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Abstract
Quantummetrology enables estimation of optical phase shifts with precision beyond the shot-noise
limit. Oneway to exceed this limit is to use squeezed states, where the quantumnoise of one observable
is reduced at the expense of increased quantumnoise for its complementary partner. Because shot-
noise limits the phase sensitivity of all classical states, reduced noise in the average value for the
observable beingmeasured allows for improved phase sensitivity. However, additional phase
sensitivity can be achieved using phase estimation strategies that account for the full distribution of
measurement outcomes.Herewe experimentally investigate amodel of optical spin-squeezing, which
uses post-selection and photon subtraction from the state generated using a parametric down-
conversion photon source, andwe investigate the phase sensitivity of thismodel. The Fisher
information for all photon-number outcomes shows it is possible to obtain a quantum advantage of
1.58 compared to the shot-noise value for five-photon events, even though due to experimental
imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise
precision. Our demonstration implies improved performance of spin squeezing for applications to
quantummetrology.

1. Introduction

Quantummetrology uses non-classical states to enablemeasurement of physical parameters with precision
beyond the fundamental shot-noise limit [1]. This is subject to intense research effort formeasurements at the
single-photon level [2], with higher intensity quantumoptics [3] andwithmatter [4]. In all these cases the central
motivation is to understand how to extractmore information per-unit of resource (such as probe power and
interaction time) and this will naturally lead to applications in precisionmeasurement [5–8]. An approach that
dates back to the beginning of quantumoptics [9] is to improve phase sensitivity using squeezed states [3]. In
discrete quantumoptics, one approach has been to use path-entangled states, such asNOON states [10], as a
means to achieve supersensitivity since they exhibit interference patternswith increased frequency compared to
classical light. So far, experiments have reached photon numbers of up to six [11–13] photons, and recent works
aim to address weaknesses in these schemes due to loss [14] and state generation using non-deterministic
processes [15]. Using probesmultiple times can also enable a precision advantage, which varies according to the
chosen notion of resource [16, 17].

Spin squeezing has proven to be a useful approach thanks to developments in experimentsmanipulating
atomic ensembles [18–23]. In these experiments ensemblemeasurements are typically used, which correspond
to collective observables for all particles in the ensemble.However, experiments that utilise detections at the
single-particle level, can in principle achieve sensitivity beyond that achievable using ensemblemeasurements
[24]. The total statistical information that can be extracted from ameasurement of an unknown phase shift is
captured by the Fisher information [25, 26], which is evaluated for allmeasurement outcomes. Because it is well
known that squeezing can improve the phase sensitivity inmany set-ups, it is important to quantify the
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sensitivity improvement with squeezing, and how close this sensitivity is to themaximumphase sensitivity as
quantified using Fisher information.

In this paper, we focus onmeasurements using spin squeezing [27, 28], which has been shown to enable
increased sensitivity in several experiments using ultracold atoms [29–32].We report on an optical
implementation of a spin-squeezingmodel whichwas originally considered by Yurke et al [33, 34], andwe
investigate how sensitivity is improved in thismodel. Our setup generates five-photonYurke states by
postselecting on cases withfive detection events from the state emitted by a parametric downconversion source
after one photon subtraction [35], andwe use spatially-multiplexed pseudo-number-resolving detection to
reconstruct photon-number statistics at the output [15]. Our analysis demonstrates increased sensitivity from
the observed optical Yurke state, using allfive-photon coincidence outcomes.We investigate the role of spin
squeezing in achieving this quantum enhancement by using our optical spin-squeezingmodel.

