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ABSTRACT
Wilkinson Microwave Anisotropy Probe has provided cosmic microwave background (CMB)

maps of the full sky. The raw data are subject to foreground contamination, in particular near

to the Galactic plane. Foreground-cleaned maps have been derived, e.g. the internal linear

combination map of Bennett et al., and the reduced foreground TOH map of Tegmark et al.

Using S statistics, we examine whether residual foreground contamination is left over in the

foreground-cleaned maps. In particular, we specify which parts of the foreground-cleaned

maps are sufficiently accurate for the circle-in-the-sky signature. We generalize the S statistic,

called D statistic, such that the circle test can deal with CMB maps in which the contaminated

regions of the sky are excluded with masks.

Key words: methods: data analysis – methods: statistical – cosmic microwave background –

cosmology: miscellaneous – large-scale structure of Universe.

1 I N T RO D U C T I O N

Astronomical observations of recent years have answered a num-

ber of fundamental questions. A cornerstone in revealing the state

of the Universe was the combination of observations at low red-

shift (clusters, including the mass-to-light method, baryon fraction

and cluster abundance evolution), intermediate redshift (SNe), and

high redshift [cosmic microwave background (CMB)] (Bahcall et al.

1999). On the other hand, many new fundamental questions were

raised, e.g. questions concerning dark matter and dark energy. More-

over, many answers depend sensitively on the accuracy of the ob-

servations, e.g. on the accuracy of the curvature which determines

whether we live in an exactly flat universe or a slightly curved one.

Concerning the high-redshift observations, the temperature fluc-

tuations in the CMB are subject to systematic errors resulting from

foreground contamination. In particular, near to the Galactic plane,

the CMB maps are highly contaminated by radiation from the Milky

Way. Fortunately, there exist methods to reduce the foreground con-

tamination in the maps (Tegmark & Efstathiou 1996; Bennett et al.

2003). A growing number of foreground-cleaned maps are available

(Bennett et al. 2003; Tegmark, de Oliveira-Costa & Hamilton 2003;

Eriksen et al. 2004; Hinshaw et al. 2006) and the reader may ask

which of them comes closest to the genuine temperature fluctuations

of the CMB. This question is related to the question how reliable

the maps are, especially near to the Galactic plane. There is no way

to decide whether a given pixel of a map displays the correct tem-

perature (apart from pixels that are really very off in their values),

because the genuine temperature fluctuations of the CMB are un-
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known. However, taking ensembles of pixels, it is possible to check

statistically whether the spatial temperature distribution agrees with

statistical isotropy. In this paper, we perform such checks using

S statistic and a generalization of it. The result is that even for the

best available CMB map either there is left residual foreground

contamination or the angular resolution is significantly reduced.

Because of this residual foreground contamination, we extend the

definition of the S statistic such that the foreground-contaminated

regions of the sky can be excluded. For further studies, this might

open a new chance for the detection of matched circles as a result

of the non-trivial topology of the Universe.

2 D S TAT I S T I C

S statistic was initially introduced by Cornish, Spergel & Starkman

(1998) for the search of correlated pairs of circles in the CMB sky,

S = 〈2δT1(±φ)δT2(φ + φ∗)〉
〈δT1(φ)2 + δT2(φ)2〉 , (1)

where δTi (φ) (i = 1, 2) denotes the CMB temperature fluctuations

on two circles 1 and 2, and 〈·〉 = ∫ 2π

0
dφ is the integration along

the two circles of equal radius with relative phase φ∗.

We generalize the definition of the S statistic to include pixel

weights that specify the certainty, respectively, uncertainty of the

temperature fluctuations. The new statistic is called D statistic. In

addition, we note that the D statistic is not restricted to correlations

along circles, but can be used along arbitrary curves γ .

