells in the 
main grid. In Section II the algorithm will be described and 
then in Section III some results will be presented. Firstly  
some simple cases will be examined in order to assess and 
demonstrate the accuracy and stability. Secondly, the method 
will be applied to the characterization of the realistic case of 
the MARIA cancer detection antenna [8] and the results will 
be compared to those previously obtained direct FDTD 
analyses. 

 

 
Figure 1 - The MARIA antenna array 
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Figure 2 - Rotated non-uniform sub-grids used to model 
tilted antenna elements. 

II. THE ALGORITHM  

This algorithm is a direct extension of the method which is 
explained in detail in [7] so, in this contribution, only the 
modifications will be described. As in [7], the sub-grid is 
bounded by two surfaces, the Outer Surface, OS, and the Inner 
Surface, IS. This scheme is shown in Figure 3 for the case 
where the sub-grid is rotated with respect to the main grid by 
30O. Details of the mesh around part of the Outer and Inner 
surfaces, indicated by the red rectangles in Figure 3, are 
shown in Figure 4 and Figure 5 respectively where a non-
uniform sub-grid is used.  
Energy is transferred from the main grid to the sub-grid and 
the sub-grid to the main grid on the Inner and Outer Surfaces 
respectively.  
Although the algorithm allows for a completely general choice 
of meshes, three restrictions are introduced in order to reduce 
the complexity of  implementation and which do not present 
any significant limitations. 
 

i. The time steps in all sub-grids must be odd integer 
sub-multiples of the time step in the main grid. There 
is no need for this sub-multiple to be the same for all 
sub-grids. 

ii. On each surface of the boundaries, the sub-grid cell 
size is allowed to vary in the tangential directions but 
not in the normal direction  

iii. The cell sizes of the main grid in the vicinity of the 
sub-grid boundaries must be constant. 

In order to implement (i), the time steps which would be used 
for each grid in isolation are first calculated based on the CFL 
criterion with a chosen stability factor. If the calculated time 
steps are dtm, dt1, dt2 etc. for the main grid, sub-grid 1, sub-
grid 2 etc. respectively, then the time step used for sub-grid 1 
is chosen to be: 

 

1
1


dt

dt

dt

m

m  
(1) 

 
and similarly for all the other sub-grids.  
Constraint (ii) is not likely to present any difficulty since, for 
practical reasons, the sub-grid boundary will have been chosen 
to be several cells away from the nearest geometrical feature. 
This is the case for the examples given in Section III. 
Similarly, in almost all practical cases, there is no need to 
violate constraint (iii) since any fine geometrical features in 
the vicinity of the boundary will have been placed in the sub-
grid region, rather than the main grid region. 
 

A. Interpolation at the Inner Surface 

Figure 4 shows a portion of the mesh surrounding the 
û boundary on the surface, IS, which is nominally in 

between the rows of E and H field nodes, shown in green. As 
previously [7], for each E field node on the boundary in the 
sub-grid, the value of H in the main grid at the position of the 
adjacent H node in the sub-grid, is approximated. This is done 
by interpolating from the surrounding main grid H field nodes. 
The E field nodes are shown as green crosses and the 
corresponding H field nodes are shown as green circles. From 

this, the value of Js is calculated using HuJs  ˆ .    The 

components of Js, tangential to the boundary are then added to 
the E field update equations. For example the update equation 
for Ev becomes: 
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where (p,q,r) is the index of the cell containing the target H 

node and the current density, J, is given by sJ
u

J

1

 since 

the equivalent surface current is assumed to be uniformly 
distributed over the volume of the cell. In the tangential 
directions, v̂ and ŵ , adjacent cells may have different sizes 
so, when the affected node is on the cell edge, the size used is 
the average of the cells on each side. Since the cell size is 
constant in the û  direction at the boundary, there is no need to 
use cell size averaging in this case. 
 
The updates for the H field nodes are done in an analogous 
manner. For example: 
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where: 
 

sM
u

M

1

  

 
Since the H nodes are in the centre of the cell faces, no cell 
size averaging is necessary. 