Consider firstN uncorrelated single photons, where each photon is in a superposition of horizontal (H) and
vertical (V) polarisations, ñ + ñ(∣ ∣ )1, 0 0, 1 2HV HV .Whenwemeasure this state inHV-polarisation basis, the
probability that n photons are detectedwithHpolarisation andN−n photonswithVpolarisation is given by

the Binomial distribution = ( )( )P 1 2n
N

n
N . The noise obtained from this distribution is given by N , which is

called shot noise for phase estimation.
The state whichwe consider here, sometimes referred to as the Yurke state [33], is a superposition of the two

states of +( )N 1 2 photons are in one opticalmode (e.g. horizontal polarisation) and + -( )N 1 2 1photons
are in an orthogonalmode (e. g. vertical polarisation) of the form

- + ñ + + - ñ(∣( ) ( ) ∣( ) ( ) )N N N N1 2, 1 2 1 2, 1 2 2 , where N 3 is restricted to odd values. If we
adopt polarisation encoding andmeasure in theHVbasis, the outcomes take two valueswith photon-number
difference±1. The noise of Yurke state is therefore 1which is smaller than that usingN uncorrelated photons
with a noise of N .

More generally, the photon statistics of any two-modeN-photon system can be described by the Stokes
parameters describing the photon-number differences betweenH andVpolarisation, diagonal (D) and anti-
diagonal (A) polarisation, and right-circular (R) and left-circular (L) polarisation,

= - = -

= - = +

= - = - -

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ )

† †

† †

† †

S n n a a a a

S n n a a a a

S n n a a a a

,

,

i ,

1 H V H H V V

2 D A H V V H

3 R L H V V H

where ˆ †ai , âi and n̂i are the creation, annihilation and number operators for the correspondingmodes. The

average of these parameters, = á ñ á ñ á ñ( ˆ ˆ ˆ )S S SS , ,1 2 3 , is = ( )NS 0, , 0 for uncorrelated photons and
= +( ( ) )NS 0, 1 2, 0 for the Yurke state, indicating that these vectors alignwith the S2 axis of the Poincare

sphere.
The squeezing property of the Yurke state can be described using Ŝ1 and Ŝ3. ForNuncorrelated photons, the

noise for S1 and S3 is equivalent,D = D =S S N1 3 (figure 1(b)). On the other hand for the Yurke state, the
noise of S1 is suppressed asD =S 11 at the expense of increased noise S3,D = + -( )S N N2 1 23

2

(figure 1(a)). A large number of parameters have been devised to quantify spin squeezing for various applications
[28]. To characterise this squeezing, we use the squeezing parameter, xS, which is defined to be the ratio between
theminimumuncertainty for directions orthogonal to S [27], where x < 1S indicates reduced quantumnoise

Figure 1.Wigner distributions: theWigner distributions are defined by average values for Stokes parameters. (a)Corresponds to the
five-photonYurke state, (b) corresponds tofive uncorrelated photons.

2
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below the shot-noise. For uncorrelated photons, x = 1S .While for the Yurke state, xS isminimised along the S1
directionwith x = N1S which indicates strong squeezing for this choice of squeezing parameter.

The squeezing property of the Yurke state can be used for improving the phase sensitivity of an
interferometer. The effect of a phase rotation byf can be described by the unitary operator

f f= -ˆ ( ) ( ˆ )U Sexp i 23 . Specifically, Ŝ1 after the phase rotation is expressed as

f f f f f= = -ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( ) ˆ ( ) ˆ†
S U S U S Scos sin1 1 1 2. Because á ñ =Ŝ 01 for bothNuncorrelated photons and the

Yurke state, the average of fˆ ( )S1 is expressed by

f fá ñ = -á ñˆ ( ) ˆ ( ) ( )S S sin . 11 2

For estimates of Ŝ1, phase error is given by the ratio ofDS1 and the phase derivative of á ñŜ1 . Specifically, the phase
error at f = 0 is given by

df f= D ¶á ñ ¶ =
D
á ñ

f=∣ ˆ ∣∣ ˆ ( )S S
S

S
. 2sq 1 1 0

1

2

BecauseD =S 11 and á ñ = +ˆ ( )S N 1 22 for the Yurke state, the phase error by squeezing of Yurke state is
df = +( )N2 1sq . To characterise the improvement of the phase sensitivity due to squeezing, we use another
squeezing parameter xR whichwas introduced in [36, 37], which is the ratio of the phase error for a general state
and phase error due to shot noise df = N1SNL , with x df df=R sq SNL. For x < 1R , the phase error is smaller
than the shot-noise limit attained by uncorrelated photons x = 1R . For the Yurke state,
x = + » <( )N N N2 1 2 1R for the high-N limit.