Definition 1. Let γ 1 and γ 2 be curves parametrized by φ, φ ∈ [0,

2π], and w(γ i) be positive pixel weights that specify how accurate

the CMB temperature fluctuations δT(γ i ) are known at γ i = γ i (φ).
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140 H. Then

Using the notation

〈〈 f (γ1, γ2)〉〉 :=
∫ 2π

0

dφ f (γ1(φ), γ2(φ))

×
√

w(γ1(φ))w(γ2(φ))
∣∣∣ d

dφ
γ1(φ)

∣∣∣∣∣∣ d
dφ

γ2(φ)
∣∣∣,

we call

D := 〈〈2δT (γ1)δT (γ2)〉〉
〈〈δT (γ1)2 + δT (γ2)2〉〉 (2)

D statistic.

We remark that the D statistic is invariant if the weights are

rescaled, i.e. w(γ i (φ)) �→cw(γ i (φ)), where c is a positive constant.

The same is also true if the temperatures are rescaled.

The pixel weights may be expressed by w = (1 + 1/ξ )−1, where

ξ is the signal-to-noise ratio. If a temperature fluctuation is known

exactly, the corresponding weight equals to 1. In the other extreme,

i.e. when δT is not known at all, its weight vanishes.

It is allowed to parametrize the curves γ i arbitrarily, but care has

to be taken if the ratio between | d
dφ

γ1(φ)| and | d
dφ

γ2(φ)| varies with

φ, because the D statistic depends on the parametrization. We will

always choose the parametrization such that | d
dφ

γi (φ)| = constant

allowing us to drop the factors | d
dφ

γi (φ)| in the definition of the

D statistic.

If one chooses the curves γ 1 and γ 2 to be circles of the same radius

and sets all pixel weights equal to 1, one recovers equation (1) as a

special case of equation (2).

The D statistic always takes values between D = −1, maxi-

mal anticorrelation, and D = 1, maximal correlation. In a typical

resolution-limited application, the D statistic has a value distribution

that is centred near

Dpeak = χ 2

1 + χ 2
(3)

and has

FWHM 	
√

8 ln 2

N0

(4)

for N0 large, where N0 is the number of independent pixels (Cornish

et al. 1998). χ is the correlation ratio,

χ 2 = A2
corr

A2 − A2
corr

, (5)

where Acorr stands for the mean amplitude of the correlated part of

the signal, and A for the mean amplitude of the total signal including

the detector noise, i.e. A2 = A2
corr + A2

uncorr + A2
noise.

Moreover, we also take angular weights into consideration. In

particular, we emphasize that we always remove the DC and the

lowest frequency AC components along each curve γ i , cf. Appendix

A. Especially in Section 5, we use the angular weights of Cornish

et al. (2004).

3 T H E M E T H O D

Observing the CMB over the full sky, one is confronted with fore-

ground emission of our own galaxy that strongly contaminates the

temperature fluctuations near to the Galactic plane. A quantitative

measure of this foreground contamination can be obtained from the

D statistic by choosing γ 1 to be a closed path and setting γ 2(φ) =
γ 1(φ∗ − φ). In the subcase of circles, we call this set up front-to-
front circles, because γ 2 traverses the same circle as γ 1, but in the

opposite direction.
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Figure 1. D statistic of the foreground-cleaned W-band map where the ex-

tremal D-values, i.e. Dmax and −Dmin, are plotted for front-to-front circles

that are parallel to the Galactic plane. α is the circle radius. Restricting to

α < 58◦, the Galactic foreground contamination is not displayed. The ex-

tragalactic contamination is quite negligible, since it does not destroy the

symmetry between Dmax and Dmin.

Our working hypothesis is that for almost all points on the sky

there are temperature fluctuations in the CMB on all scales and that

the cosmological principle holds. Consequently, we do not expect

any correlations in the genuine temperature fluctuations, i.e. Acorr =
0, apart from the circle-in-the-sky signature in case of a non-trivial

topology of the Universe. In other words, the typical temperature

fluctuations of the CMB should result in a D statistic that is symmet-

ric around Dpeak = 0. That this expectation indeed holds is shown

with front-to-front circles that are far away from the Galactic plane,

see Fig. 1. [All figures in this section, namely Figs 1–3, were made

with the foreground-cleaned W-band map of the first year Wilkinson
Microwave Anisotropy Probe (WMAP) data (Bennett et al. 2003).

