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Abstract
We present a shape memory polymer (SMP) honeycomb with tuneable and shape morphing
mechanical characteristics. Kirigami (Origami with cutting allowed) techniques have been used
to design and manufacture the honeycomb. The cellular structure described in this work has
styrene SMP hinges that create the shape change and the deployment actuation. To create a large
volumetric deployment, the Kirigami open honeycomb configuration has been designed by
setting an initial three-dimensional re-entrant auxetic (negative Poisson’s ratio) configuration,
while the final honeycomb shape assume a convex (positive Poisson’s ratio) layout. A model
was developed to predict the shape change of the structure, and compared to experimental results
from a demonstrator honeycomb deployment test.

Keywords: shape memory polymer, deployable structures, honeycomb, morphing structures

(Some figures may appear in colour only in the online journal)

1. Introduction

Origami engineering has been branded as one of the most
promising multiscale design methods to produce structures
and materials with unusual deformation mechanisms and
shape changing characteristics. Origami tessellations have
been used to develop deployable structures for space appli-
cations [1–3]. Other applications of Origami have ranged for
example from corrugated cores [4–6] to stents designs [7],
micro-assembly and robotics [8, 9] and graphene technology

[10]. All these applications are compounded by the use of
several mathematical frameworks that allow to design the
engineering applications from first principles [11–14]. Kir-
igami is the ancient Japanese art of cutting and folding paper,
a process that shapes a two-dimensional sheet into a three-
dimensional structure. The use of cutting allows Kirigami to
create honeycombs and other porous cellular configurations.
Kirigami has been recently adopted to develop shape chan-
ging smart materials and morphing components [15, 16],
multiscale structures with unusual deformation mechanisms
[17, 18], soft robotics [16], high-performance cores for
sandwich structures [19, 20], metamaterials for wave propa-
gation [21, 22] and new classes of nanocomposite materials
[23–25]. The first known instance of Kirigami being used to
create a honeycomb is a patent filed by Dean in 1921 [26].
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Figure 1 shows the method proposed in the patent, which
involves the use of cutting, corrugating, folding, and bonding
steps. A hexagonal honeycomb configuration can be made
from adopting Kirigami techiques because cuts in the sheet
open up into hexagonal holes and therefore create the cells.
Nojima and Saito have developed a mathematical framework
that links the cutting pattern to the final hexagonal honey-
comb geometry [27]. The dimensions of the cutting pattern on
a 2D sheet material are directly related to the final dimensions
of the 3D structure, and quite simple changes in the cutting
pattern can generate significant changes in the 3D geometry.
Saito et al have provided a thorough explanation about how
the cutting pattern affects the honeycomb geometry and
related manufacturing methods [28]. It is also possible to vary
the thickness within the honeycomb, which can give rise to
some secondary functions.

In past works some of the Authors have adapted Nojima
and Saito’s methods to develop a new class of cellular
structures with high flexibility in terms of final geometry
[29, 30]. These structures are called ‘open’ honeycombs
because they lack a closed cell topology. The behaviour of
these structures is significantly affected by the presence of
folds within the cellular configuration. Variations in the fold
angle produce large volume changes (see figure 2). The
flexibility and volume variation of these cellular structures
could be exploited for general space or mechanical deploy-
able structures. The aim of this work is to create an open
honeycomb using shape memory polymers (SMPs) in such a
way that the folds can be actuated by thermal loading, and can
therefore create a controllable shape changing configuration.

SMPs are polymers that can retain different shapes, and
can be triggered to move between these states by certain
stimuli. SMPs are emerging as an alternative to SMAs. In
contrast to SMAs, SMPs generate small stresses (1–3MPa),
large strains (up to 800%), and are significantly easier to
process and customise [31].

SMPs have been widely used for applications related to
shape morphing. Liu et al [31] provide a good general sum-
mary of use of SMPs in this area, with polymers being
categorised into different classes based on their composition
and activation mechanisms. The polymer used in this work
falls into category 1—chemically cross-linked glassy ther-
mosets. In this type of SMP the glass transition temperature
(Tg) serves as the transition for the shape memory effect. This
results in a one-way shape memory action i.e. a one-time
transition from a ‘learned’ temporary shape back to the as-
manufactured permanent form. Because the permanent shape
is fixed by covalent bonding, the permanent form must be set
during the manufacture of the polymer by a process like
casting. The polymer can then be ‘taught’ a temporary shape
by thermoforming above its Tg, and it can be returned to its
permanent shape again by heating above its transition temp-
erature. SMPs are currently developed for a wide variety of
applications, from general morphing structures [32], self-
healing [33], smart mandrels [34], 3D printing [35] to
damping [36] and viscoelastic/reversible adhesion [16].

Examples of use of shape memory materials in honey-
comb structures is fairly limited. Hassan et al [37] have
manufactured and characterised one of the first shape memory
honeycombs made from SMA strips (Ni Ti Cu48 46 6). Other
works about the development of honeycombs and cellular
structures with different types of SMA materials and geo-
metry can be found in [38–41]. A shape memory alloy cel-
lular structure that exploits the auxetic nature of the chiral
configuration has been also developed to create a deployable
demonstrator [42] and space antenna [43]. Rossiter et al [44]
have also produced a deployable chiral honeycomb, this time
using SMP (CRG Veriflex laminate) to achieve greater
deployment strains and lower density and metastable con-
figurations. Auxetic materials are materials which can expand
in all directions [45, 46], and as a result they are often used

Figure 1. The Kirigami honeycomb manufacturing process. The specimens shown here were made of PEEK sheet as part of some of the
Authors’ past work [29].
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for deployable structures. We use an auxetic honeycomb
configuration in this work for the same reason.