Although squeezing of the Stokes parameters can improve phase sensitivity beyond the shot-noise limit,
additional phase sensitivity can be achieved by phase estimationwhich accounts for the full distribution of
measurement outcomes. Statistical information aboutf can be extracted from the frequencies of every
measurement outcome occurring in an experiment and quantified using Fisher information f( )F . In a two-
modeN-photon problem, Fisher information is calculated from the +N 1probability distributions, f( )pm ,
wherem photons are detectedwithHpolarisation andN−m photonswithVpolarisation

åf f
f

f=
¶
¶=

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )F p pln . 3

m

N

m m
0

2

More specifically, the Cramér–Rao bound states that any unbiased statistical estimator offhasmean-square
errorwhich is lower bounded by f( )F1 , and this bound can be saturated using a suitable statistical estimator

[38]. Theminimumphase error for the Yurke state is then given by df = = + -( )F N N1 1 2 1 2opt
2 ,

wherewe used = DF S2
3 [39]. The improvement factor compared to the shot-noise limit is

df df » N2opt. SNL for the high-N limit. Note that the phase sensitivity obtained from the Fisher

information is greater than the sensitivity obtained from equation (2) by a factor of approximately 2 ,
indicating thatmaximum sensitivity is achieved not only due to squeezing but also other quantum effects
captured by the full set ofmeasurement outcomes. Note that a theoretical analysis with similarmotivation is
given in [24].

2. Experimental setup

In order to demonstrate experimentally the phase sensitivity obtained from squeezing andmaximumphase
sensitivity obtained fromFisher information, we have implemented afive-photon Yurke statemodel by using a
post-selection technique. Figure 2 shows the experimental setup for generating the Yurke state. Down-
converted photon pairs are generated frombiaxial Type-I bismuth borate (BiBO) crystal in a non-collinear
configuration. A half wave plate (HWP) is placed on each path so that one path is horizontally polarised and the
other is vertically polarized. Each beam is then combined into a single spatialmode at the polarisation beam
splitter (PBS1). The state after the PBS1 is a superposition of photon number states with equal photon number in
the horizontal and vertical polarisation,

åY ñ = ñ
=

¥

∣ ( ) ∣ ( )
r

r N N
1

cosh
tanh 2, 2 , 4

N

N
PDC

0

2
HV

where the sum is taken over even values ofN. If we postselectN photons from this state, the state is equivalent to
theHolland–Burnett state ñ∣N N2, 2 HV [13].

To generate the Yurke state [35], one photon is subtracted from the down-converted photon source, by
detection of a single-photon in theD/Abasis. After the one-photon subtraction, the conditional output is the
five-photon Yurke state. In the setup, we put a beam splitter after PBS1 so that each of theN photons in the beam
is transmittedwith probability 10%. The transmitted one-photon state wasmeasured in theD/Abasis using a

3
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HWPset at 22.5° andPBS3. After the one-photon detection, the reflected -N 1photons are analysed by the
polarisation interferometer.

Note that the conditional output state after the one photon subtraction is the superposition of arbitrary
(odd) photon-number Yurke states, since the down-converted photon state is the superposition of even-photon
number states described in equation (4). Typical count rates for two, four, six-fold coincidence are ´7 105, 40
and 10−2Hz, respectively. In this experiment, we only focus on cases with five detection events after the one-
photon subtraction.

To demonstrate the sub-shot noise phasemeasurement, wemeasured all possible coincidence outcomes, of
which there are six, at the output asf is varied.We used a pseudo-number-resolvingmultiplexed detection
systemusing 1×7fibre beam splitters, 14 avalanche photodiodes (APDs) and amulti-channel photon
correlator (DPC-230, Becker andHickl GmbH) [15]. The phase shift wasmeasured by using aHWPandPBS3
whichwere placed on the reflected path of the beam splitter.

