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Abstract. The main purpose of this work is to collect some interesting facts related to quantum graph coloring.
We consider the orthogonality graph of the three-dimensional vectors with entries from the set {−1, 0, 1}. If we
ignore the overall sign of the vectors, this yields a graph on thirteen vertices, which we denote by G13. It turns out
that G13 (or the graph obtained from this by adding an apex vertex) is the smallest known example which exhibits
separations between several graph parameters. We are particularly interested in using G13 to separate quantum
graph parameters from their classical counterparts. We give a proof that G13 is not quantum 3-colorable, which
shows that its orthogonal rank is strictly less than its quantum chromatic number. This also proves, along with
other previously known results, that adding an apex vertex to G13 does not change its quantum chromatic number.
The graph G13 is the first and only known graph with either of these properties. Lastly, we investigate a graph
construction used for taking instances of 3-SAT to instances of 3-COLORING. We show that any graph constructed
in this manner has an orthogonal representation in dimension three if and only if it is 3-colorable. Since it has been
previously shown that there are such graphs with quantum 3-colorings but no classical 3-colorings, it follows that
quantum chromatic number can be strictly less than orthogonal rank. Together with the above, this proves that
orthogonal rank and quantum chromatic number are not comparable as graph parameters.

Keywords: quantum chromatic number, entanglement, orthogonal rank, nonlocal games

1 Introduction

Graph coloring and chromatic number are standard and well-investigated topics since the early days
of graph theory. Given some number of colors, c, a c-coloring of a graph G is an assignment of colors
to vertices of G, where adjacent vertices receive different colors. The chromatic number, χ(G), is the
smallest number of colors for which G admits a c-coloring. The quantum generalization of graph color-
ing and chromatic number is comparatively new and was first considered in (Galliard and Wolf, 2002;
Cleve et al., 2004) and further investigated in (Avis et al., 2006; Cameron et al., 2007; Fukawa et al., 2011;
Scarpa and Severini, 2012; Mančinska et al., 2013; Mančinska and Roberson, 2016).

In this work we aim to collect some interesting examples of quantum colorings, as well as exhibit
some unexpected properties they possess. In many ways, quantum colorings and quantum chromatic
number behave very similarly to their classical counterparts. For example, the chromatic and quantum
chromatic numbers of complete graphs coincide, a graph is 2-colorable if and only if it is quantum 2-
colorable, and both classical and quantum c-colorability is preserved under taking subgraphs. However,
here we will show that quantum colorings and chromatic number can misbehave in a bizarre manner.
Specifically, it is easy to see that by adding a new vertex adjacent to all other vertices of a graph, causes
the chromatic number to increase by one. We will show in Section 4.3 that this is not always the case for
quantum chromatic number.

There are very few known methods for constructing non-trivial quantum colorings. In fact, except
for a few cases, all known constructions of quantum d-colorings begin the same way: with an assign-
ment of vectors from Cd to the vertices of the graph such that adjacent vertices receive orthogonal
vectors. Here we show the limits of this construction. In particular, we show that it is possible for a
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graph to have such an assignment of d-dimensional vectors but no quantum d-coloring and vice versa.
For the former, we will make use of an orthogonality graph, G13, constructed from 13 vectors in R3

with entries from the set {−1, 0, 1}. We build on an insight of Burgdorf and Piovesan (Burgdorf and
Piovesan, 2015), who used a computer system for algebraic computations (GAP) to observe that G13 is
not quantum 3-colorable. However, the problem-size was too demanding for the computer to provide a
certificate of impossibility, but we provide an explicit proof (see Theorem 1). For the latter example, we
make use of a construction for taking 3-SAT instances to 3-COLORING instances, which was already
used in the context of quantum colorings (Fukawa et al., 2011; Ji, 2013). We show that any graph con-
structed in this way has a 3-coloring if and only if it has an assignment of vectors in C3 meeting the
above orthogonality condition. Together, these two examples show that quantum chromatic number is
incomparable with orthogonal rank, ξ(G), (see Definition 2) which was not known prior to this work.

In general, there is no guaranteed method for finding non-trivial quantum colorings, and the corre-
sponding decision problem is not known to be decidable. The difficulty is that, unlike the classical case
in which one can simply search all possibilities, the search space for a quantum c-colorings is not only
infinite, but also not compact. Because of this there are few nontrivial examples, and relatively little is
known. This work provides new examples of quantum colorings which exhibit unexpected properties.
The graph G13 is particularly interesting as it is the first witness of several such properties.

This paper is organized as follows. In Section 1.1 we briefly explain the used notation. Next, in Sec-
tion 2 we formally introduce quantum colorings and chromatic number, χq(G). We explain the known
general constructions of quantum colorings in Section 3. Then we proceed to define graph G13 and dis-
cuss its classical and quantum parameters in Section 4. Most notably, we show that χq(G13) = 4 (see
Theorem 1) which then gives us a separation χq(G13) > ξ(G13). Finally, in Section 5, we use 3-SAT to
3-COLORING reduction to produce a graph H with ξ(H) > χq(H).

1.1 Notation

We use boldface letters, such as r, to differentiate vectors from other symbols such as vertices of a
graph. We use r†, rT, and r∗ to denote complex conjugate transpose, transpose, and entry-wise complex
conjugation of the vector r. We use Cn×n to denote the set of all n × n matrices with complex entires
and we write A � B to indicate that the operator A − B is positive semidefinite. Finally we use [k] to
denote the set {1, . . . , k}.

Graph terminology. For us a graph G = (V,E) consists of a finite set, V , of vertices and a set, E, of
unordered pairs of these vertices which we call edges. Thus we only consider finite simple graphs
without loops or multiple edges. We will often use V (G) and E(G) to denote the vertex and edges sets
of the graph G respectively. We say that two vertices u, v ∈ V (G) are adjacent if {u, v} ∈ E(G), and
we denote this by u ∼ v. We refer to the vertices adjacent to a given vertex v as the neighbors of v. A
clique in a graph G is set of pairwise adjacent vertices in G, and an independent set is a set of pairwise
non-adjacent vertices. The size of the largest clique (independent set) is known as the clique number
(independence number) of G and is denoted by ω(G) and α(G) respectively. The complement of the graph
G, denoted G, is the graph with vertex set V (G) such that two vertices are adjacent in G if and only if
the are not adjacent in G. An apex vertex of G is a vertex that is adjacent to all other vertices of G.

