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Perceptual Image Fusion Using Wavelets

Paul Hill, Member, IEEE, Mohammed Ebrahim Al-Mualla, Senior Member, IEEE, and David Bull, Fellow, IEEE

Abstract— A perceptual image fusion method is proposed that
employs explicit luminance and contrast masking models. These
models are combined to give the perceptual importance of each
coefficient produced by the dual-tree complex wavelet trans-
form of each input image. This combined model of perceptual
importance is used to select which coefficients are retained
and furthermore to determine how to present the retained
information in the most effective way. This paper is the first
to give a principled approach to image fusion from a perceptual
perspective. Furthermore, the proposed method is shown to give
improved quantitative and qualitative results compared with
previously developed methods.

Index Terms— Discrete wavelet transforms, image fusion, HVS.

I. INTRODUCTION

HE effective fusion of two or more visual sources

can provide significant benefits for visualisation, scene
understanding, target recognition and situational awareness in
multi-sensor applications such as medicine, surveillance and
remote sensing.

The output of a fusion process should retain as much
perceptually important information as possible from the two
sources and should form a single more informative image
(or video) [1], [2]. However, the majority of fusion methods
described in the literature do not employ perceptual models of
the Human Visual System (HVS) to decide which information
to retain from each source. Furthermore, they do not suggest
how to present this information so that it is perceived in the
most effective way.

The lack of a perceptual basis for fusion is exemplified
by the use of transform techniques that exploit multiscale
decompositions such as wavelets. These approaches assume
an implicit linear relationship between the magnitude of a
transform coefficient and its significance, without any refer-
ence to perceptual models within the given transform domain.
In contrast, our work utilises state of the art models of
perceptual significance, previously developed for the effec-
tive compression of video and image content. These models
characterise perceptual significance taking into account of:
1) luminance masking, ii) the variation of contrast perception
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with frequency using Contrast Sensitivity Functions (CSFs)
and iii) contrast masking.

Previously developed models have been based on crit-
ically decimated transforms such as the Discrete Cosine
Transform (DCT) or the Discrete Wavelet Transform (DWT).
We have generalised these models for use with a multiscale
decomposition more effective for fusion: The Dual Tree
Complex Wavelet Transform (DT-CWT) [1], [3].

The remainder of this paper is organised as follows. Firstly,
in section II the context of this work is described together
with the challenges faced together with relevant previous work.
Secondly, perceptual models for image fusion are developed
within section II-D. These models together with relevant
fusion rules are further described in section IV. Fusion results
are then described in section V and finally conclusions are
presented within section VI.

II. CHALLENGES AND REVIEW

Image fusion can exploit a variety of pixel or transform
domain methods to combine important or salient informa-
tion from two or more images into a single fused output.
Multiscale transforms have been shown to provide good fusion
performance [4]. Wavelet transforms in particular provide a
flexible multiscale fusion structure within a well understood
mathematical framework [1], [2], [5]. We have therefore
adopted wavelet transforms for our work and have combined
them with a perceptual significance model.

A. Discrete Wavelet Transform (DWT)
Based Image Fusion

Early fusion methods based on pyramid decomposi-
tions [6] have now largely been superseded by DWT-based
methods [1], [2]. The fusion of two sources utilising the
Discrete Wavelet Transform can be defined in terms of the
two registered input sources S* and S!, the wavelet transform
itself @ and a fusion rule ¢, defined to combine co-located
coefficients within the transform domain. The fused wavelet
coefficients are then inverted using an inverse wavelet trans-
form w~! to produce the resulting fused image F, thus:

F =0 (¢ (S, 0(sh))). (1)

B. Dual Tree Complex Wavelet Transform (DT-CWT) Based
Image Fusion

Although DWT-based image fusion provides good results, it
has been recognised that the associated shift variance produces
sub-optimal performance. Specifically this is because a coeffi-
cient’s magnitude may not accurately reflect the actual energy
attributable to its spatial-frequency location. It is therefore an

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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inaccurate basis for comparing perceptual importance within
the transform domain [1], [3].

This problem has been addressed through the use of trans-
forms such as the Shift Invariant Discrete Wavelet Trans-
form (SI-DWT) [5]. This transform is identical to the DWT
but removes the down-sampling at each stage of the decompo-
sition. Since the shift variation is caused by down-sampling,
the SI-DWT is shift invariant.

The Dual Tree Complex Wavelet Transform (DT-CWT)
provides a significantly more compact transform domain
representation that not only achieves near shift-invariance
but also provides improved directionality (through the ability
to distinguish positive and negative frequencies) [3]. This
discrimination (of positive and negative frequencies) results
in the division of each of the original three DWT subbands
to produce six DT-CWT subbands, centred at orientations
+15° +45° and £75°. The resulting subband coefficients are
complex and the magnitude of each coefficient is approxi-
mately shift invariant. Coefficient magnitudes can therefore
be effectively used to fuse two transformed images. A typical
fusion scenario is illustrated in figure 1.

The DT-CWT offers several advantages for image fusion
over other transform based methods. Firstly it is considerably
less over-complete than the SI-DWT. Secondly, the improved
directional selectivity and reduced shift variance results in
improved fusion performance compared to the DWT [1], [7].

C. Perceptually Based Image Fusion

A small number of researchers have attempted to inte-
grate perceptual criteria into image fusion applications.
Nercessian et al. [8] proposed a method based on a Laplacian
pyramid decomposition using fusion rules dependent on a
simple local Weber law relationship. A perceptually based
image fusion method using the Laplacian pyramid decompo-
sition was also developed by Mertens et al. [46]. Li et al. [9],
Bhatnagar and Liu [10], and Li et al. [11] have all integrated
a localised version of a “visibility metric” (developed by
Huang er al. [12] into the fusion process. Although these
papers claim to offer HVS-based fusion, the visibility metric
used is simply a weighted local variance and therefore is not
specifically dependent on luminance and contrast masking.
Wang and Ye [13] presented a Weber-law based lumi-
nance adaptation method integrated within a “total variation”
fusion approach. This uses a global luminance adaptation
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function (i.e. the global threshold line shown in figure 2).
We are not aware of any prior art on integrating contrast
masking into an image fusion application.