Details ofmeasurement times and efficiency for our experiment are as follows. For our six-photon
measurements, data collection took eight hours per point in the interference fringe. Quantum efficiencies of our
APDs are roughly 55%at 808 nm. Transmittance through the all the optical components including coupling
efficiency from free space tofibre is estimated as 20%. The reflectivity of the non-polarising beamsplitter is 90%.
Assuming equal splitting probability amongst the seven detectors at each interferometer output, the efficiency
for detecting five-photon outcomes ranges from15% to 52%.Hence, overall efficiency can be estimated
as ´ ´ ´ »0.55 0.2 0.9 0.15 0.014.

3. Results

Figure 3 shows experimentally-obtained Yurke state interference (figures 3(a)–(e)) and shot-noise limited
interference (figures 3(f)–(j)). Figures 3(a) and (f) show the effect on S1 for the Yurke state and uncorrelated
photons asf is varied. As expected from equation (1), the averages of the probability distributions follow the
sine-pattern. The output noise infigure 3(a) is clearly reduced at around f = 0 where the squeezing sensitivity is
maximum,whereas the noise infigure 3(f) is limited by shot noise. Figures 3(b), (c), (g) and (h) show the
probability distributions for specific bias phases where the averages values of S1 are nearlymaximum
(figures 3(b) and (g)) and are nearly zero (figures 3(c) and (h)) respectively. It can be seen fromfigure 3(b) that the
effect of two photon coherence appears as the photon-number oscillation for Yurke state [40] (the peaks are
observed at = - +S 3, 11 and+5), and results in the reduced quantumnoise at the phasewhere the average is
nearly zero (figure 3(c)). On the other hand, for the classical uncorrelated case, the probability distribution of a

Figure 2.Experimental set-up. Ultraviolet laser pulses, with a central wavelength of 404 nm from a frequency-doubledmode-locked
Ti:sapphire laser (wavelength: 808 nm, pulse width: 100 fs, repetition rate 80MHz), pump a 2 mm thick biaxial Type-I bismuth borate
(BiBO) crystal. A dichroicmirror transmits the down-converted light and reflects the pumpbeam. The signal and idler photons are
rotated to 3°with respect to the pump beam. The arrival timing between the signal and idler photons at PBS1 is adjusted by using a
translation stage. After PBS1, a 3 nmbandwidth band-pass filter is used to remove thefluorescent light. BS: non-polarising
beamsplitter with 10% transmission. BPF: bandpassfilter. PBS3measures in the diagonal polarisation basis.
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classical state does not show the oscillation (figure 3(g)), resulting in shot-noise at the output at the phase where
the average is nearly zero (figure 3(h)).

Formore detailed analysis, figures 3(d), (e), (i) and (j) show the averages and noises for S1 for the Yurke state
and uncorrelated photons, respectively. From the fitted curves, the phase derivative of the average output at
f = 0, f¶á ñ ¶ =f=∣ ˆ ∣∣S 2.371 0 and the noise at f = 0 isD =( )S 0 2.011

2 for the Yurke state. Thus, the phase

sensitivity by squeezing is df = 0.60sq . Similarly, f¶á ñ ¶ =f=∣ ˆ ∣∣S 4.871 0 andD =( )S 0 5.141
2 and

df = 0.47coh. for the classical uncorrelated case. Thuswe obtained the noise reduction, which is the ratio of the

D ( )S 01
2 of the Yurke state and the classical state, by a factor of 2.56. The phase sensitivity obtained using the

Yurke state here did not exceed the theoretical shot-noise limit of df = »1 5 0.45SNL even though the
output noise of the Yurke state is smaller than the shot noise x = 0.63S .