2 Quantum coloring and chromatic number

There are two equivalent perspectives that one can take to define quantum coloring. Initially quantum
coloring was introduced as a quantum strategy for a nonlocal game. In this two collaborating provers,
Alice and Bob, are looking to convince a verifier that a given graph admits a c-coloring. At the start of
the game the verifier selects two vertices u and v of graph G and sends one to Alice and the other to
Bob. Without communicating, each of the provers must respond with one of the c colors. Alice and Bob
win the game if they have responded with distinct colors in the case u and v were adjacent and the same
color in the case u was equal to v. The graph G and the number of colors, c is known to all the parties.
A winning strategy is one which allows the provers to win with certainty no matter which two vertices
the verifier selected. It turns out that neither private nor shared randomness is beneficial for Alice and
Bob. Therefore, classical strategies essentially correspond to a pair of functions α : V (G) → [c] and
β : V (G) → [c] which Alice and Bob use to map the received vertex to the color which they send back
to the verifier. It is not hard to see that in order to win with certainty Alice and Bob must choose α = β
which is also a valid c-coloring of G. Thus, the existence of a perfect classical strategy for this game is
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equivalent to the c-colorability ofG. Therefore, it follows that the chromatic number χ(G) is the smallest
c ∈ N for which there exists a perfect classical strategy for the corresponding coloring game. In analogy,
a quantum c-coloring of G is an entanglement-assisted strategy which allows the players to win this
game with certainty and the quantum chromatic number is defined as

χq(G) := min{c ∈ N : there exists a perfect quantum strategy for c-coloring the graph G}. (1)

It has been shown (Cameron et al., 2007) that perfect quantum strategies for this graph coloring game
can always be chosen to take a specific form. Specifically, the following three conditions hold

– it suffices for the provers to share a specific type of entangled state which is known as a maximally
entangled state,

– the provers only need to perform projective measurements consisting of same-rank measurement
operators, and

– Alice’s measurement operators are complex conjugate to those of Bob.

This simplification allows us to reformulate the existence of a quantum c-coloring in a purely com-
binatorial manner and discuss quantum coloring and chromatic number without defining quantum
strategies in their full generality.

Definition 1. A quantum c-coloring of a graph G is a collection of d-dimensional orthogonal projectors(
vi : v ∈ V (G), i ∈ [c]

)
where∑

i∈[c]
vi = Id for all vertices v ∈ V (G) and (completeness) (2)

viwi = 03 for all v ∼ w and all i ∈ [c]. (orthogonality) (3)

The quantum chromatic number χq(G) is the smallest c ∈ N for which the graph G admits a quantum
c-coloring in some dimension d > 0 (this is consistent with Equation (1)).

According to the above definition, any classical c-coloring can be viewed as a 1-dimensional quan-
tum coloring, where we set vi = 1 if vertex v has been assigned color i and we set vi = 0 other-
wise. Therefore, quantum coloring is a relaxation of the classical one and for any graph G we have
χ(G) ≥ χq(G). The surprising bit is that quantum chromatic number can be strictly and even exponen-
tially smaller than chromatic number for certain families of graphs. Since we are mostly interested in
quantum c-colorings for c < χ(G), we refer to quantum c-colorings with c ≥ χ(G) as trivial.

It is worth noting that all graphs which are quantum 2-colorable are also classically 2-colorable.
Indeed, if u and v are adjacent vertices of G, then any quantum 2-coloring satisfies u1v1 = u2v2 = 0,
u1 + u2 = I , and v1 + v2 = I . From this it follows that u1 = u1(v1 + v2) = u1v2 = (u1 + u2)v2 = v2.
Therefore, if G contains any odd cycle and u is a vertex in such a cycle, then u1 = u2. This contradicts
the fact that u1u2 = 0 and u1 + u2 = I . So we obtain that any graph G containing an odd cycle cannot
be quantum 2-colored. Thus quantum c-colorings only become interesting when c ≥ 3.

3 Constructions of quantum colorings

With a couple of exceptions (Fukawa et al., 2011; Ji, 2013), all known nontrivial quantum c-colorings
arise from real or complex orthogonal representations endowed with certain additional properties.

Definition 2. A (complex) orthogonal representation of a graph G is an assignment of complex unit vec-
tors of some fixed dimension d to vertices of the graph G where adjacent vertices receive orthogonal
vectors. The smallest dimension d in which G admits an orthogonal representation is known as the
(complex) orthogonal rank of G and denoted as ξ(G). We say that a d-dimensional orthogonal represen-
tation is flat if the entries of all the assigned vectors have the same modulus.

From now on we will omit the word “complex” when referring to complex orthogonal represen-
tations and orthogonal rank. It should be noted though that the value of orthogonal rank can change
depending on the field F associated to the ambient vector space. For instance, complex orthogonal rank
can differ from the real orthogonal rank for some graphs G.

We can view orthogonal representations as relaxations of colorings. If we identify the ith color with
the ith standard basis vector ei, then any c-coloring of G yields an orthogonal representation of G
where we have only used the standard basis vectors. Therefore, any c-colorable graph also admits a
c-dimensional orthogonal representation and we arrive at the following fact.
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Fact 1. For any graph G, we have ξ(G) ≤ χ(G).

For some graphs the above inequality can be strict, i.e., ξ(G) < χ(G) and in certain cases this implies
that also χq(G) < χ(G). There are two known constructions allowing to translate a d-dimensional or-
thogonal representation ϕ : V (G) → Cd into a quantum d-coloring of G. The first construction applies
if ϕ is flat, while the second construction applies if d = 4, 8 and the assigned vectors are real. Whenever
the appropriate conditions are met, these constructions can be used to translate separations of the form
χ(G) > ξ(G) into separations of the form χ(G) > χq(G). In fact, with the exception of the lesser known
work (Fukawa et al., 2011), all known separations between quantum and classical chromatic numbers
are obtained via one of these two constructions. It appears to be easier to construct nontrivial orthogo-
nal representations rather than nontrivial quantum colorings. This could be explained by the fact that
orthogonal representations are simpler objects than quantum colorings and thus we need to satisfy less
orthogonalities in order to produce an orthogonal representation. We now proceed to describe the two
constructions.