D. Perceptual Models for Image Fusion

A fundamental finding of psychovisual and physiological
investigations into the human visual system is that the eye’s
photoreceptors and the connected neurons interact in complex
ways throughout the early stages of vision. For example, recep-
tive fields surrounding each ganglion cell within the retina
have been found to contain both excitatory and inhibitory
responses [14]. The perception of contrast relevant to image
fusion has therefore been found to be dependent on a range
of masking effects. Three relevant masking effects employed
in our work are:

1) Luminance Masking: The dependence of contrast per-

ception on local luminance.
2) Contrast Masking: Contrast perception is also dependent
on orientation of local content.
3) Frequency Masking: The Contrast Sensitivity Func-
tion (CSF) gives a measure of the perceptual importance
of spatial frequencies.
Numerous models have been proposed to predict the behav-
iour of the HVS for each of these masking effects, both
individually and collectively. For example, comprehensive
models of luminance contrast have been defined by Daly [15]
and Barten [16]. Additionally, many complete visual models
incorporating these types of masking to predict the perceptual
significance of any pattern have been implemented. These
include:
o The visual predictor defined by Daly [15] utilising the
Cortex transform.

« The foveal detection model of local contrast defined by
Watson and Ahumada [17].

o The High Dynamic Range (HDR) predictor, HDR-VDP-2
defined by Mantiuk et al. [18] using the steerable pyramid
transform.

Unfortunately, however, these “difference prediction” per-
ceptual models are not directly applicable to image fusion.
These predictors process two input images to produce a
localised perceptual difference. Although these output differ-
ence measures exploit similar perceptual models to those used
in this paper, the output represents the difference between
the images rather than their relative perceptual importance.
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To overcome this, we have adopted the perceptual model
framework proposed for compression applications by Hontsch
and Karam [19] and adopted by Liu et al. [20].

III. A FRAMEWORK FOR PERCEPTUAL FUSION

Our model utilises the ratio of a coefficient’s magnitude
to the locally calculated Just Noticeable Difference (JND)
threshold. We base the calculation of JND on the model
proposed by Liu et al. [20] where the local JND associated
with a coefficient (at spatial position i,j) is defined as:

tynp(4,0,1, j) = INDj pai(4,0,1, j)ac(4,0,i, j), (2)

where JND, g is the baseline frequency-dependent contrast
sensitivity JND threshold according the central frequency of
subband scale / at orientation 8; a;(4, 8, i, j) is the luminance
masking effect and a.(4, 0, i, j) is the contrast masking effect.

For all the fusion rules, only co-located coefficients within
the same subbands are compared. Therefore JND; g will be
constant for both images’ coefficients. We define our local
JND threshold as:

tynp(4,0,10, j) = ai(2,0,1, j)ac(4,0,1, j). 3)

Although the contrast sensitivity JND threshold JND; g is
not used in (3), it is utilised within the intra and inter-band
methods described in section III-B.

A. Luminance Masking/Adaptation

The perception of contrast by the human visual system is
dependent on the luminance context i.e. on the global and
local background luminance levels. This is termed luminance
adaptation and has conventionally been represented using
the Weber-Fechner law or its power law variants. This has
been modelled using the Ahumada-Peterson and DCTune
formulae for perceptually based DCT and wavelet coefficient
quantisation and JND threshold calculation in compression
applications [20]-[22].

The Weber-Fechner law states that the ratio of the JND
threshold T to the background luminance L is constant over a
range of L.! Modified versions of this law have been utilised
by Ma and Huang [23] and Wang and Ye [13] where the
ratio T/L is elevated for high and low background luminance
values to take into account the human visual system’s decrease
in sensitivity within these background luminance regions.?

More recent models for luminance adaptation have been
based on the observation that the Weber-Fechner law is an
over simplification for typical viewing conditions. Specifically,
it has been suggested that luminance based JND thresholds
vary as a “quasi-parabola” or u-shaped curve with reference
to a more global background luminance average. It has been
proposed that the shape of this “quasi-parabolic” curve is
attributable to either the local nature of the luminance back-
ground [24] or to the fact that the gamma correction of typical
monitors will lead to higher thresholds at lower luminance
values [25], [26]. For either reason, such u-shaped models
have formed the basis of the majority of recent luminance

IThis is illustrated by the middle section of the main graph in figure 2
2This is illustrated by the overall shape of the main graph in figure 2
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Fig. 3. Luminance Masking/Adaptation (Just Noticeable Difference) Models.

adaptation models [24]-[32] and has been successfully applied
in compression applications, especially for high dynamic range
video coding [33]. Figure 2 illustrates how these u-shaped
local background curves are modulated by an overall Weber-
Fechner type global luminance masking effect.

1) Luminance Masking Model Definitions: Figure 3 shows
four example luminance adaptation models that are defined
in (4), (5), (6) and (7). These models define the just notice-
able difference (a;) attributable to variations in the local
background luminance average 1.

Luminance  Adaptation Model 1: Proposed by

Chou and Li [28] and used by Lee et al. [29] and
Yang et al. [30].
17(1—- 7 +3, if I <127
aj = 7 “)
3
1_28(1 —127)+ 3, otherwise.

This was the model selected to calculate (3) defined above.

Luminance  Adaptation Model 2: Proposed by
Zhang et al. [25] utilised by Zhang et al. [27].
7 3
211 — — 1 if 7 <128
(AT

a = - 2 (%)

0.8 — — 1) + 1, otherwise.