To extract themaximumphase sensitivity, we calculated the phase sensitivity by using Fisher information
obtained from equation (3) for the Yurke state. Figure 4 shows the bias phase dependence of Fisher information.
Themaximumof Fisher information is F= 7.89 at bias phase of f = 0.21which is slightly different from the
phasewhere the squeezing ismaximum. Thus the obtained state can actually achieve sensitivity that is a factor of
1.58 smaller than the shot-noise limit. Note thatmaximumFisher information is obtained at a slightly-different
bias phase fromwhere the squeezing ismaximum.We can conclude that the improvement in the phase
sensitivity is not only due to squeezing but also additional information reflected in the highermoments of the
distributions [41]. In particular, Fisher information can extract the full information for changes in the phase
parameter from the interference fringes at the output.

4. Conclusions

In conclusion, we have demonstrated, using our set-up, suppression of quantumnoise by a factor of 2.56with
the effects of the squeezing being clearly shown by themeasured interference fringes. Spin squeezing is often
characterised using parameters xS and xR, where values<1 correspond to supra-classical performance. Our
measurements show clear spin-squeezing using the parameter x = 0.63s , while ourmeasurements of xR, which
is traditionally used to quantify sub-shot noise phase-noise error in spin-squeezing experiments, is>1.None-
the-less, the extracted Fisher informationwas 1.58 times better than shot-noise-limit demonstrating that
quantum enhanced precision is possible evenwith x 1R . As an alternative to themultiplexed pseudo-number-
counting detectors we used, recently-developed high-efficiency number-resolving detectors [42, 43] could be
used to improve detection efficiency and therefore reducemeasurement time.Our experimental demonstration
is important not only for optical sub-shot-noisemeasurement but also other applications demonstrating sub-
shot-noise spin-squeezed states [44–46].

Figure 3.Experimental results for thefive-photon Yurke state (a)–(e) and thefive-photon classical state (f)–(j) compared: (a), (f) are
output photon-number distributions depending on phase shiftf, (b), (c) are output photon-number distributions for the Yurke state
with bias phases f = -1.46 and f = 0.00, (g), (h) are output photon-number distributions for the classical state with bias phases
f = -1.63 and f = 0.05 respectively. (d), (e) Show the dependence of the average, fá ñˆ ( )S1 and the noise, fD ( )S1

2 , on the bias phase
at the output for the Yurke state, respectively. (i), (j) Showdependence of the average, fá ñˆ ( )S1 and the noise, fD ( )S1

2 , on the bias
phase at the output for the classical state, respectively.
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Weemphasise that sincewe only focus on the post-selected five photon events for this experiment, there are
contributions to the output from lower photon-number states that are ignored, and the actual sensitivity is
much lower if all these contributions are considered. To obtain actual quantum-enhanced sensitivity using
Yurke states, wewould need a deterministic or heralded sourcewithfixed photon number.We note that the
sensitivity using a setup for generating heralded two-photonHolland–Burnett states was reported and analysed
in [47]. It is outstanding challenge to achieve heralded generation ofHolland–Burnett states with high photon
number, and furthermore this would need to be combinedwith single-photon subtraction to create Yurke
states.

Note also that we did notmake phase estimates using ourmodel, but showed the possibility of improving the
sensitivity by looking at the obtained probability distributions (aswas done in [12, 13] for example). If the
standardmaximum-likelihood procedure were to be used to obtain phase estimates using our setup, individual
estimates would each require tens ormore counts to be accumulated. A comprehensive analysis of the statistics
of these estimates, and therefore their sensitivity, would require thousands of such estimates to be obtained,
whichwas not practical in our experiment due to coincidence counts of roughly 300 counts/8 h for each bias
phase.We also remark that for the phase-estimation experiment reported in [15], it was shown thatmethods for
measuring sensitivity using Fisher information derived fromprobability distributions, andmaximum-
likelihood estimation from simulated data (sampled from the same probability distributions) achieve close
agreement.