Construction with a flat orthogonal representation. Let ϕ : V (G) → Cd be a flat orthogonal representation
and let F be the d-dimensional Fourier matrix with entries Fkj = ωkj

d /
√
d, where ωd := exp(2πi/d). For

any vertex v of G we consider the matrix Uv :=
√
ddiag(ϕ(v))F . Since both F and

√
ddiag(ϕ(v)) are

unitary matrices, Uv must also be a unitary matrix. At this point our careful reader will notice that for a
general orthogonal representation ϕ the matrix

√
ddiag(ϕ(v)) is not necessarily unitary.

To obtain a quantum d-coloring, we set vi to be the projector onto the vector

rvi :=
√
ddiag(ϕ(v))Fei (4)

which is just the ith column of the unitary matrix Uv . We will make use of the fact that

rvi =
√
dϕ(v) ◦ fi (5)

where “◦” denotes the entry-wise product and fi := Fei. To verify that the projectors Pvi give a valid
quantum d-coloring, we need to check the completeness and orthogonality conditions, (2) and (3), from
Definition 1. The completeness condition

∑
i vi = I , follows directly from the fact that the columns rvi

of the unitary Uv form an orthonormal basis. To check the orthogonality condition, we need to show
that Tr(viwi) = 0 for all i ∈ [d] and all adjacent vertices v and w. Since Tr(viwi) =

∣∣r†virwi

∣∣2, it suffices
to check that the vectors rvi and rwi are orthogonal:

r†virwi = d
(
ϕ(v) ◦ fi

)†(
ϕ(w) ◦ fi

)
(6)

= d1†
(
ϕ(v)∗ ◦ f∗i ◦ ϕ(w) ◦ fi

)
(7)

= d1†
(
ϕ(v)∗ ◦ ϕ(w)

)
(8)

= dϕ(v)†ϕ(w) = 0, (9)

where 1 is the all ones vector, (·)∗ denotes entry-wise comple conjugation and we have used the facts
that s†t = 1†

(
s∗ ◦ t

)
, f∗i ◦ fi = 1 and that ϕ assigns orthogonal vectors to adjacent vertices.

It is hard to trace the origins of this somewhat folklore construction. It is described in full generality
in (Cameron et al., 2007) but similar a construction had already been used in (Buhrman et al., 1998;
Brassard et al., 1999).

Construction with real orthogonal representations in dimension less than eight. In (Cameron et al., 2007),
a beautiful construction was given for converting a real orthogonal representation in dimension four
into a quantum 4-coloring, and similarly for dimension eight. The constructions use quaternions and
octonions respectively. We briefly describe the construction for dimension four, but dimension eight is
similar.

Suppose r = (r0, r1, r2, r3)T ∈ R4 is a unit vector. We aim to use this vector to construct a full
orthonormal basis of R4. To do this, we associate to any vector r ∈ R4, the quaternion

q(r) = r0g0 + r1g1 + r2g2 + r3g3,

where g0 = 1, g1, g2, g3 are the fundamental quaternion units. The usual notation is 1, i, j, k, but our
notation makes it easier to refer to an arbitrary unit. Recall that g2i = −1 for i = 1, 2, 3, and that for all
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distinct i, j ∈ {1, 2, 3} we have gigj = ±gk for some k ∈ {1, 2, 3} \ {i, j}. Note that the analogs of these
rules also hold for the octonions.

Now for all i ∈ {0, 1, 2, 3}, let ri ∈ R4 be the vector such that q(ri) = giq(r). For instance, r0 = r. We
aim to show that {r0, r1, r2, r3} is an orthonormal basis. Since multiplying by gi does not change the
magnitude of any coefficient, it is easy to see that ri is a unit vector for all i. Also, left-multiplying q(r) by
gi swaps the coefficients of g0 and gi and makes one negative, thus these two coordinates contribute zero
to the inner product of r and ri. The same is true for the remaining two coordinates since gigj = ±gk and
hence gj = ∓gigk. Thus r and ri are orthogonal, and by similar reasoning all four vectors are pairwise
orthogonal and thus form an orthonormal basis. Essentially the same argument works for dimension
eight using octonions, except there are four pairs of coordinates that are swapped. In the end, the four
vectors obtained from r = (r0, r1, r2, r3)T are the columns of the following matrix:


r0 −r1 −r2 −r3
r1 r0 r3 −r2
r2 −r3 r0 r1
r3 r2 −r1 r0


Now suppose we have a graph G which has a real orthogonal representation ϕ in dimension four.

For any vertex v ∈ V (G), we can construct the orthonormal basis {ϕ(v)0, ϕ(v)1, ϕ(v)2, ϕ(v)3} as above.
To obtain a quantum 4-coloring, we let let vi be the projection onto vector ϕ(v)i. The completeness
condition from Definition 1 is satisfied since the vectors ϕ(v)i form an orthonormal basis. It remains to
show that ui and vi are orthogonal whenever u ∼ v. This corresponds to the vectors ϕ(u)i and ϕ(v)i

being orthogonal, which holds since these were obtained by permuting and changing some of the signs
of the coordinates of ϕ(u) and ϕ(v) respectively.

The same construction works for an eight dimensional real orthogonal representation and so we
have the following:

Lemma 1. (Cameron et al., 2007) If a graph G has a real orthogonal representation in dimension four, then
χq(G) ≤ 4. Similarly, if G has a real orthogonal representation in dimension eight, then χq(G) ≤ 8.

Using the above, one can sometimes use separations between orthogonal rank and chromatic num-
ber to construct separations between quantum chromatic number and chromatic number. To see how,
suppose G is a graph with a real orthogonal representation in dimension d, such that d < χ(G) and
d ≤ 8. By successively adding apex vertices to G, we can obtain a graph with a real orthogonal repre-
sentation in dimension 8 but with chromatic number strictly greater than 8. We can then use the above
construction to obtain a quantum 8-coloring of this graph. The same technique works if the orthogonal
representation was in dimension at most four. Therefore, we have the following:

Fact 2. Suppose G is a graph with a real orthogonal representation in dimension d ≤ 4 and χ(G) > d. Then by
successively adding apex vertices to G, we can obtain a graph G′ such that χq(G′) ≤ 4 < χ(G′). The analogous
statement holds for d ≤ 8.