128

Luminance  Adaptation  Model 3: Proposed by

Ahumada and Peterson [21] used by Watson er al. [22]
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and Liu et al. [20].

_ 0.649
(L 6)
a= (128) : (

Luminance Adaptation Model 4: Wei and Ngan [26].

(60—1)/150+1, if I <60
ar =11, if 60 <7 < 170 (7)
(I —170) /425 +1, if I =170

Figure 3 shows that models 1, 2 and 4 are u-shaped whereas
model 3 is monotonically increasing over the background
luminance range. It should be noted that this figure plots
the first model scaled by one fifth so that it can be easily
compared to the other models. This large discrepancy is not
explained by the authors of the method [28]. However, since
most applications require relative JND comparisons, its effect
is not thought to be significant. The threshold values of 1
above 128 in model 2 were designed to approximate model 3
for this range. This approximation is also illustrated in figure 3.

Alternative models include the modified Weber-Fechner
model proposed by Ma and Huang [23] and used by
Wang and Ye [13]. This model was not investigated in
our work because its simplistic form does not reflect the
types of application and viewing conditions relevant to image
fusion. An additional “quasi parabola” type model was pro-
posed by Safranek and Johnston [31] and referenced by
Miloslavski and Ho [32]. This model was also not used as
it was not precisely defined in these papers.

Luminance adaptation model 1 was selected to calculate (3)
as it gave the best results (see section V).

2) Calculation of Local Luminance 1: In DCT based com-
pression models, T is defined as the DC value of the transform
block (or average of a group of local DC values). For DWT
based compression models, T is calculated as the co-located
coefficient of the Low-Low subband (relative to the considered
high-pass coefficient). Ideally, this should be calculated with
reference to the foveal region and is therefore dependent on
viewing distance and screen resolution. However, in most
cases, the variation (with viewing distance and/or screen
resolution) is not considered significant. Therefore, a fixed
number of local pixels (such as that produced by a set number
of DWT decomposition levels or the DCT block area) is
assumed.

In our model, we have calculated 7 from the magnitude of
the co-located lowpass coefficient at the highest decomposition
level (adjusted to have the same dynamic range as the image).

It should be noted that all the above models assume a fixed
relationship between all values of 7 and the actual luminance.
However, this is the assumption of all the previously cited
work using the generalisation model illustrated in figure 2.

B. Contrast Masking

Contrast masking quantifies how the visibility of an image
component (the target) varies in the presence of other image
components (the masker) [34]-[36]. Contrast masking is com-
monly defined as the variation of the JND threshold of a target
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signal as a function of the intensity of a masking (or masker)
signal [34]. Within a fusion framework, the target signal can
be defined as a transform coefficient and the masking signals
as the neighbouring coefficients (i.e. spatially neighbouring
coefficients and local coefficients in neighbouring frequency
subbands).

The measure of contrast masking a. can be defined and
modelled using the DT-CWT as:

ac(/t a,i, ]) = dc¢_intra (/1, 0,1, j)ac_inter (/1, 0,i, ])» ®)

where ac_inirq(4, 6,1, j) is the contrast masking effect due to
the coefficients within the same subband as the “target” coeffi-
cient and ac_jnrer (4,6, 1, j) is the contrast masking effect due
to the co-located coefficients within neighbouring subbands
((1,8,1i, j) is the subband and spatial location within this
subband as defined above).

Our contrast masking model is based on that used for
wavelet coding by Hontsch and Karam [19] and implemented
by Liu et al. [20]. It also relates very closely to the model pro-
posed by Mantiuk et al. [18] for high dynamic range difference
predictions. This model also takes into account intraband and
interband masking within a steerable pyramid decomposition.
Our model differs from these in that it explicitly weights
the variation of masking with orientation (according to the
results of Foley [34]) and takes into account a larger number
of more closely related coefficients (in orientation, frequency
and location). It also uses a more recently defined weighting
of neighbouring subbands’ CSF [37].

1) Intraband Contrast Masking: Watson [38] reported that
contrast masking has the largest effect when the target and
masker have the same frequency and orientation. Hence intra-
band contrast masking is considered separately from interband
masking.

We now define intraband contrast masking for coefficient
04,0,i,; (i.e. position (i, j) within subband (4,8)). As (4,0)
is constant within the same subband we simplify the notation
of v, ¢,;,j to be v; j. This intraband contrast masking is based
on a weighted version of the contrast masking defined by
Hontsch and Karam [19] and implemented by Liu et al. [20].
It is defined as:

dc_intra (/1, 0,i, ])

(X

¢
— | /Nt o
JNDyg /Ni,j ©)

= max 1 1, Wiprq Z
UEC;’_,‘(h)

where C; j(h) is the “deleted neighbourhood set” of size
(2h + 1) x (2h 4 1) centred around coefficient v; ; within
subband (4, ). i.e. the set within a square window minus the
centre:

Ci,j(h) = {vitm j+nl —h <m,n < h}\{v;;}. (10)
The weighting factor W, and exponent factor ¢ are defined
to weight the effect of intra masking (set to 12 and 0.6
respectively). JND; ¢ is the contrast sensitivity threshold of
subband (4, 0) defined in section III-B.3. N; ; is the number
of coefficients in C;; (h).
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2) Interband Contrast Masking: Many contrast masking
models only use intraband masking. While this offers a con-
servative and tractable model (for example Liu er al. [20]),
previous vision research gives more support to models with a
wider spatial, orientation and frequency spread of the masking
signal [34], [39].