5.Methods

5.1. Reconstruction of interference fringes for the Yurke state
Photon-number counts at ourmultiplexed detectors are analysed as follows. Single photons are detected at each
APDwith probabilities of sai

(i=1, 2, ... 7) inmode a and sbj
( j=1, 2, ... 7) inmode b, which account for

propagation loss and detector efficiency. In our analysis, we assume thatfive-fold coincidence detections arise
only due to the generation of three photon pairs at the source (and neglect higher-order contributions).We
define efficiency parameters for coincidence events at ourmultiplexed detectors as follows, wherewe assume
thatm clicks in path a and - m5 clicks in path b correspond tom actual photons in a and - m5 actual photons
in path b:

å

å

s s

s s

S =

´ -

+ + =

+ + = -
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( )! ( )
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m
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5 ... , 5
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x x m

a
x
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y y N m
b

y
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b b
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1
1

7
7

1 7

1

1
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7

where the variables { }xai
and { }ybj

take values 0 or 1. To experimentally characteriseSm, wemeasured all of sai

and sbj
(see table 1). Five-fold coincidence counts, f( )Dm i , were then rescaled to give corrected count rates,

Figure 4. Fisher information extracted from interference fringes: the Fisher information for the Yurke state calculated using
equation (3), fromprobability distributions which arefitted to the experimental data. The probability distributions are calculated
using amodel which incorporatesmodemismatch andnoise, and the fitting uses rescaled detector counts (seemethods section). The
purple line corresponds to the precision achievable at the shot-noise limit. The orange shading shows 200 iterations of aMonte-Carlo
simulation, forwhich the Fisher information is computedwith Poissonian noise added to raw detector counts.
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( )D

D
, 6m i
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m

To implement the datafitting, we use theoretically-derived probability distributions f( )Pm I, whichmodel
mode-mismatch, where I ismode overlap between horizontal and vertical polarisations (see below). Ourfittings
minimise

å f f´ - ¢
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( ( ) ( )) ( )M P D 7
m

m I m i
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,
2

using parametersf, I andM, whereM is a scaling parameter.

5.2.Derivation of probability distributions for the Yurke state including temporalmodemismatch
Toderive f( )Pm I, , we start from theoreticalmodel in [48]. The quantum state generated before the BS infigure 2
is given by
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( ˆ )

(( ) )!
∣ ( )

† ( ) † ( )a

N

b

N1 2 1 2
0 . 8

N N
H

1 2
V

1 2

ˆ †
bV can bewritten as a superposition of one indistinguishable and one distinguishable component:

= + -
^

ˆ ˆ ˆ ( )
† † †b I a I a1 , 9V V V

where I is the indistinguishability given by á ñ∣ ∣ ˆ ˆ ∣ ∣( ) ( )
†

a b0 0H V H V
2, and the symbol V̂ denotes the orthogonalmode

to H and V. In the following, we assume thatmodes ˆ ( )aH V and ^ ^
ˆ ( )aH V do not interact so that we can consider

reduced densitymatrix, r yñˆ∣ where offdiagonal terms can be neglected as follows,

år = + + - ñá + + -

Ä ñá

yñ
=

+

^

ˆ ∣( ) ( ) ( ) ( ) ∣

∣ ∣ ( )

∣

( )
C N N d N N d

d d

1 2, 1 2 1 2, 1 2

, 10
d

N

d
0

1 2

HV

V

whereCd is given by

t t=
+

-+ -⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ( )) ( )( )C
N

d
I I

1 2
1 . 11d

N d d1 2

Replacing the annihilation operators for indistinguishable and distinguishablemodes as

= +

= +^ ^ ^

ˆ ( ˆ ˆ )

ˆ ( ˆ ˆ ) ( )

a a a

a a a

1

2
,

1

2
, 12

D H V

D H V

where D denotes diagonal polarisation, the state after the one-photon subtraction is given by amixture of terms
as follows,

r r r=
+

+y yñ ñ^ ^
ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ) ( )∣

†
∣

†

N
a a a a

2

1
. 13I D D D D

Thefirst term expresses the + +( )N 1 2 1different distinguishability types and the second term expresses the
+( )N 1 2 different distinguishability types.