At this point, it is natural to wonder whether a d-dimensional orthogonal representation can always
be extended to a quantum d-coloring. More generally, one could ask how do the quantum chromatic
number and orthogonal rank compare. In the next two sections we will show that the two parameters
are in fact not comparable.

4 The curious case of the thirteen vertex graph

In this section we define a graph on thirteen vertices, denotedG13, which will let us exhibit the promised
oddities of quantum colorings. After defining G13, we discuss classical graph parameters of G13 in Sec-
tion 4.1. Next we proceed to prove that χq(G13) = 4 in Section 4.2 and end by discussing the unexpected
behaviors exhibited by this graph in Section 4.3.
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To defineG13, we consider the nonzero three-dimensional vectors with entries from the set {−1, 0, 1}.
We identify the vectors v and −v, choosing the following set of thirteen representatives:

V :=

{(
1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)}
(10)

∪
{(

1
1
0

)
,
(

1
−1
0

)
,
(

1
0
1

)
,
(

1
0
−1

)
,
(

0
1
1

)
,
(

0
1
−1

)}
(11)

∪
{(

1
1
1

)
,
(

1
1
−1

)
,
(

1
−1
1

)
,
(−1

1
1

)}
. (12)

Geometrically these vectors can be seen as arising from a three-dimensional cube which is centered at
the origin and whose edges have length two. From this viewpoint, the first three vectors correspond to
the midpoints of the faces, the next six vectors to midpoints of the edges, and the last four correspond
to the vertices of this cube. Using V as the vertex set, we construct G13 by making any two orthogonal
vertices adjacent. That is, we let E(G13) := {{u, v} ⊂

(
V
2

)
: uTv = 0}. See Figure 1 for a drawing of G13,

and note that the ten middle vertices form a Petersen graph. In Figure 1, we have labeled the vertices by
(capital) letters of the alphabet. We will interchangeably refer to the vertices of G13 using vectors from
the set V defined in Equation (12) and these letters; the correspondence between these two labellings is
explained in the caption of Figure 1.

M L

Y

R

Q

X
P

N

Z

A

CB

10W

Fig. 1: The thirteen vertex graph G13. The vertices A,B,C correspond to the first three standard basis vectors
e1, e2, e3 in that order. The vertices X,Y, Z, and W correspond to vectors from V with no zero entries; the vertex
W corresponds to the all ones vector. The remaining six vertices, labelled by letters from the middle of the alphabet,
correspond to vectors from V with exactly one nonzero entry.

Another graph that will be useful for us can be obtained by adding an extra vertex toG13 and making
it adjacent to all the initial thirteen vertices. We refer to this graph as G14. We label the vertices of G14

that are contained inG13 as they are labelled above, and we refer to the apex vertex as Ω. Building on the
three-dimensional orthogonal representation of G13 given by the vectors in V , we can easily construct a
four-dimensional orthogonal representation for G14. Specifically, to vectors in V we add an additional
coordinate which is zero, and then assign (0, 0, 0, 1)T to vertex Ω.

4.1 Some classical graph parameters of G13

We now give a list of some classic graph parameters for the graphG13 and its complementG13. We then
proceed with arguments that can be used to obtain the given values. For determining the parameters
for G13 it will often be useful to consider the corresponding parameter for the Petersen graph, P , which
can be found in any introductory graph theory textbook.
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Graph parameter G13 The Petersen graph P
Independence number, α 5 4
Chromatic number, χ 4 3
Clique number, ω 3 2
Chromatic number of the complement, χ 6 5
Lovász theta number, ϑ 5 4
Lovász theta number of the complement, ϑ 3 5/2

Independence number and Lovász theta number. First, observe that α(P ) = 4. Since the additional vertices
in G13 form a triangle, we have that α(G13) ≤ 5. Finally, since {A,W,X, Y, Z} is an independent set we
obtain that α(G13) = 5. In fact there are only three different independent sets of size five and they take
the form {W,X, Y, Z, v}, where v ∈ {A,B,C}.

Since α(G) ≤ ϑ(G) for any graph, the above implies that ϑ(G13) ≥ 5. Next, it is known that ϑ(P ) = 4
and ϑ(K3) = 1, so we can upper-bound ϑ using a similar argument as in the case of α. Indeed, we get
that ϑ(G13) ≤ 5, by using the following two well-known properties of ϑ. Firstly, ϑ of the disjoint union
of graphs is equal to the sum of ϑ of the components and secondly, ϑ cannot increase by adding edges.

Chromatic number. We start by noting that the four independent sets {A,W,X, Y, Z}, {B,L,R}, {C,M,N},
and {P,Q} partition the vertices of G13. Therefore, G13 is 4-colorable. So to establish that χ(G13) = 4,
it remains to argue that it cannot be 3-colored. For contradiction, assume that a valid 3-coloring exists.
Without loss of generality assume that we color the vertices A,B, and C with colors 1,2, and 3 respec-
tively. Let u ∈ {L,M} be the vertex colored with color 3, let v ∈ {N,P} be the vertex colored with color
1, and letw ∈ {Q,R} be the vertex colored with color 2. Now note that all three vertices u ∈ {L,M}\{u},
v ∈ {N,P} \ {v}, and w ∈ {Q,R} \ {w} also have received different colors. To complete the argument it
remains to note that either all three vertices u, v and w or all three vertices u, v, and w) are adjacent to a
vertex z ∈ {W,X, Y, Z}. Therefore, it is not possible to color v with any of the three colors and we have
reached a contradiction.

Clique number and the Lovász theta of the complement. By inspection, we see that the clique number
ω(G13) = 3. This implies that ϑ(G13) ≥ 3. On the other hand it is known that ϑ(G) ≤ ξ(G) for any
graph G, and so ϑ(G13) = 3 as, by construction, G has a three-dimensional orthogonal representation.