We therefore define such an interband model and define
interband contrast masking for coefficient v; 9 ;. As the
position (i, j) is constant for all the co-located coefficients,
we simplify the notation of v;4;; to be v;49. As with
the intraband masking, interband contrast masking is based
on a weighted version of contrast masking defined by
Hontsch and Karam [19] (and related to the intraband contrast
masking implemented by Liu er al. [20]). Intraband contrast
masking for a coefficient for subband (4, &) at position (i, j)
is defined as:

dc_inter (/1, 0,1, ])

=max 1 I, Winrer z W)W

veC)

/Nijt,

B
‘ 1)

D
JND;

where C; ¢ contains the co-located coefficients v; ¢ from
all the orientated subbands at the same scale as the target
coefficient together with all the orientated subbands at the
neighbouring scales 4 — 1 and A + 1 (minus the subband
coefficient at the same scale and orientation at the target) i.e.

Ci,& = {Di+d,gg|d = _1’09 1,

6, = £15°, £45°, £75°}\ {v,.0}. (12)

The weighting factor Wi,;., and exponent factor S are defined
to weight the effect of interband masking (set to 12 and 0.6
respectively). JND; ¢ is the JND contrast sensitivity threshold
of subband (4, @) defined in section III-B.3. N; ; is the number
of coefficients in C; g.

The effect of contrast masking is only observed up to
a relative frequency range of two octaves [14]. We have
therefore only taken into account neighbouring scales within
the DT-CWT as this represents a conservative model.
Additionally, masking experiments conducted by Foley [34]
have indicated that there is an approximately linear decrease
in the masking effect as the orientation difference between a
target and masking signal increases. This results in a maximum
decrease of approximately 10:1. The orientation weights wg
indicating the masking effect of an orientated masking subband
to the target subband have therefore been defined as:

1.0 L0760y =0°

0.7 01Oy = £30°
0.4 /01Oy = £60°
0.1 ZO070y = £90°,

wy = (13)

where Z076) is the angle between the target subband and the
masking subband.

1.0 A —Ay =0
05 Ay — Ay = =1
0  otherwise.

w; = (14)
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TABLE I
BAsIs FUNCTION AMPLITUDE Ay, FOR A SIX-LEVEL DT-CWT

DT-CWT Decomposition Level, A

Orien 6 1 2 3 4 5 6
+15°, £75°  0.1684  0.1481  0.0704 0.0347 0.0169  0.0082
+45° 0.1684  0.1583  0.0767 0.0395 0.0202  0.0100
TABLE I

PARAMETERS FOR THRESHOLD MODEL (16)

Transform a k fo g1 g2 g3
DWT (from [41]) 0.495 0466 0.401 1 0.534 1
DT-CWT [37] 3.107 1.025  0.755 1 0.814 1

The interscale weight w; is defined as being 1 for the
same subband and 0.5 for neighbouring scales. For exam-
ple if the target subband is aligned to 15°, the masking
subband is aligned to 75° and the subbands are separated
by one scale then the total intraband contrast weight
wiwg =04 x0.5=0.2.

3) Contrast Sensitivity: The contrast sensitivity measure
JND; g used in (9) and (11) defines the IND threshold for
a given spatial frequency. This JND threshold is the inverse
of the contrast sensitivity function which has a maximum at
around 2-5 cycles per degree [40] and has an approximately
parabolic shape. These functions are conventionally created by
finding the threshold of perception of Gabor functions when
varying their spatial frequency [41]. However, for the case of
wavelet transforms, the spatial support of the basis functions
varies with frequency. Watson ef al. [41] conducted JND
experiments with discrete wavelet transform basis functions
and found that the JND threshold function monotonically
increases for the considered spatial frequencies. This function
was modelled in [41] to be parabolic in the log-log (threshold-
frequency) domain as given by the parametric equation in (15):

logio(Y) = logioa + k(logiof — logio(go fo))*,  (15)

where Y is the luminance JND, f is the frequency and the
remaining parameters are defined in [41] and below. This is
related to the JND of each basis function (16) as:

s0f2” )
JND; o(r) = Lalokllog“)( ’ )] , (16)
’ A
where A; ¢ is the amplitude of the basis function and r is
the visual resolution of the used display in pixels per degree,
which can be calculated as:

wrw w

r=dw tan(i) ~d2E g2
130 130 9373

where w is the viewing distance (in cm) and d is the display
resolution in pixels/cm.

Additionally, Hill er al. [37] used similar experiments
for the DT-CWT and obtained the parameters of (16) for
the basis functions of the DT-CWT as shown in table II.
Furthermore, the amplitude A, ¢ for DT-CWT basis functions
used is shown in table I. The viewing distance w used for

a7)



HILL et al.: PERCEPTUAL IMAGE FUSION USING WAVELETS

these experiments was approximately 57cm. Therefore for the
experiments within [37] r &~ d leading to a display visual
resolution r of 21.38 pixels/degree (10.69 cycles/degree).

Although different viewing conditions will alter the thresh-
old function, the monotonically increasing nature of the func-
tion will enable the differences between two scales (as used
in (9) and (11)) to generalise more effectively.

1V. PERCEPTUALLY BASED FUSION RULES
A. DT-CWT Coefficient Fusion Decision

Figure 1 shows the structure of how DT-CWT coeffi-
cients from two images can be combined to form a fused
transform that, when inverse transformed, forms the fused
image. The simplest form of a wavelet coefficient fusion
rule is the choose maximum rule (as implemented for the
DWT in [2] and the DT-CWT in [1]). The choose maximum
fusion rule, or its variants, makes the assumption that the
perceptual importance of a coefficient is directly related to its
magnitude.

Our method for choosing the most perceptually important
coefficient is as follows. Firstly we obtain the measure of
perceptual importance or “Noticeability Index” of each coef-
ficient within each image. For each coefficient we determine
its perceptual importance as the ratio of its magnitude to the
locally calculated JND threshold ¢, ND3:

I

’”1,0,;‘, j
t;ND(/’{»e; i» ])’
where N1 is the “Noticeability Index”, I € {0, 1} is the index
of the images to be fused, vﬁ 0.0 is the DT-CWT coefficient
within subband 4,  at spatial position i, j and t}ND(l, a,i, j)
is the local JND calculated by (3). Luminance adaptation
model 1 is selected to calculate (3). The choice of coefficient
from the two images is based on the largest NI (dropping the
indexes 4, 6,1, j for clarity):

NI'(1,0,i, j)= (18)

NIO > NI!
1

. (19)
v otherwise.

pMax(NI) _ [UO

Alternative fusion rules that combine coefficients by con-
sidering local salient regions [2] or using weighted mixtures
of coefficients between the two images [43] have also been
reported elsewhere. However, these schemes do not have any
explicit perceptual basis.