B. Distribution at the Outer Surface 

 Figure 5 shows a portion of the û boundary on the surface, 
OS where the surface is nominally in between the rows of E 
and H field nodes which are shown in green. As previously, 
[7], for each boundary H field node in the sub-grid, shown as a 

green circle, the value of Js is calculated using HuJs  ˆ . 

This current is distributed to the surrounding H nodes in the 
main grid, as indicated by the black arrows, using the same 
weightings as were used for the inner surface interpolation. 
These distributed currents are then added to the update 
equations for the E nodes located half a cell in the x direction 
shown by the blue arrows. For example: 
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The current density Jy, is given by: 
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  (5) 

 
where the ratio of the areas of the sub-grid and main grid cells 
has been included. 

C. Stability issues  

A further difference between the scheme used here and the 
one used in [7] results from the fact that the ratio of the cell 
sizes in the two grids can be freely chosen. When the energy is 
distributed from the finer grid to the coarser grid using the 

field values on the E field nodes in the sub-grid at the 
boundary, there is a choice for the distance between the row of 
E nodes and the row of H nodes which are used. It has been 
found that the accuracy of the result is only weakly affected by 
this choice but that the stability performance is best when the 
spacing is chosen to be as close as possible to half the size of 
the main grid cell. In the case shown in the Figure 5, the ratio 
of the main grid cell size to the size of the sub-grid cells in the 
normal direction is 3, so the E and H field rows are separated 
by 1.5 sub-grid cells instead of 0.5 sub-grid cells as 
previously. 
In [7], following [5], a spatial filter was introduced in order to 
suppress the dominant mode of instability.  The method, 
which is described in detail in [7], is applied both to the field 
interpolation at the Inner Surface and to the field distribution 
at the Outer Surface. In the example shown in Figure 4, 
instead of interpolating directly from the H field nodes, 
spatially averaged values are used. For example, instead of 
using the value of H at the node Hi,j,k, the averaged value given 
by (6) would be used. Similarly for the other H field values 
used in the interpolation. 
 

888

4

888

1,,,1,,,1

,,

1,,,1,,,1
,,











kjikjikji

kji

kjikjikji
kji

HHH

H

HHH
H

 (6) 

 
 
Similarly for the example shown in Figure 5, instead of 
distributing to the node Hi,j,k, a weighted distribution is made 
to the surrounding modes using the same weighting as used in 
(6).   
 This filter is designed to suppress the build up of spurious 
field patterns which have a high spatial frequency. Since this 
filtering and redistribution is applied only to the main grid, 
which remains uniform, the introduction of a non-uniform 
sub-grid does not require any change compared to that used in 
[7]. As will be shown in Section V, it has been found that this 
spatial filtering is equally beneficial when non-uniform sub-
grids are in use as it is when the sub-grid is uniform.  
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Figure 3 - Section through the rotated sub-grid showing 
boundary surfaces 

 

 
Figure 4 - Detail of H field interpolation 
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Figure 5 - Detail of H field distribution 

III. RESULTS 

A. Plane wave propagation through the sub-grid 

 
As a first test in order to investigate the effect of allowing 
non-uniformity in the grid, a simple problem was set up to 
examine the propagation of a plane wave through the sub-grid 
region. The test structure is the same as was used in [7], and is 
shown in Figure 7a, but now it is used with a non-uniform 
grid. The size of the main grid is (1500,375,375)mm. A sub-
grid is placed in the main grid with its centre at 
(450,186,186)mm and with a size of  (300,75,75)mm. The 
structure is excited with a plane wave pulse, propagating in the 
x direction and with a width of 439ps, corresponding to a peak 
frequency of 2.3GHz. The main grid has a uniform cell size of 
3mm and the sub-grid has a non-uniform cell size which 
varies from 1mm down to 0.25mm in the v and w directions as 
shown in Figure 6. The time variation of the E field was 
recorded in the main grid at positions of 150mm, 185mm, 
700mm and 750mm  and, in the sub-grid, at positions of 
60mm, 150mm and 240mm from the left hand boundary of the 
sub-grid. The time step used in the main grid was 5.2ps 
corresponding to a stability factor of 0.9. In the sub-grid the 
time step was 0.74ps which is 1/7 of the main grid time step 
and corresponds to a stability factor of 0.67. Figure 7a shows 
the places at which the field amplitudes are observed. The red 
circles show the positions of the observation points in the 
main grid and the green circles show the positions of the 
observation points in the sub-grid.  
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Figure 6 - Sub-grid mesh for plane wave propagation 
 