Chromatic number of the complement. The Petersen graph has no triangles and therefore its complement
has independence number 2. This implies that the chromatic number of the complement of the Petersen
graph is at least 10/2 = 5 and that the color classes in any 5-coloring form a perfect matching in the
Petersen graph. Since the Petersen graph has a perfect matching, its complement can indeed by 5-
colored. On the other hand, to 5-color the complement of G13, we must 5-color the complement of the
Petersen graph so that the neighborhoods of each of A,B, and C in G13 do not contain vertices of all
different colors. However, the only way for this to happen is if each of {L,M}, {N,P}, and {Q,R}
are a color class of the 5-coloring. In other words, there must be a perfect matching of the Petersen
graph containing those three edges. However, this is impossible since the remaining vertices form an
independent set. Therefore χ(G13) ≥ 6. We can 6-color G13 by first 5-coloring the complement of the
Petersen graph and then using an additional color for vertices A,B, and C. Therefore χ(G13) = 6.

Automorphism group. It is easy to see that consistently permuting the coordinates of vectors from V
yields automorphisms ofG13, and there are 6 possible permutations. When we permute coordinates, we
will sometimes need to multiply a vector by −1 to recover one of our original thirteen representatives.
For instance, if we switch the first and second coordinates, the vector (1,−1, 0)T becomes (−1, 1, 0)T

which is not among the vectors in V . We can also multiply any of the coordinates of all the vectors
by ±1 to obtain an automorphism. Again, some vectors will have to additionally be multiplied by −1
so that we are always using the vectors from the set V . Since multiplying all three coordinates by ±1
gives the identity automorphism, this gives us a total of 6 × (2 × 2 × 2)/2 = 24 automorphisms. It
turns out that this is the total size of the automorphism group Aut(G13). To see that there are no more
automorphisms, first note that vertices A,B, and C are the only ones contained in two triangles, and
thus any automorphism fixes these three vertices set-wise. Also, using the automorphisms described
above we can permute these three vertices in any way we like (by permuting coordinates).

Now suppose that σ is an automorphism of G13. We will show that σ must be one of the auto-
morphisms we already know. By the above there exists an automorphism π which corresponds to per-
muting the vector coordinates such that π ◦ σ pointwise fixes A,B, and C. It follows that {N,P} =
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{(1, 0, 1)T, (1, 0,−1)T} and {Q,R} = {(1, 1, 0)T, (1,−1, 0)T} are both set-wise fixed by π ◦σ. By multiply-
ing the second and the third coordinates by ±1 independently, we can permute N and P arbitrarily as
well as Q and R. Moreover, these automorphisms fix each of A,B, and C. Thus, from our known set of
automorphisms, we can select an automorphism γ such that γ ◦ π ◦ σ fixes each of A,B,C,N, P,Q, and
R. It is easy to see that each of W,X, Y and Z are adjacent to exactly two vertices among {N,P,Q,R},
and that this pair of vertices is different for each of W,X, Y and Z. Therefore, W,X, Y and Z must be
fixed by γ ◦ π ◦ σ. From here it easily follows that the remaining two vertices, L and M , are fixed as
well. Thus γ ◦ π ◦ σ is the identity automorphism and so we have that σ = (γ ◦ π)−1 which is one of the
automorphisms we already knew about.

There is another fact about the automorphisms of G13 that we will need for the proof of Theorem 1.
Note that by permuting the coordinates, we can fix the vertex W and permute the vertices X,Y, Z in
any way. Since we can also map any of X,Y, and Z to W by multiplying the appropriate coordinate by
−1, we have the following fact:

Fact 3. Any ordered pair of distinct vertices of {W,X, Y, Z} can be mapped to any other such pair by an auto-
morphism of G13.

4.2 The graph G13 is not quantum 3-colorable

The fact that G13 is not quantum 3-colorable was first observed by Burgdorf and Piovesan (Burgdorf
and Piovesan, 2015) using the GAP system for algebraic computations. In particular, they used the GAP
package GBNP made for computing Groebner bases of ideals of non-commutative polynomials. To
apply this to quantum coloring, we encode the conditions from Definition 1 in a set of polynomials P .
For example, the completeness condition in Equation (2) can be encoded as the polynomial

∑
i vi−1. In

addition, since the operators vi in Definition 1 need to be projectors, we can also add the polynomials
of the form v2i − vi to our set P . Next, we consider the ideal I generated by P , where we treat the vi
as non-commutative variables. If I contains the identity element (constant polynomial 1), then we can
express the identity as a sum of polynomials qk = lk · pk · rk, where pk ∈ P . Since a quantum coloring
is an assignment of orthogonal projections to the variables vi which makes all polynomials p ∈ P to
evaluate to zero, I containing identity implies that I = 0, which is a contradiction. So if the ideal I
contains the identity element, then the graph cannot be quantum colored with the specified number of
colors. Given a set of polynomials P , we can use the GBNP package to find a Groebner basis of the ideal
I generated by P . If the identity element belongs to I, then this basis would only contain identity.

In principle the GBNP package can also provide an expression for each of the returned Groebner
basis elements in terms of the original polynomials from P . Thus, if the identity element is in the ideal,
the package will return an expression for the identity element in terms of the original polynomials,
which in principle constitutes an explicit proof. However, in practice this can only be done for small
examples. For instance, we were not able to do this even for quantum 3-coloring of a 5-cycle. Even if we
used more computing power, it is likely that the expression would be too long for any practical use. For
example, even though we can easily establish the impossibility of quantum 3-coloring K4, the GBNP
package returns an expression with over 7000 monomials.

It is also worth noting that the identity element never seems to be in the ideal when considering
quantum c-coloring for c ≥ 4, even for large complete graphs. This does not mean that every graph is
quantum 4-colorable, since the fact that the identity element is not in the ideal only implies that there
exists a solution for the vi in some primitive algebra, whereas we require a solution in Cd×d for some
d ∈ N.

Our main contribution in this section is an explicit proof that G13 is not quantum 3-colorable. In
order to do this we will need some lemmas, the first of which was proven by Ji (Ji, 2013), and says that
the operators assigned to adjacent vertices in a quantum 3-coloring always commute.