B. Perceptually Fused Coefficients

To render perceptually important content from each image,
the most perceptually important coefficient (chosen using (19))
will need to be adjusted. This ensures that the output coef-
ficient retains the same perceptual importance in the fused
image as it did in its original image (according to our models).
Continuing to assume a linear “noticeability” of coefficient

3This assumes that perceptual importance or “Noticeability Index” is a linear
function of the JND. Perceptual importance in suprathreshold regions may in
fact not be linear [42] but we make this assumption for simplicity.
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Algorithm 1 Perceptual Fusion Algorithm

input : Images: SY, S!
w? < DT-CWT (SY
w! « DT-CWT §51§

w? 4 Max-Coefficient Fusion (w®,w")
initial fused DT-CWT transform

for All DT-CWT coefficients(V : X, 6,i,5) do

/] w?=

for VI € {0,1,2} do
v! = considered DT-CWT coefficient in w!
a{(vl)e... // eq(4)
ag_mtm(vl)%... // eq(9)
al inper (V1) ... // eq(1l)
a’g_(vl) A a’i_intra (UI a’i_inter (UI) /7 eq (8)
thD(vl)ealI(vl)ag(vI) // eq(3)
NIT (o) « [o!| /th 5 p (0F) // eq(18)

end

m « argmax; (NI, VI€{0,1}) // eq(20)

v = 0N p (V) [t p () // eq(20)

dPlace v3 into new DT-CWT transform w?

en

F = DT-CWT }(w?)
output: Fused image F'

magnitudes relative to 7;yp, each coefficient can be adjusted
as follows:

2
t
0LEL NIO > NI,
t
JND
0? = ) (20)
t
01# otherwise,
)

where v is the fused coefficient (identified by the spatial and
subband indices {4, 8,1, j}) for each subband at each spatial
location and t% ~p 18 the local IND threshold for the fused
image. As the fused image has not been created at this point
t% ~p is calculated from a pre-fused, non-perceptually based
choose maximum fused image. This pre-fused image will have
representative luminance and contrast content to accurately
offset the final fused coefficient so it will be perceived with
the same visual importance as when it was found within its
original image. This algorithm together with the creation of
the JND threshold values is shown in algorithm 1.

C. Example Visualisation

Example visualisations of intermediate fusion measures
are given in figure 5. This figure shows the initial fusion
pair (top row), the JND thresholds t5 ~p (second row) and the
fusion correction factors t% ~p/ t} yp (bottom row). However,
as these measures are calculated on a subband by subband
basis these images just show an example of a single subband
(the highest frequency subband A = 1, with orientation
6 =15°).

The JND thresholds (second row) t} yp 1s calculated
from (3). From these images it is clear that the luminance
adaptation is the dominating factor. The correction factor (bot-
tom row) shows the correction factor defined in (20). Only the
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Original Image Pairs

Average

Choose max
~
Fused Images

DTCWT-SR [45]

Mertens [46]

Proposed

Artpairl Artpair2

Fig. 4. Artificial image fusion.

selected coefficients are shown in each image (with unselected
coefficients being zero or black). This also shows (given the
IJND values for each subband) that areas of high luminance
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First Image Second Image

1
tJND

BND for NIO > NI' 4D for NTO < NI

~

1
JND tJND

Fig. 5. Example visualisation of intermediate fusion measures.
First row: Original images. Second row: JND thresholds t} ND-

. : 2 1
Bottom row: Correction factors 15 p/t;np-

get high correction values. This row also demonstrates the
stability of the correction factors for a typical subband of a
typical image.

V. RESULTS
A. Artificial Images

In order to characterise and visualise the effect of texture
based contrast masking we have created two pairs of artificial
images to fuse as shown in figure 4. In this figure, each column
contains a distinct artificial image pair (Artpairl and Artpair2
at the top of each column) and their associated fusion results.
Both input image pairs comprise a texture of varying intensity
and a discontinuity (vertical wavy lines). Both texture images
were created from a single Brodatz texture (d57) [44]. This
texture was chosen as it exhibits typical 1/f “natural image”
frequency content while being homogeneous. The top left
image in figure 4 shows this texture with gradually increasing
contrast in vertical stripes across the entire image. The image
pair shown in the left column of figure 4 is intended to
illustrate isotropic intraband masking. However, in order to
display and characterise the fusion output of non-isotropic
texture masking we have created a second masking texture
(the top-right image in figure 4). This image is also formed
from 8 horizontal stripes. Each of these stripes is comprised of
the original image, filtered within the frequency domain with
the following filter.

2z n 2r(n+ 1)
| Tl gD
Ln(0) = N “0=—x

0 otherwise

21
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Image 1

Image 2

Fig. 6. Fused image results. From top to bottom the fusion pairs are labelled “Door”, “Edenl”, “Eden2”, “Med”, “Remote”.

where 0 is the orientation of the polar separable indices
within the FFT domain, N = 8 (number of orientations and
therefore the number of horizontal rows in the top-right figure
in figure 4) and n = {0,..., N — 1}.

The fused output (of the proposed method) for this image
pair (displayed in the same figure) shows that the magnitude
of the discontinuity (vertical wavy lines) is dependent not
only on the contrast of the background texture but also on
its orientation (i.e. coefficients are increased in magnitude

when the orientation of the chosen coefficient is similar to
the masking orientation as set out in (13)).