In Figure 7b results are shown for the case where the sub-grid 
is rotated by 30O with respect to the main grid. It can be seen 
that the pulse propagates with little distortion.  
The level of reflection caused by the sub-grid was calculated 
by observing the amplitude of the incident and reflected pulse 
as recorded at the leftmost main grid observation point. Figure 
8 shows results for frequencies up to 5GHz, which 
corresponds to a main grid cell size of one twentieth of a 
wavelength, and for various angles of rotation. For 
comparison, the corresponding results for a uniform sub-grid 
having a cell size of 1mm is shown in Figure 9. It can be seen 
that, in both cases, the reflection is less than -50dB over much 
of the frequency range and angles of rotation and it is similar 
for the uniform and the non-uniform cases.  
 

              
(a) 

    
(b) 

Figure 7 - Propagation through a non uniform grid rotated 
by 30 degrees 

 
Figure 8 - Reflection from non-uniform sub-grids at 
various angles of rotation 
 

 
Figure 9 - Reflection from uniform sub-grid with various 
angles of rotation 

B. Characterisation of the MARIA array. 

An example of the application of this method to a more 
realistic situation is the characterization of the MARIA 
antenna array. In order to do this efficiently, the details of each 
element are represented by the graded sub-grid shown in 
Figure 10 and Figure 11 which also show the material 
boundaries. The mesh used is similar to that used in [9] and 
the cell sizes are between 0.2mm and 0.47mm. These have 
been chosen so that the small features are covered by smaller 
cells and the positions of the cell boundaries are chosen for 
best accuracy. 

 
The main grid is uniform with a cell size of 1mm. The time 

step for the main grid was 1.8295ps, corresponding to a 
stability factor of 0.95. In order to allow for the an integer 
ratio between the time step in the main grid and the sub-grid, 
the time step in the sub-grid was set to 0.26ps which is 1/7 of 
the main grid time step. 
A direct FDTD simulation of the complete array would take 
an impractically long time so, in order to compare the results 
with those from a direct FDTD analysis, a simplified model 
was used for which comparison results could be obtained. This 
consisted of retaining just three of the original 31 elements 
labeled as 1, 2 and 5 in Figure 1. For the comparison, the 
hemisphere was filled with a dielectric having a relative 
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permittivity of 9. This simplified structure was modeled using 
a state-of-the-art commercial FDTD program and also using 
the method described in this paper. The commercial program 
required 8 days to obtain results for each transmit antenna 
element whereas the present method required only 36 hours 
for a simulation time of 15ns, a five-fold saving. Moreover, 
the commercial program was run on a dual quad core Intel 
Xeon E5405 processor running at 2GHz whereas the present 
method was run on one core of the less powerful Intel core 3 
processor. 
In each of the numerical experiments which follow, the results 
from simulations using direct FDTD simulations are compared 
with those obtained using the non-uniform sub-grid approach. 
 
 

 
 
Figure 10 - Non-uniform sub-grid for the y-plane of each 
CBS element 
 
In Figure 12 and Figure 13 the transient responses are shown. 
It can be seen that, while there are some discrepancies, there is 
generally good agreement. The corresponding frequency 
domain results are shown in Figure 14 and Figure 15 and, 
again, reasonable agreement is obtained with discrepancies of 
approximately 5dB over much of the frequency range. The 
level of agreement is similar to that found using the method of 
[9]. 
In order to check for instability, the simulations were run for 
16384 main grid iterations, a simulated time of 30ns, and no 
sign of instability was observed. 