Lemma 2. Suppose G is a graph with adjacent vertices u and v. Then in any quantum 3-coloring of G, we have
that uivj = vjui for all i, j ∈ [3].

We also need the following which is proved for c = 3 in (Ji, 2013).

Lemma 3. Let G be a graph and suppose S is a clique of size c in G. Then in any quantum c-coloring of G,∑
v∈S

vi = I for all i ∈ [c].
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Proof. Note that uivi = 0 for all distinct u, v ∈ S by the conditions of quantum coloring. This implies
that

∑
v∈S vi � I , but since

∑
i∈[c] vi = I for all v ∈ S we have that

cI =
∑
v∈S

∑
i∈[c]

vi =
∑
i∈[c]

∑
v∈S

vi � cI,

since |S| = c. Since we must have equality throughout, we see that
∑

v∈S vi = I for all i ∈ [c].

The next lemma shows that if two vertices share a common neighbor, then certain products of the
operators associated to those vertices in a quantum 3-coloring are zero.

Lemma 4. Let G be a graph with vertices u and v that share a neighbor. For any quantum 3-coloring of G, if
{i, j, k} = {1, 2, 3} then

uivjuk = 0.

Proof. Letw ∈ V (G) be the common neighbor shared by u and v. By Lemma 2, we have that the operator
wi commutes with both the operators uj and vj for all i, j ∈ [3]. Of course we also have that uiwi = 0 =

viwi for all i ∈ [3]. Using these and the fact that
∑3

i=1 wi = I , it is easy to see that if {i, j, k} = {1, 2, 3},
then

uivjuk = uivjuk(wi + wj + wk)

= uivjukwi + uivjukwj + uivjukwk

= [uiwi]vjuk + ui[vjwj ]uk + uivj [ukwk]

= 0

The reader may have noticed that in the second to last line of the equation in the above proof,
we put square brackets around the expressions uiwi, vjwj , and ukwk. This was to point out that these
expressions are easily seen to be equal to zero. For the rest of this section, we will put square brackets
around expressions that we know are equal to zero, either by elementary arguments or through the use
of the lemmas presented here.

The following lemma requires a little more work, and it is specifically about the graph G13.

Lemma 5. In any quantum 3-coloring of G13, we have the following:

XiAjWi = XiCjWi = 0 for i 6= j, and
XiWi = XiAiWi = XiCiWi for all i ∈ [3].

Proof. We prove that XiAjWi = 0 first. Since the vertices A,L, and M form a triangle in G13, we have
that Ai + Li + Mi = I by Lemma 3. Also, note that all these operators commute with Aj by Lemma 2
and that XiLi = 0 = MiWi, since X ∼ L and M ∼W . Therefore, if i 6= j then

XiAjWi = XiAj(Ai + Li +Mi)Wi

= Xi[AjAi]Wi +XiAjLiWi +XiAj [MiWi]

= 0 + [XiLi]AjWi + 0

= 0.

The same argument, but using Ci +Qi +Ri = I , shows that XiCjWi = 0 if i 6= j.
Using the facts that XiAjWi = 0 for i 6= j and A1 +A2 +A3 = I , we have that

XiWi = Xi(A1 +A2 +A3)Wi = XiAiWi,

and XiWi = XiCiWi follows similarly.

In order to prove that G13 is not quantum 3-colorable, we will make frequent use of the above lem-
mas and so we will not always explicitly point out when we use them. However, after a few applications
one easily becomes accustomed to their use.

Theorem 1. The graph G13 is not quantum 3-colorable.
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Proof. Our initial goal is to show that in any quantum 3-coloring of G13, the operators X1 and W1 are
orthogonal, i.e., that X1W1 = 0. The first thing to note is that any pair of nonadjacent vertices in G13

share a common neighbor. Therefore, we can apply Lemma 4 to any such pair of vertices.
We have that I = B1 +B2 +B3, and therefore

X1W1 = B1X1W1 +B2X1W1 +B3X1W1.

We will show that each term in the above sum is zero individually.
Since A,B, and C form a triangle in G13, by Lemma 3 we have that A3 +B3 + C3 = I . Therefore,

B2X1W1 = B2X1(A3 +B3 + C3)W1 = B2[X1A3W1] + [B2X1B3]W1 +B2[X1C3W1].

By ignoring the B2 factor on the first and last summands above, applying Lemma 5 shows that these
terms are zero. The second summand is zero since B2X1B3 = 0 by Lemma 4 and the fact that B and X
share P as a neighbor. ThusB2X1W1 = 0. Note that the same argument shows thatX1W1B2 = 0, except
that you will use the fact that B3W1B2 = 0 in the last step. Similarly, one can show that B3X1W1 = 0 =
X1W1B3, by placing a factor of A2 +B2 + C2 = I between X1 and W1.

It is left to show thatB1X1W1 = 0. SinceX1W1 = X1W1(B1+B2+B3) andX1W1B2 = X1W1B3 = 0
by the above, it suffices to show that B1X1W1B1 = 0. This we proceed to do. By Lemma 5, we have that
X1W1 = X1C1W1. We can therefore rewrite X1W1 as

X1W1 = X1C1W1

= (I −X2 −X3)C1(I −W2 −W3)

= C1 −X2C1 −X3C1 − C1W2 − C1W3 +X2C1W3 +X3C1W2 + [X2C1W2] + [X3C1W3].

By Lemma 5 we have that the last two summands above are equal to zero. Moreover, since B1C1 =
C1B1 = 0, by sandwiching the above by B1 we remove all the monomials with a C1 on the far left or
far right. Therefore,

B1X1W1B1 = B1X2C1W3B1 +B1X3C1W2B1.

Using Lemma 3 and the fact that AiBi = 0, we can rewrite C1 as

C1 = I −A1 −B1 = (I −A1)(I −B1) = (A2 +A3)(B2 +B3) = A2B3 +A3B2.