B. Real Images

Figure 6 shows five image pairs processed using three fusion
methods. The three fusion methods are:

1) DTCWT-SR: Liu et al. [45] proposed a combination of
multiscale transforms and dictionary learned sparse represen-
tations for image fusion. Although they have compared many
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~ Proposed

Mertens [46]

Fig. 7.
the “door” pair (left) and “med” pair (right).

different multi-scale transforms, we have used the Dual Tree
Complex Wavelet Transform not only for comparability to our
work, but they report it is the best performing transform within
their work.

2) Mertens et al. [46]: This fusion method uses a Laplacian
multi-scale decomposition that employs different types of
simple perceptual fusion criteria. We have used the contrast
as local criteria for fusion. This has been shown to give good
results for exposure and more general types of image fusion.

3) Proposed: DT-CWT fusion used together with (3), (4)
and (8) to generate the JND threshold #;yp. The coefficients
within all the high pass subbands are then chosen and modified
using (18) and (20) respectively. The Low-Low (LL) subbands
are fused in the same manner as the choose-max method.

An exhaustive comparison of all possible image fusion
methods was not feasible. These two comparative image fusion
methods were chosen as they represent a combination of the
most recent, best performing and popular methods.

The top three rows in figure 6 show registered visible and
thermal IR images. These images represent typical visible/IR
fusion scenarios where higher frequency visible content needs
to be fused with high luminance thermal-IR areas. For impor-
tant areas such as faces, conventional fusion (as exemplified
by the Mertens and DTCWT-SR method) results in details that
are clearly visible within the visible sources, being “washed
out” (see the third and fourth column of figure 6 and the insets
in figure 7).

This is due to two reasons:

o The inability of the high-pass transform coefficients of the
visible image to fully capture the spatial variations within
regions such as faces (due to low frequency variations of
the visible image not being selected in the high luminance
IR areas, such as faces).

o Luminance Masking. The luminance masking effect dis-
cussed in section III-A means that the contrast of
high frequency visible content will be less perceptually
important when fused within high IR luminance areas
such as faces.

Adjustment of the coefficients for the proposed method
increases the contrast within these regions so that they retain
the same level of perceptual importance as when they were
in the source image. This increase in contrast also offsets the
first effect.

The fourth row of figure 6 shows a typical multimodal
medical fusion application. This image pair also demonstrates
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i

Proposed

e

Mertens [46]

Improvement of fusion results of the proposed method demonstrated through the magnification of regions within two image fusion pairs. Images are

how the proposed method is able to retain high frequency
information from both sources within high luminance fused
areas. This image pair also demonstrates texture-based contrast
masking as illustrated by the skull edge (from the left image)
which retains the same significant perceptual importance in
the fused image as it did in the original image.

The fifth row of the same figure shows a typical remote
sensing fusion application and illustrates the combination of
luminance and contrast masking based perceptual fusion with
the proposed method.

The first three rows of figure 6 shows the improvement of
the visual results for facial regions associated with visible-
thermal fusion applications. Figure 7 illustrates the improve-
ment in fusion results in retaining visually significant content
for regions that are magnified for clarity.

C. Fusion Metrics

A robust assessment of each fusion technique is essential
in order to evaluate and compare the range of methods
and parameters considered. Both objective and subjective
assessments have been used. However, qualitative measures
are time consuming to obtain and require careful control
of viewing conditions and subject equivalence to render the
results meaningful. Quantitative assessment techniques are
therefore beneficial for effective comparisons. However, such
objective measures need to be carefully aligned with subjective
results. Such checks between subjective and objective mea-
sures have been done by Petrovic [47]. Where ground truth
data is available, simple two-image comparison techniques
such as PSNR/MSE or more perceptually aligned metrics such
as SSIM can be used. For more general applications (such
as medical, remote sensing and multiband fusion methods)
a ground truth is not generally available and reference free
quality metrics are needed. Such metrics compare the input
sources together with the fused output to generate a metric
quality score (ideally in the range 0.0 to 1.0) that quantifies
the ability of the fusion technique to retain important visual
information from each of sources. Cvejic et al. have evaluated
many such metrics [48]. The relative trends of these different
metrics within this paper were found to be very similar.

We have compared the results of the following fusion
metrics (for the images pairs shown in figure 6): The
Piella Metric Qs [49] based on weighted SSIM values,
the Xydeas metric Qg [50] based on the image gradient,
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TABLE III

RESULTS FOR FOUR FUSION METHODS AND FIVE IMAGE PAIRS. METRICS
ARE Qg: PIELLA AND HEUUMANS [49], QG: XYDEAS AND PETRO-
VIC [50], Qprr: HOSSNY AND NAHAVANDI [51], Qcy: CHEN AND
VARSHNEY [52]. LABELLING TAKEN FROM LI1U et al. [53]