More details about the CMB maps can be found in Section 4.] What

we actually plot in Fig. 1 is not a histogram of the D-values, but

−Dmin := −minφ∗ D and Dmax := maxφ∗ D in dependence of the

circle radius α. Being symmetric around Dpeak = 0, the smallest

and largest quantities of a finite set of D-values have similar size,

except of their opposite signs, i.e. −Dmin ≈ Dmax. In short, we call

this to be a symmetry between Dmin and Dmax. In Fig. 1, we see

also that the width of the distribution which is related to the sum of

−Dmin + Dmax decreases monotonically with increasing radius α of
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Figure 2. D statistic of the foreground-cleaned W-band map where the front-

to-front circles cross the Galactic plane perpendicular. The peaks in Dmax

and the asymmetry between Dmax and Dmin result from Galactic foreground

contamination.
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Figure 3. The same as in Fig. 2, except that the Kp4 mask has been applied.

This shows that there is far less foreground contamination outside the Kp4

mask. Circles with α < 21◦ are not displayed, because a too large fraction

of each of them is inside the Kp4 mask.
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Figure 4. D statistic of the ILC map.

the circles, apart from statistical fluctuations. This is in agreement

with equation (4), since larger circles sample more independent pix-

els. On the other hand, front-to-front circles that cross the Galactic

plane perpendicular reveal strong correlations resulting from fore-

ground contamination, see Fig. 2. Both, the symmetry between Dmin

and Dmax, and the monotonically decreasing sum −Dmin + Dmax are

heavily distorted by peaks in Dmax that result from residual fore-

grounds. Fig. 3 looks completely different to the former. The only

difference in producing it was to apply a galaxy cut. While in Fig. 2

all pixel weights were set equal to 1, in Fig. 3 those inside the Kp4

mask of Bennett et al. (2003) were set to zero which is tantamount

to taking only those parts of the circles that are outside the galaxy

cut. The symmetry between Dmin and Dmax, and the monotonically

decreasing width of the distribution in Fig. 3 show that there is far

less contamination outside the Kp4 mask. Figs 2–8 were all made

with the same front-to-front circles, i.e. circles that cross the Galac-

tic plane perpendicular. It is therefore possible to compare these

figures directly with each other.

Of interest to the current paper are also the other foreground-

reduced maps, i.e. the internal linear combination (ILC), the LILC,

and the two TOH maps. We question how reliable these maps are, in

particular near to the Galactic plane. With reliable we mean whether

there are any correlations from foreground contamination or any

systematics from the process of creating the maps. We emphasize

that not all foreground systematics necessarily result in correlations.
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Figure 5. D statistic of the LILC map.
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Figure 6. D statistic of the TOH map.
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Figure 7. D statistic of the TOH map outside the Kp4 mask.

For example, uncorrelated Gaussian noise that contaminates the

data will never be recovered with the D statistic. However, turning

the tables, as soon as we find any correlation, we doubt that the

temperature fluctuations are free of residual foreground systematics.

Applying masks allows us to locate the foreground-contaminated

regions. The only exception is correlations according to the circle-

in-the-sky signature. If present, one can circumvent the latter in

choosing paths that are not circles.
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Figure 8. D statistic of the Wiener filtered TOH map.

4 C M B M A P S

The following foreground-reduced first year CMB maps are avail-

able from the Legacy Archive for Microwave Background Data

Analysis (LAMBDA) archive.

(i) The foreground-cleaned Q-, V- and W-bands of the first year

WMAP data (Bennett et al. 2003) that result from removing the free–

free, synchrotron and dust emissions via externally derived CMB

template fits. The advantages of these maps are the high resolution, in

particular 0.23◦ for the W-band, the well-specified noise properties,

and the frequency specific information that is contained in the three

microwave bands, Q, V and W.

(ii) The ILC map that is designed to reduce the foreground con-

tamination via weighted combinations of the five WMAP bands

(Bennett et al. 2003).

(iii) The LILC map of Eriksen et al. (2004) produced with a

variant of the ILC algorithm that employs a Lagrange multiplier.