Therefore, using the fact that Ai and Bj commute for all i, j ∈ [3] by Lemma 2, we have

B1X1W1B1 =B1X2(A2B3 +A3B2)W3B1 +B1X3(A2B3 +A3B2)W2B1

=[B1X2B3]A2W3B1 +B1X2A3[B2W3B1]

+B1X3A2[B3W2B1] + [B1X3B2]A3W2B1.

Since B,X, and W all share P as a neighbor, by Lemma 4 we have that all the terms in square brackets
above are zero, and therefore B1X1W1B1 = 0. Together with the above, this gives X1W1 = 0 as desired.

Of course, by symmetry of the colors, we actually have that XiWi = 0 for all i ∈ [3]. Moreover, by
symmetry of the graph G13 and Fact 3, we have that the same holds for any pair of the vertices W,X, Y,
andZ. Therefore, the operatorsWi, Xi, Yi, andZi are mutually orthogonal and thusWi+Xi+Yi+Zi � I
for all i ∈ [3]. Using this we have that

4I =
∑

v∈{W,X,Y,Z}

3∑
i=1

vi =

3∑
i=1

∑
v∈{W,X,Y,Z}

vi � 3I,

a clear contradiction. Therefore, no quantum 3-coloring of G13 exists.

We can now determine the value of χq(G13).

Corollary 1. The quantum chromatic number of G13 is four.

Proof. The above theorem establishes that χq(G13) ≥ 4, but we already know that χq(G13) ≤ χ(G13) =
4, and so the corollary follows.

4.3 Oddities

Here we point out some interesting properties of the graph G13 related to quantum colorings.
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Apex vertex. Quantum chromatic number χq often behaves similar to the chromatic number χ. For
instance, χ(Kn) = χq(Kn) = n for all complete graphs Kn. To our surprise, it turns out that quantum
and classical chromatic numbers can behave differently when it comes to apex vertices.

Recall that a vertex v ∈ V (G) is said to be an apex vertex if it is adjacent to all the other vertices w of
the graph G. It is clear that in any valid coloring of G the color assigned to any apex vertex is different
from all the colors assigned to the remaining vertices. Therefore, the addition of an apex vertex increases
the chromatic number by one. It turns out that this is not the case for the quantum chromatic number.

Lemma 6. There exists a graph for which the addition of an apex vertex leaves the quantum chromatic number
unchanged.

Proof. We use G13 and G14 to establish the lemma. Since we already know that χq(G13) = 4 it remains
to show that χq(G14) = 4. To this end, note that G14 has a four-dimensional orthogonal representation,
and so by Lemma 1 we have χq(G14) ≤ 4. SinceG14 containsG13 as a subgraph, we have that χq(G14) ≥
χq(G13) = 4 and so we must have equality.

Smallest known example with χ > χq . Prior to this work, there were very few small graphs with quantum
chromatic number known to be strictly less than chromatic number. To the best of our knowledge, the
smallest such example was a graph on 18 vertices from (Cameron et al., 2007). With G14, we improve
this to 14 vertices, and suspect that this is the smallest possible.

Only known example with ξ(G) < χq(G). Theorem 1 tells us that the orthogonal rank ofG13 is strictly less
than its quantum chromatic number. To someone who has seen several examples of quantum colorings
this may seem odd since almost all known quantum c-colorings are constructed from c-dimensional
orthogonal representations. Thus, one might think that a quantum c-coloring can always be constructed
from a c-dimensional orthogonal representation, but we see here that this is not the case.

Part of the reason that no separation between ξ and χq was previously known is that there are no
known graph parameters that lower bound quantum chromatic number but do not also lower bound
orthogonal rank, or vice versa. This is related to our next interesting property of G13.

Only known lower bound of χq that is not equal to dϑ+e. There is a variant of Lovász’ theta function known
as ϑ+ due to Szegedy (Szegedy, 1994). This parameter satisfies many of the same nice properties as ϑ.
In particular, it is known that dϑ+(G)e ≤ ξ(G) and that dϑ+(G)e ≤ χq(G) (Briët et al., 2015). Moreover,
these lower bounds are strictly better than those given by ϑ, since it is known that ϑ(G) ≤ ϑ+(G) for
all graphs G, and sometimes this inequality can be strict. In fact, before this work, there was no graph
for which a lower bound on χq was known where this bound was greater than dϑ+e. However, since
ω(G13) = ξ(G13) = 3, we have that ϑ

+
(G13) = 3 and thus G13 is the only graph known to have χq

strictly greater than dϑ+e.

5 Orthogonal rank and quantum chromatic number are incomparable

In the previous section we saw that χq(G13) = 4 and therefore it is possible for orthogonal rank to be
strictly smaller than the quantum chromatic number of a graph. In this section our goal is to show that
strict inequality can hold in the other direction: orthogonal rank can be strictly smaller than quantum
chromatic number. This will mean that the parameters ξ and χq do not satisfy either inequality for all
graphs, i.e., they are incomparable.

Both (Fukawa et al., 2011; Ji, 2013) have investigated quantum 3-colorings of graphs arising from
(classical) 3-SAT to 3-COLORING reductions. Here, 3-SAT is the decision problem whose instances are
boolean formulas in disjunctive normal form

∨
i Ci, where each of the clauses Ci contains at most three

literals (i.e., variables xj or their negations xj). The YES-instances are the satisfiable formulas, while
NO-instances are the unsatisfiable ones. For example, the formula (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) is a YES-
instance, since it evaluates to true if we set x1 = x2 = x3 = true. The instances of 3-COLORING
are graphs and the YES-instances are the graphs which admit a 3-coloring while the NO-instances do
not. For example, the graph G13 is a NO-instance. The basic idea of reductions is to efficiently transform
instances of one decision problem to another, so that we can decide the former problem by running an
algorithm for solving the latter one. In case of 3-SAT to 3-COLORING reduction, we want to translate a
3-SAT formula f into a graphGf , so that f is satisfiable if and only ifGf is 3-colorable. We now describe
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one of the standard reductions between the two decision problems which is also used in (Fukawa et al.,
2011; Ji, 2013). The graphs arising from this reduction will have a particular structure and not every
graph can be obtained in this way.