Metric Image Proposed  Choose Max  Mertens DTCWT-SR
(11 [46] [45]
Entropy Door 7.5896 7.6100 7.7179 7.0608
Edenl 7.2125 7.1457 7.2421 6.5056
Eden2 7.1514 7.0925 7.1444 6.5336
Med 6.6103 6.5315 6.8265 5.9540
Remote 7.1212 7.1211 7.1271 6.7053
Artpairl 6.4145 6.3929 5.4227 6.3963
Artpair2 6.3263 6.3113 5.3438 6.3205
Qs Door 0.7634 0.8448 0.8307 0.6642
Edenl 0.7719 0.8471 0.8440 0.6894
Eden2 0.7998 0.8582 0.8470 0.7478
Med 0.8014 0.8335 0.7639 0.5772
Remote 0.8087 0.8540 0.8569 0.8259
Artpairl 0.9708 0.9836 0.7616 0.9850
Artpair2 0.9772 0.9846 0.7617 0.9865
Qac Door 0.5234 0.6554 0.6597 0.3511
Edenl 0.5227 0.6582 0.6720 0.3432
Eden2 0.5520 0.6651 0.6702 0.3791
Med 0.6942 0.7533 0.6540 0.3424
Remote 0.5513 0.6354 0.6552 0.5477
Artpairl 0.8540 0.8886 0.3726 0.8947
Artpair2 0.8617 0.8828 0.3836 0.8901
Qcv Door 1272.2 508.4 502.7 564.5
Edenl 1045.2 203.5 181.3 376.5
Eden2 1266.3 593.8 664.8 684.7
Med 2156.2 1996.8 2139.3 1693.5
Remote 993.8 540.9 413.1 168.8
Artpairl 281.0 271.7 246.1 289.0
Artpair2 387.9 435.9 384.0 452.8
Qumr Door 0.3671 0.4788 0.4229 0.4472
Edenl 0.3165 0.4661 0.3598 0.3323
Eden2 0.3922 0.4519 0.4431 0.4911
Med 0.5975 0.6950 0.3515 0.6204
Remote 0.5574 0.6149 0.6009 0.8191
Artpairl 0.5121 0.5749 0.9036 0.7275
Artpair2 0.5219 0.5729 0.7128 0.8514

the Hossny metric Qs [51] based on Mutual Information and
the Chen metric Qcy [52] based on a perceptual model and
local image saliency. This labelling is taken from the extensive
study of metric performance given by Liu ef al. [53].

The majority of these metrics gave inferior quantitative
results for our method as shown in table III. This is due
to the fact that the original content has been “distorted”
(i.e. amplified or attenuated) in order to create a fused output
which retains the same perceptual importance as its constituent
images. The exception to this was the Chen metric Qcy [52]
which indicated superior results for the proposed method for
all the real images. This was considered to be caused by the
perceptual model integrated within the Qcy metric. It should
be noted that the entropy of the fused output is simply a
measure of information content. High values of entropy do not
therefore indicate best fusion performance as fusion artefacts
are included in the measure [54].

D. Perceptual Assessment

In order to assess the perceptual quality of our fusion
algorithm, the use of most existing fusion metrics is not appro-
priate. We have therefore conducted a subjective assessment
similar to that used by Petrovic [47] and Ma et al. [55].
Two sets of experiments were conducted, one presenting
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fusion results together with the original reference images and
one without.

o Reference Test: Four images are displayed in a 2 x 2
grid. The original two images are displayed at the top
of the screen. Two fused images using two different
fusion methods are displayed at the bottom. The two
displayed fusion methods are chosen from: the proposed
method, the “Choose maximum” fusion method using the
DT-CWT [1], the Mertens method [46] and the
DTCWT-SR method [45].

o No Reference Test: Identical to the reference test, but the
original images are not displayed.

For both tests, the two fusion images are rated by the subject
on a linear scale from “good” to “bad”.* The subjects are
asked to rate the amount of information retained from both
images. The worst score is 1 and the best 5 (similar to the
mean opinion score scale used in compression assessment
methods). The dataset used is a subset of 25 images taken from
the fusion image dataset used by Petrovic [47] (comprising
remote sensing, medical and visual/thermal pairs). Within the
reference test, the subjects are asked to judge how much
important visual information is retained from both original
images, whereas within the no reference test, the subjects are
asked to simply rate the quality of the fusion without seeing
the originals.

1) Experimental Conditions: Seven subjects were used,
two female and five male. The subjects were found to have
normal or corrected to normal eyesight. The experiments were
conducted in a normally lit room with a standard monitor. The
viewing distance was 57cm, resulting in a viewing resolution
of 29.8 pixels/degree (14.9 cycles/degree). This was used to
update the value of r used in (16) and (17). All seven subjects
did both the reference or non-reference evaluation with the
referenced evaluation conducted first and the non-reference
evaluation conducted second. Although it is possible that the
subjects could learn the images and results this was considered
to be a small effect due to the randomisation of the fusion
methods’ positions and comparisons together with the large
size of the dataset.

2) Experimental Results and Discussion: As subjects do not
use the same scales of quality and difference, the raw scores
(labelled x;; for image pair i, subject j) are normalised to
Z-scores [57], [58].

Zij = A )
Ox

(22)

where uj = & X% xy, 0j =y X (v — n)” and
xij @ = 1,...,N) are the raw scores assigned to all
images by subject j. N is the number of images (in this
case 25).

Figures 8 and 9 show the Z-scores of the reference and no
reference experiments for each of the image pairs from 1 to 25
for the four fusion methods (proposed, choose maximum,
Mertens and the DTCWT-SR methods). These figures show