(iv) The reduced foreground TOH map of Tegmark et al. (2003)

that results from a variant of the Tegmark & Efstathiou (1996) tech-

nique which makes no assumptions about the CMB power spectrum,

the foregrounds, the WMAP detector noise or external templates.

Since the TOH map is free of assumptions about external templates,

it has the advantage that it can be used for cross-correlation with,

e.g. galaxy and X-ray maps. Furthermore, according to Tegmark

& Efstathiou (1996), their technique preserves the information on

the noise properties of the CMB map. In principle, Tegmark et al.

(2003) should be able to specify the noise properties of their map.

However, unfortunately, there are no noise properties given for the

TOH map.

(v) The Wiener filtered TOH map (Tegmark et al. 2003) which

is designed for visualization purposes in order to represent the best

guess as to what the CMB sky actually should look like.

Applying the D statistic to these maps, we find the following.

(i) The foreground-cleaned Q-, V- and W-band maps are useful

for quantitative analyses outside the Kp4 mask, see Fig. 3 and the text

in Section 3. Inside the Kp2 mask, these maps should only be used

with care, because the templates were fit with data outside the Kp2

mask and the foreground removal is not applicable to regions near

to the Galactic plane where the spectrum of the Galactic emission

is different. In particular, the maps should never be used inside the

Kp4 mask, see Fig. 2.

(ii) According to Bennett et al. (2003), the ILC map is useful

for visual presentation of the CMB anisotropy signature and for

foreground studies. However, because of the complicated noise cor-

relations, it should not be used for CMB studies. Our finding is that

the ILC map is not this bad. Only the distribution of the D statistic is

very wide, see Fig. 4. The large values of −Dmin and Dmax highlight

the low resolution of the ILC map, cf. equation (4) and the text in

Section 3. Nevertheless, the ILC map has the advantage that it does

not require any galaxy cut to be applied. In order to find a symmetry

between Dmin and Dmax for the ILC map, it is indispensable that the

DC component along the front-to-front circles was removed in our

analyses. If one would compute the D statistic of the ILC map with

the DC component included, the symmetry between Dmin and Dmax

would be distorted. This indicates some bias in the ILC map with

respect to the DC component along front-to-front circles.

(iii) The LILC map shows similar results as the ILC map, see

Fig. 5.

(iv) The D statistic reveals that the TOH contains some residual

foreground systematics if one analyses the full sky without any cut,

see Fig. 6. These foreground systematics require the Kp4 mask to

be applied, see Fig. 7. If compared to the foreground-cleaned W-

band map of Bennett et al. (2003), see Fig. 3, the distribution of

the D statistic is slightly wider for the TOH map indicating that the

resolution is slightly worse than the claimed 13 arcmin. There is one

sharp peak in Fig. 7 at α = 71.7◦. Less pronounced, this peak occurs

also in Fig. 3. The reader, however, is warned not to misinterpret

this peak as a detection of a matched circle pair. If the Kp4 mask

combined with the point source mask of Bennett et al. (2003) is

applied, the sharp peak in Fig. 7 vanishes completely. This tells us

that there is some residual foreground contamination outside the

Kp4 mask, but inside the point source mask.

(v) The Wiener filtered TOH map shows similar results as the ILC

and the LILC map, except that the distribution of the D statistic is

somewhat smaller which indicates that the resolution of the Wiener

filtered TOH map is better than 1◦.

5 TO P O L O G Y A N D C I R C L E S I N T H E S K Y

In the following, we choose a linear superposition of the foreground-

cleaned Q-, V- and W-bands of Bennett et al. (2003) as described

in Cornish et al. (2004) and use the matched circle test in order to

search for signatures of a non-trivial topology. Such searches have

already been done for back-to-back circles (de Oliveira-Costa et al.

2004; Roukema et al. 2004; Aurich, Lustig & Steiner 2005c) and

have been extended to nearly back-to-back circles (Cornish et al.

2004). In order not to swamp the Sachs–Wolfe effect (SW) by the

integrated Sachs–Wolfe effect (ISW), we use the angular weights

that have been introduced in Cornish et al. (2004).