Given a 3-SAT formula f with boolean variables x1, . . . , xn and clauses C1, . . . , Cm, we make a
graph on 2n+ 3m+ 3 vertices. There are three special vertices labeled, T (for true), F (for false), and
B (see Figure 2). Each of the variables xj is represented by two vertices, labeled xj and xj . Intuitively,
the former vertex corresponds to setting xj = true in the formula f , while the latter corresponds to
setting xj = false. Finally, each of the clauses Ci is represented by six vertices three of which are
connected to the literals appearing in the clause Ci. A gadget encoding clause x1 ∨ x2 ∨ x3 is shown in
Figure 2 with the six clause-specific vertices enclosed by a dotted box.

B

e3

x1 x1 x2 x2 x3 x3

a (0, s)T

d
(0, s⊥)T

b (0, s⊥)T

e
(?, s)T

c (0, ?, ?)T

f
(?, 0, ?)T

Te1 F e2

Fig. 2: Gadget for 3-SAT to 3-COLORING reduction corresponding to clause x1 ∨ x2 ∨ x3. Each of the variables xi

appearing in a 3-SAT formula is represented by two vertices: one corresponding to xi being true and the other
corresponding xi (negation of xi) being true. Each of the clauses is represented by six vertices which are enclosed
by a dotted box in the above example. Since variable x1 appears without negation in the clause x1 ∨ x2 ∨ x3, we
connect vertex a to x1; additionally, we connect vertices b and c to x2 and x3 respectively.

In (Fukawa et al., 2011) the authors consider quantum strategies for a nonlocal game Gf where two
provers are aiming to convince the verifier that a given 3-SAT formula f is satisfiable. They show that
perfect quantum strategies for Gf can be translated into quantum 3-colorings of the graph Gf obtained
from the 3-SAT to 3-COLORING reduction we described above. Starting with an unsatisfiable 3-SAT
formula f whose corresponding game nevertheless admits a perfect quantum strategy, they arrive at
the following result:

Theorem 2 (Fukawa et al. (Fukawa et al., 2011)). There exists a graphG arising from the 3-SAT to 3-COLORING
reduction for which χq(G) = 3 but χ(G) > 3.

Using the structure of graphs G arising from the 3-SAT to 3-COLORING reduction, we argue that
any orthogonal representation of such a graph G can be converted into a 3-coloring.

Lemma 7. If G is a graph arising from the 3-SAT to 3-COLORING reduction then ξ(G) = 3 implies that
χ(G) = 3.

Proof. Let G be a graph arising from a 3-SAT to 3-COLORING reduction with ξ(G) = 3. Suppose that
vectors rv ∈ C3 for v ∈ V (G) give an orthogonal representation of G. Step-by-step we will modify this
orthogonal representation so that in the end each of the assigned vectors is one of the three standard ba-
sis vectors e1, e2, e3 ∈ C3. Obtaining such orthogonal representation completes the proof as identifying
ei with color i gives a 3-coloring of G.
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Recall that the graph G has three types of vertices: two vertices representing each of the variables xk
(labeled as k and k), six vertices representing each of the constrains Cj (labeled as (a, j)(b, j) . . . , (f, j)),
and three distinguished vertices T , F , and B. Since the vectors rT , rF , and rB are mutually orthogo-
nal, there exists a unitary U which maps these three vectors to e1, e2, and e3, respectively. Since the
application of a fixed unitary preserves all the orthogonalities, as our first modification, we apply U
to all the assigned vectors rv . Now, for any constraint Cj , the vertex (a, j) is adjacent to T and hence
ra,j = (0, sj)T for some unit vector sj ∈ C2 (see Figure 2). This further implies that, up to scalar multi-
ples, rd,j = (0, s⊥j )T, re,j = (?, sj)T, and rb,j = (0, s⊥j )T, where ? denotes an unknown complex number
and s⊥j ∈ C2 is the (up to a phase) unique complex unit vector which is orthogonal to sj . Further con-
sideration shows that rc,j = (0, ?, ?), rf,j = (?, 0, ?) and the vectors rk and rk assigned to vertices
representing any of the variables xk must take the form (?, ?, 0).

Suppose that some vertex k has been assigned a vector rk = (a, b, 0)T, where both of a, b ∈ C are
nonzero (if only one of a and b are nonzero, then rk is already proportional to either e1 or e2). To ensure
orthogonality, the vector vk must equal (−b∗, a∗, 0)T up to an (irrelevant) overall phase factor. Recall
that the vertices (a, j), (b, j), (c, j) are assigned vectors of the form (0, ?, ?). So if any of these vertices are
adjacent to k or k, then the vectors assigned to them must be further restricted to take the form (0, 0, ?).
Therefore, setting vk = e1 and vk = e2 yields a valid orthogonal representation. At this point all but
the constraint-specific vertices of G are assigned one of the standard basis vectors.

As the last step consider the vertices (a, j), (b, j), . . . (f, j) representing some constraint Cj (see Fig-
ure 2). If rc,j is already proportional to e2 or e3, then we leave it unchanged. Otherwise, it takes the
form (0, a, b)T with both a and b nonzero. Therefore, if (c, j) is adjacent to vertex v ∈ {k, k} representing
some variable xk, then rv = e1 since at this point all the vertices representing variables are assigned
standard basis vectors. So if we change r(c,j) to be equal to e2, it satisfies all the required orthogonalities
as the other neighbors of (c, j) are assigned the vectors rT = e2 and r(f,j) = (?, 0, ?)T.

Whether we needed to modify r(c,j) or not, we next set r(f,j) = e1 and r(e,j) = (0, sj)T. It is easy
to see from Figure 2 that this does not affect any of the required orthogonalities. Finally, if sj ∈ C2 has
more than one nonzero entry, then we change it to (0, 1)T. Since all the vectors rk and rk are equal to
one of the standard basis vectors, we can use a similar argument to that for [r(c,j) to show that this
modification yields a valid orthogonal representation. At this point we have obtained an orthogonal
representation of G which uses only standard basis vectors thus completing the proof.

Combining Theorem 2 with Lemma 7 yields the first example of graph whose orthogonal rank is
known to exceed its quantum chromatic number.

Corollary 2. If G is the graph from Theorem 2, then ξ(G) > 3 but χq(G) = 3. Hence, χq(G) < ξ(G).
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