4Task based fusion evaluation has been investigated by Dixon et al. [56].
However, this study used a very limited dataset. In order to evaluate our
proposed method with a large range of applications (represented by the utilised
dataset Petrovic [47]) such task based evaluation is not possible.
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TABLE IV
SUBJECTIVE TEST Z-SCORE MEAN VALUES: MEAN=+ STANDARD ERROR
Fusion Reference No Reference
Pair Proposed Choose Max[1] Mertens [46] DTCWT-SR [45] Proposed Choose Max[1] Mertens [46] DTCWT-SR [45]
1 0.8984-0.483 -0.956+0.636  -0.735+1.040 -0.200+0.911 0.900+0.405  -1.2084+0.950 -1.076+0.343 -0.499+0.839
2 0.149+0.884 -0.593+0.398  -0.450+1.297 0.504+0.732 0.2084+0.865  -0.4004+0.730  -0.30740.869 0.27840.560
3 0.523+0.669 -1.185+£0.812  -1.199+0.934 -0.183+1.216 0.945+0.537  -1.110+0.758  -0.906+1.204 -0.284+0.672
4 0.20740.824 -1.196+£0.592  -0.839+1.054 -0.031+1.254 0.660+0.826  -1.1104+0.758  -0.906+1.280 0.10040.786
5 0.690+0.627 -0.779+£0.762  -1.647£0.744 0.03741.068 0.5824+0.502  -0.907+0.806  -0.997+1.352 0.12540.961
6 0.758+0.629 -0.683+£0.377  -0.748+0.998 -0.358+0.681 0.876+0.396  -0.715+0.649  -1.051%0.966 -0.512+0.551
7 0.3801+0.794 -0.176+£0.667  -0.695+0.663 0.265+1.017 0.7384+0.742  -0.4234+0.485  -1.256+0.422 -0.103+0.662
8 0.5444-0.766 -0.386+£0.984  -0.176+£0.667 0.35240.899 0.295+0.770  -0.124+1.226  -0.5124+0.703 0.03440.823
9 -0.029+£1.186  -0.865+1.029  -0.29140.663 0.595+1.100 0.062+0.900 -0.872+0.419  -0.078+1.162 -0.218+0.802
10 0.859+0.340 -0.152+0.772 0.02640.893 -0.089+0.921 0.5524+0.658  -0.4644+0.444  -0.068+0.612 0.08740.950
11 0.71240.859 -0.589+£0.975  -0.568+0.506 -0.386+0.984 0.852+0.385  -0.512+0.551  -0.512+0.551 -0.080+0.727
12 1.094+0.388 -0.985+0.487  -0.382+0.616 -0.80740.580 0.966+0.480 -0.3314+0.761  -0.90740.610 -0.512+0.551
13 1.005+0.258 -0.141£0.972 0.06240.862 -0.985+0.487 0.7854+0.389  -0.2834+0.511  -0.1284+0.933 -1.063+0.732
14 0.694+0.705 -0.179+£0.543  -0.596+0.816 -1.008+0.436 0.8871+0.609  -0.081+1.150  -0.657+0.886 -0.680+0.774
15 0.532+0.517 -0.291+£0.663  -1.131£0.614 -0.505+0.335 1.011+0.472  -0.423+0.485  -0.51240.551 -0.692+0.646
16  0.903+0.330 -0.593+0.398 0.11540.822 -0.779+0.762 0.7861+0.527  -0.423+0.485  -0.4231+0.652 -0.499+0.839
17 0.380+0.771 -1.219+£0.540  -0.830+0.547 -0.378+0.729 0.978+0.510  -0.283+0.511 -0.871£0.988 -0.907+0.806
18  0.576+0.540 -0.200+£0.911  -0.390+0.420 -0.1524+0.772 0.864+0.516  -0.2834+0.511  -0.5124+0.551 -0.489+0.779
19  0.679+0.622 -0.604+£0.677  -1.044+0.596 -0.354+0.785 0.700+0.862  -0.692+0.374  -0.883+0.763 -0.207£0.648
20 -0.050+£1.090 -0.790+1.436  -0.560+0.680 -0.993+0.813 0.096+0.760  -1.436+0.662  -0.837+1.054 -1.448+0.790
21 0.017+1.062 -0.802+£1.098  -0.616+0.891 -1.1644+0.721 0.051+£0.901  -1.33940.797  -1.088+0.711 -0.807+0.428
22 0.496+1.069 -0.382+0.616  -0.346+£0.905 -0.595+0.860 0.796+0.938  -0.477+0.681  -0.24940.635 -0.860+0.800
23 0.750+0.739 -0.830+£0.547  -0.806+0.641 -0.413+0.907 0.503+0.745  -1.2564+0.422  -1.268+0.609 -0.873+0.606
24  0.470+0.881 -0.591+£0.945  -1.670+0.788 -0.8061+0.641 0.090+0.616  -1.0284+0.738  -1.2434+0.776 -0.020+0.983
25  0.367+0911 -0.595+£0.860  -1.636+£0.463 -0.798+0.788 0.503+0.745  -0.825+0.761  -1.6294+0.997 -1.471£0.345

the mean and standard deviation of the Z-scores for each
image pair. Table IV shows these results in tabular form and
clearly shows that the Z—score for each image pair is higher
for the proposed method in all but three cases (two for the
reference case and one for the no-reference case). The results

show that the proposed method is considered to be of higher
quality for both sets of tests. To quantify this, a hypothesis is
defined as: the mean score of the proposed method is higher
than the mean of the choose-maximum method for one of the
experiment types.
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In order to test this hypothesis, a right-tailed, unpaired, t-test
was done on the data for each image. The resulting p-value
was calculated for each image pair (the probability that the null
hypothesis was true). The average p-value for all images was
0.0155. This analysis was repeated for the Mertens method and
the DTCWT-SR method resulting in an average p-values of
0.0796 and 0.0294 respectively. It can therefore be concluded
that the average normalised score for the proposed method
is greater than the three alternative methods (choose max,
Mertens and DTCWT-SR) with a confidence of over 92%.

VI. CONCLUSION

Conventional transform-based image fusion algorithms
implicitly assume that there is a simple linear relationship
between coefficient magnitude and perceptual importance.
This is a gross simplification. Our work has addressed this
by producing a principled model of the perceptual importance
of coefficients within image fusion and evaluating its per-
formance objectively and subjectively across a representative
dataset.

The results clearly show qualitative improvements in image
fusion results where regions that are saturated for conventional
methods now retain important perceptual content from both
input images. Quantitative improvements of information con-
tent over comparable techniques are also demonstrated.

The proposed method has therefore been demonstrated to
form a fused output that not only contains the most percep-
tually important content from the input images but is able to
present the retained information with its original perceptual
importance.

Subjective test results show that the proposed method can
be considered the best perceptually performing method com-
pared to the other considered fusion algorithms with a high
confidence of over 92%.

It should be noted however, that due to the extremely large
number of possible parametric and algorithmic variations, the
results of the subjective tests can only be used to gain a sense
of direction in the research.
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