Since Cornish et al. (2004), cf. also Shapiro Key et al (2006),

have not found any matched circle pair, one could conclude that

the Universe has a trivial topology. At this point, it is worthwhile

to remember that Roukema et al. (2004) have reported a slight sig-

nal for six circle pairs with a radius of 11◦ ± 1◦ in the ILC map

which they interpret as a possible hint for the left-handed dodeca-

hedral space. While the systematic research for matched circles in

spherical spaces carried out by Aurich et al. (2005c) has not found

these circles, Aurich et al. (2005c), however, report a marginal hint

for the right-handed dodecahedron and for the right-handed binary

tetrahedral space, respectively. In addition, there is strong evidence

for a finite Universe with a small dimension, because of the anoma-

lies of the large-scale temperature fluctuations which rule out the

concordance model with a probability of 99.996 per cent, but could

be explained by a multiply connected universe (de Oliveira-Costa

et al. 2004). These anomalies are the surprisingly low quadrupole,

the quadrupole–octupole alignment, and the planar octupole.
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We are not aiming to repeat a back-to-back search. We avoid

also to run the full search that has been started by Cornish et al.

(2004), because this would require more computer resources than

we could ever afford. Instead, we explore whether there are any

matched front-to-front circles in the sky that result from orientation

preserving isometries. This search has never been carried out before,

and it can be done within a few days on a multiprocessor workstation.

In our search, we exclude contaminated regions of the CMB sky via

the Kp4 and the point source mask by replacing the temperature

fluctuations inside these pixels with those given by the ILC map.

One may wonder whether it makes sense to search for front-to-

front circles. Are there any topologies that predict front-to-front

circles? The surprising answer is yes. An example is the Picard uni-

verse (Aurich et al. 2004). Choosing the cosmological parameters

as was done in Aurich et al. (2004, 2005a), the Picard universe pre-

dicts 40 circle pairs of which 23 are front to front. Further details of

the Picard topology can be found in Aurich, Steiner & Then (2003);

Then (2006). Not only the Picard, but also many other topologies

in spherical, flat and hyperbolic space, respectively, predict front-

to-front circles, if one allows that the multiply connected space has

elliptic fixed points. As another example, see the hyperbolic tetra-

hedral space investigated by Aurich (1999) and Aurich & Steiner

(2001).

Exploring all front-to-front circles of orientation preserving

isometries with a HEALPIX resolution of Nside = 256, we have not

found any matched circle pair that can be significantly distinguished

from false positive matches. This leads us to the conclusion that

there are no matched front-to-front circles on the CMB sky, but care

has to be taken since this conclusion is only significant for circles

with large radius, α � 45◦. Otherwise, if α � 45, the width of the

D-value distribution, cf. equation (4), reaches nearly the height of

the D-values that are expected for matched circles (equation 3).

In order to be more specific, we make quantitative estimates for

the width of the D-value distribution and for the height of the ex-

pected D-values in case of matched circle pairs. The height of the

expected D-values for matched circles depends sensitively on the

correlation ratio χ of equation (5). The correlated signal in the CMB

due to topology comes from the naive Sachs–Wolfe effect. For a

circle radius of α = 45◦, the Doppler effect contributes to the un-

correlated part of the signal. Any other physical effects, e.g. the late

integrated Sachs–Wolfe, and the Sunyaev–Zeldovich effect, con-

tribute to the uncorrelated part of the signal, independently of the

circle radius. In addition, there are residual foreground contamina-

tion and detector noise which are not correlated with respect to the

universal covering of the quotient space. Modelling the Universe

shows that the contribution of the late integrated Sachs–Wolfe ef-

fect plus the contribution of the Doppler effect is of the same order

as the contribution of the naive Sachs–Wolfe effect, see fig. 8 in

Aurich, Lustig & Steiner (2005b). This results in A2
uncorr + A2

noise >

A2
corr. Consequently, the correlation ratio is χ < 1. If there would be

a matched pair of circles in the sky, we would get a D-value for this

matched circle pair which is Dpeak < 0.5, see equation (3). These

single D-values, one for each matched circle pair, are embedded

in a large number of D-values that are distributed around Dpeak =
0 with a standard deviation of σ 	 √