After the polarisation interferometer, the state is transformed as r f f r f=ˆ ( ) ˆ ( ) ˆ ˆ ( )†
U UI I where fˆ ( )U is

unitary transformation due to a half-wave plate, which is expressed as

Table 1. Single-photon detection probabilities at individual APDs.

sa1 sa2 sa3 sa4 sa5 sa6 sa7

1.40% 1.25% 1.43% 1.46% 1.53% 1.54% 1.48%

sb1 sb2 sb3 sb4 sb5 sb6 sb7

1.16% 1.45% 1.30% 1.12% 1.11% 1.36% 1.58%
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f f f f

f f f f

= +

=- +
^ ^ ^

^ ^ ^

ˆ ( ) ˆ ˆ ( ) ( ) ˆ ( ) ˆ
ˆ ( ) ˆ ˆ ( ) ( ) ˆ ( ) ˆ ( )

( )
†

( )
†

( )
†

( )
† †

( )
†

( )
†

U a U a a

U a U a a

cos 2 sin 2 ,

sin 2 cos 2 . 14

H H H H V V

V V H H V V

The probability thatN−m photons are detected in horizontally polarizedmode andm photons are detected in
vertically polarizedmode is then given by

å åf r f= á - - - - Ä á -

´ - - - - ñ Ä - ñ
= =

^ ^

^ ^

( ) ( )∣ ∣ ˆ ( )

∣ ( ) ∣ ( )

P N m s m d s s d s

N m s m d s s d s

, ,

, , , 15

m I
d

n

s

d

I,
0 0

HV H V

HV H V

which accounts for distinguishability with between 0 and n photons in the temporally-mismatchedmodes. As
shown infigure 5, the probability functions given by equation (15)fit in accordance to the experimentally
obtained data.

5.3. Calculation of Fisher information including phase insensitive noise
In spite of the accuracy of our theoreticalmodel, some features in the interference fringes shown infigure 5 are
not fully explained by the theory. Caremust be taken as estimates of F are sensitive to perturbations in the fringes
where there are extrema [15], as occurs for our experiment around f = 0. To ensure our estimates of F are
robust (and do not overestimate the true value), we add a phase-insensitive noise to the functions f( )Pm I, as
follows,

f f= - ´ +( ) ( ) ( ) ( )P s P
s

1
6

, 16m I s m I, , ,

wherem takes values from0 to 5.
Fisher information is then calculated using

åf f
f

f=
¶
¶=

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )F P Pln . 17

m
m I s m I s

0

5

, , , ,

2

swas determined byfitting and the average value of s over 200 simulationswas 0.085. F infigure 4 is computed
using thesemodified distributions, which have lower values compared to the unmodified distributions
around f = 0.

Note that the effect of imperfect indistinguishability derived in section 5.2 cannot explain the effect of this
phase insensitive noise, which is roughly 8%. The phase-insensitive noise could arise from several factors,
perhaps themost important being six-fold coincidence counts arising from components of the downconversion
state with eight ormore photons (andwhich have lost photons due to inefficiencies in the setup). However, the
six-fold coincidence count rate (10−2) in our current setup is too low to enable analysis of the effect of these
higher-order contributions. This analysis would be done by repeatingmeasurements over a range of pump
power (or other gain parameter for the downconversion source)whichwe leave for futurework.We also note

Figure 5. Interference fringes for thefive-photonYurke state and the classical state. (a)–(f) Show the phase dependence of the output
probability distributions for the Yurke state. Data collection took eight hours per point. (g)–(l) Show the phase dependence of the
output probability distributions for the classical state. Data collection took one hour per point.fwas changed in intervals of p 15.

8

New J. Phys. 19 (2017) 053005 TOno et al



that the probability distributions derived by considering the effect of imperfect indistinguishability given by
equation (15) can explainmost of the features of experimental data as shown infigure 5.
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