 
Figure 11 - Non-uniform sub-grid for the z plane of  each 
CBS element 
 
 

 
Figure 12 - Transient response at element 2 caused by 
excitation at element 1 using direct FDTD and FDTD with 
sub-grids 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7

 
Figure 13 - Transient response at element 5 caused by 
excitation at element 1 using direct FDTD and FDTD with 
sub-grids 
 
 

 
Figure 14 - Frequency response at element 2 caused by 
excitation at element 1 
 

 
Figure 15 - Frequency response at element 5 caused by 
excitation at element 1 
 

IV. CONSISTENCY CHECKS 

In order to check that the algorithm gives consistent results 
with different mesh sizes and different time steps, the structure 
described in Section III.B was modeled using three different 
meshes as specified in Table 1. These required that the ratios 

between the main grid time step and the sub-grid time step be 
7, 9 and 3 respectively. 
 
The results for the calculated transient responses at elements 2 
and 5, in response to excitation at element 1, are given in 
Figure 16 and Figure 17 respectively. In each case the 
calculated responses using the three different mesh 
configurations are shown. It can be seen that very good 
agreement is obtained. 
 
Table 1 - Meshes used for characterisation of the MARIA 
array 
Main 
grid cell 
size 

Main 
grid time 
step 

Sub-grid 
largest 
cell size 

Sub-grid 
smallest 
cell size 

Sub-grid 
time step 

1mm 1.83ps 0.47mm 0.2mm 0.26ps 
1mm 1.83ps 0.34mm 0.17mm 0.203ps 
0.5mm 0.915ps 0.47mm 0.2mm 0.305ps 
 
 

 
Figure 16 - Transient response at element 2 caused by 
excitation at element 1 using different meshes. 
 

 
Figure 17 - Transient response at element 5 caused by 
excitation at element 1 using different meshes. 

V. STABILITY CHECKS 

In order to demonstrate the stability properties of the method, 
and to show the effect of non-uniformity on the stability, a test 
case, similar to the scenario shown in Figure 7a was used. The 
main grid had a size of (200,200,200)mm and the subgrid was 
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centrally placed and had a size of (50,50,50)mm. This was run 
until instability became apparent. The results are shown in  
Figure 18 - Figure 21 for the cases of (i) a uniform sub-grid 
with a cell size of 1mm and (ii) a non-uniform sub-grid with 
cell sizes varying between 0.25mm and 1mm, similar to that 
shown in Figure 6. In each case, results are shown for 
unrotated sub-grid and a sub-grid rotated by 30O. The different 
lines in these plots give the field values at different probe 
points as indicated in the legend. The positions of the subgrid 
probes are relative to the lower left hand corner of the subgrid. 
Generally it can be seen that, although the instability becomes 
visible at slightly different times in different places, once it 
starts, it rapidly spreads throughout the entire mesh. 
It is shown that, for all four cases the onset of instability is at 
approximately 300ns simulation time, corresponding to 
approximately 60,000 main grid iterations. This indicates that 
using a non-uniform sub-grid imposes no penalty in terms of 
stability. For most practical cases, this is an ample number of 
iterations to obtain the desired results. 
It is noted that, after having suppressed the dominant 
instability mode using spatial filtering, the mode of the 
remaining instability is different from that previously observed 
and takes the form of a steady exponential growth instead of 
an oscillation. The origin of this instability is not currently 
known and is being investigated. Nevertheless, the onset of 
this mode of instability is not until well beyond the simulation 
time observed in [7] for a similar geometry and mesh size. 
 

 
 
Figure 18 - Stability of unrotated uniform mesh 
 

 
 
Figure 19 - Stability of uniform mesh rotated by 30O 

 
Figure 20 - Stability of unrotated non-uniform mesh 
 

 
Figure 21 - Stability of non-uniform mesh rotated by 30O 

VI. CONCLUSIONS 

In this paper, a novel method for allowing rotated, non-
uniform, sub-grids to be used in the FDTD method has been 
presented. It has been shown by means of several examples 
that using a non-uniform sub-grid does not cause any 
significant loss in accuracy or reduction of stability in most 
practical cases. The method has been applied to the 
characterisation of a large conformal array of Cavity Backed 
Slot antennas which themselves are complicated structures. 
The results obtained give good agreement with direct FDTD 
analyses but with a saving in computer resources of over five-
fold. 
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