1/N0, cf. equation (4). The

largest number of independent pixels that a front-to-front circle can

sample in the WMAP data is N0 = 180◦/0.23◦ = 782 yielding σ >

0.036. Due to the large number of 3 × 1011 D-values, namely one

for each circle centre times each radius times each relative phase,

many of these D-values reach Dmax � 5σ 	 0.18. Among these

D-values, Dmax � 0.18, it might be possible to find a matched circle

that has Dpeak < 0.5, but the risk that matched circles are overlooked

among many false positive detections is high. In particular, taking

the detection threshold

Dtrigger(α) 	 〈S2〉 1
2

√
2 ln

(
Nsearch

2
√

π ln(Nsearch)

)
of Cornish et al. (2004) results in a number of false positive de-

tections for front-to-front circles, whereas there is also the risk that

even true matched circles may be missed, cf. Aurich et al. (2005c).

Here, the main source of trouble is that for front-to-front circles

Dmax is larger by more than a factor of
√

2 if compared to the case

of back-to-back circles.

6 T H R E E - Y E A R M A P S

In 2006 March, the NASA Science team has published updated

skymaps from 3 yr of WMAP data collection (Hinshaw et al. 2006).

Repeating our analysis of Section 4 with the 3-yr maps gives the

same results as before. This reflects that the WMAP observations

are stable over the different years.

Also repeating the search of Section 5 does not recover any front-

to-front circle in the 3-yr data.

7 C O N C L U S I O N

Analysing CMB maps with D statistics allowed us to specify

whether the available maps are contaminated by residual fore-

grounds. At the same time, D statistics highlighted the angular res-

olution of the different CMB maps.

We conclude that, at present, the foreground-cleaned Q-, V- and

W-band maps of Hinshaw et al. (2006) are the best available maps

of the CMB sky. The foregrounds in these maps have been removed

with high quality outside the Kp2 mask. Even inside the Kp2 mask,

but outside the Kp4 and the point source mask, the foreground re-

duction is very good. We recommend to use these maps in any

quantitative analysis that allows the Kp4 mask to be applied. If one

is cautious, it is safe to use the Kp2 mask combined with the point

source mask.

Almost as well is the TOH map of Tegmark et al. (2003). It is

reliable outside the Kp4 and the point source mask, but its resolution

is slightly worse than the claimed 13 arcmin. Unfortunately, the

TOH map is yet only available for the first year of WMAP data.

The ILC, the LILC and the Wiener filtered TOH map are the only

maps that are reliable inside the Kp4 and the point source mask.

Unfortunately, because of their low resolution they do not fully

meet the requirements of the matched circle test. Their distribution

of the S and D statistic is too wide.1 Nevertheless, they can be used

to replace the data of higher resolution maps inside the Kp4 and the

point source mask.

Finally, we have searched for matched front-to-front circles, but

have not found any.
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pointing out that removing the DC component around each circle
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A P P E N D I X A : A N G U L A R W E I G H T S

Searching for the circle-in-the-sky signature in the WMAP observa-

tions, Cornish et al. (2004) have included angular weights in their

S statistic. Namely around each pixel i, they draw a circle of radius

α and linearly interpolate values at n = 2r+1 points along the circle.

They then Fourier transform each circle: Ti (φ) = ∑
m Tim exp(imφ)

and compare circle pairs:

Si j (α, β) =
2

2r −1∑
m=−2r

|m|Tim(α)T ∗
jm(α)e−imβ

2r −1∑
m=−2r

|m|
[
|Tim(α)|2 + |Tjm(α)|2

] . (A1)

2 http://lambda.gsfc.nasa.gov/
3 http://heasarc.gsfc.nasa.gov/docs/software/fitsio/
4 http://healpix.jpl.nasa.gov/
5 http://www.fftw.org/

We call this to be angular weights depending on m. β is the relative

phase of the two circles and the i, j label the circle centres. The

angular weights are important, because otherwise the integrated

Sachs–Wolfe effect swamps the Sachs–Wolfe correlations, cf.

(Shapiro Key et al. 2006).

Similarly, angular weights can be introduced for the D statistic.

They enter as a multiplicative factor on the temperature fluctuations

in frequency space.

Definition 2. Let f (x), f̂ (t), u(x) and v̂(t) be discrete functions

on the points x, t ∈ {0, 1, . . . , n − 1}. Let

f̂ (t) = F [ f ](t) =
n−1∑
x=0

f (x)e−2πixt/n

be the Fourier transformation and

f (x) = F−1[ f̂ ](x) = 1

n

n−1∑
t=0

f̂ (t)e2πit x/n

its inverse. We call

f̂ u(t) := F [ f u](t)
1
nF [u](0)

the u weighted Fourier transform of f, and

fu,v̂(x) := F−1[v̂ f̂ u](x)

F−1[v̂](0)

the u, v̂ weighted of the function f.
The u weighted Fourier transform at t = 0 results in the arithmetic

mean of f with respect to the weights

1

n
f̂ u(0) =

∑
f u∑
u

=: f̄ .

We call f̄ to be the DC component of f, and

1

n
f̂ u(−1)e−2πix/n,

1

n
f̂ u(1)e2πix/n

to be the lowest frequency AC components of f with respect to the

weights.

We remark that the u = 1 weighted Fourier transform of f coin-

cides with the Fourier transform of f, i.e. f̂ 1(t) = f̂ (t). The same is

true if u(x) is some other non-zero constant.

The 1, 1 weighted of f coincides with itself, f 1,1(x) = f (x). The

same is true if u(x) and v̂(t) are some other non-zero constants.

The u weights enter as a multiplicative factor in coordinate space

fu,1(x) = f (x)u(x)
1
n

∑
u

.

The v̂ weights enter as a multiplicative factor in frequency space

f1,v̂(x) = F−1[v̂ f̂ ](x)

F−1[v̂](0)
= (v ∗ f )(x)

1
n

∑
v̂

.

If we choose f to be the discretization of the temperature fluctuations

δT along the curve γ ,

f (x) := δT (γ (φ))|φ=2π x
n
, x ∈ {0, 1, . . . , n − 1},

and u to be given by the corresponding pixel weights, see Defini-

tion 1,

u(x) :=
√

w(γ (φ))

∣∣∣∣ d

dφ
γ (φ)

∣∣∣∣
|φ=2π x

n

,

we can take

v̂(t) = v̂(−t), t ∈
{

0, 1, . . . ,
n

2

}
(for n even),

to be real-valued angular weights.
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Replacing δT(γ i ) (i = 1, 2) by its u, v̂ weighted in Definition 1,

equation (2), we end up with the D statistic that includes both, pixel

and angular weights.

If one chooses the curves γ 1 and γ 2 to be circles of the same

radius α, sets all pixel weights equal to w = 1, and sets the angular

weights equal to v̂(m) = √
(m) for m = 0, 1, . . . , 2r , one recovers

equation (A1) as a special case of the D statistic.

When using angular weights, one has to be aware that they interact

with the angular resolution of the map in dependence of the curves

γ . For example, smoothing the map with a Gaussian beam of root

mean square σ in radians is the same as multiplying the expansion

coefficients alm of the map with

e−l(l+1) σ2

2 .

A similar result happens, if one chooses γ 1 and γ 2 to be circles of

radius α and applies the angular weights

v̂(l) = e
−l(l+1) σ2

2 sin2 α .

The difference is that the latter smoothes the map only in the direc-

tion along the circles.

Entering in coordinate and frequency space, respectively, the pixel

and angular weights interfere. Consequently, we avoid using pixel

and angular weights simultaneously. If not otherwise stated, we use

pixel weights. The only exception is that we always remove the

DC and the lowest frequency AC components of the temperature

fluctuations, i.e. we replace δT by

δT (γ (φ)) − 1

n

1∑
t=−1

δ̂T u(t)eitφ

in Definition 1, equation (2).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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