One of the most important characteristics of deployable
structures is their capability of deploying or assembling in an
autonomous fashion. Self-folding origami is very relevant to
this work because it also deals with the self-assembly of
sheet-type materials. Hawkes et al [47] have created a pro-
grammable sheet capable of assuming two different folded

states. They prescribed a triangular ‘crease pattern’ by
embedding rigid triangles into a silicone sheet, such that the
original planar configuration could fold only along the sili-
cone lines. To this extent they have used SMA actuators to
control folding and embedded magnets have been used to
hold the folds closed after actuation. While the sheet suc-
cessfully forms the two folded shapes, this approach poses
several problems. The manufacturing process is complicated
and requires many steps, and each fold requires an individual
actuator which must be heated individually, and therefore the
sheet must also include heating elements and wiring to acti-
vate the shape change. Felton et al [48] have developed an
alternative approach for fold actuation, consisting of produ-
cing composite specimens with layers made from paper
substrates, SMP and polyimide. The paper layer was scored
with the crease pattern. Resistive circuits etched onto the
polyimide layer were used to locally actuate the SMP. The
asymmetry of the laminate causes the sheet to fold when the
SMP contracts, and the inclusion of the SMP actuator and the
circuitry as single sheets results in a much simpler manu-
facturing process compared to the one used by Hawkes et al
[47]. This approach could allow the creation of much larger
structures, also to be stored in a flat state prior to use. Tolley
et al [49] have further developed this type of technology
focusing more on the control of the final shape of the struc-
ture. In [49] a similar laminate approach is used but without
the polyimide layer; SMP-paper laminates are simply heated
in a uniform manner. Tolley and co-workers present a method
for limiting the deflection of a fold, such that the final shape
of the structure can be precisely controlled. They also present
a technique to self-seal the structures to be locked in place
after folding. New types of folding mechanisms triggered by
multi-temperature Tgs SMPs with differential elasticity and
plasticity have been also recently developed and proposed by
Zhao and co-workers [50].

The problem with all the above-mentioned self-folding
approaches is that the structure starts as a flat sheet. This
configuration can be undesirable for specific structural and
stowage applications because the flattened structure takes up a
significant amount of space. In this work we aim to create a
structure with shape memory polymer material with a small
folded initial configuration, which deploys to a larger final
state. The structure takes also advantage of a morphing open
honeycomb configuration, that creates by geometry Poisson’s
ratio switch effects and variable stiffness configura-
tions [29, 30].

2. Analytical modelling

2.1. Dimensions and volume change

In this section we present the analytical formulas that describe
the dimensions of the honeycomb, subjected to changes in the
fold angles α and θ. We adapt the calculations from [29] to
take into account the thickness of the cell walls, because the
latter has a significant effect on the dimensions of the hon-
eycomb in its folded state.

Figure 2. The density of open honeycombs compared to traditional
closed honeycombs. (a)An open honeycomb compared to its closed
counterpart. The unit cell of each configuration is shown in colour.
Folds are shown by dashed lines. The fold angle α is measured from
the vertical. (b)A schematic graph of the volume change of open
honeycombs with fold angle α (redrawn from [29]). The unit cell of
the honeycomb is shown at key points to illustrate the shape change.
The relative density of the open honeycomb is given by

C

1
sin 2 1

open

closed
=

r

r a+
where C is a function of the fixed cell dimensions.
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In order to achieve expansion along all the directions we
use an auxetic (negative Poisson’s ratio) re-entrant config-
uration for the stowed state, which will deploy into a regular
non-auxetic deployed phase (see figure 3(a)). Figure 3 also
shows the dimensions of the unit cell along the 1, 2, 3
directions for both the auxetic and regular configurations. The
dimensions H, L, T are given by equations (1).

H h l a2 2 sin , 1reg q= + ( )

L b l t t b2 sin 2 cos 2 cos , 1reg 1 hingea q a= + + +( ) ( )

T b l t t ccos cos 2 sin , 1reg 1 hingea q a= + + +( ) ( )

H h l t t d2 2 sin , 1aux 1 2 q= + - -( ) ( )

L b t t t

l t t e

2 sin 2 2 2

cos cos , 1
aux 1 2 hinge

1 2

a
q a

= + + +
+ - -

(
( ) ) ( )

T b t t t

l t t f

cos 2 2

cos sin , 1
aux 1 2 hinge

1 2

a
q a

= + + +
+ - -

(
( ) ) ( )

These unit cell dimensions can be used to represent an
infinite honeycomb, but for a finite cellular structure we
must adapt these formulas to take into account edge condi-
tions (e.g. no hinges are attached on the outsides of the
honeycomb, and the outermost h-walls are slightly longer).
For a honeycomb with number of cells N1 and N2 along the 1

Figure 3. Stowed and deployed honeycomb dimensions. (a)Left: the honeycomb in its reentrant stowed configuration. Right: the honeycomb
in its non-reentrant deployed configuration. The strip components are shown in grey, with unit cell highlighted blue. Hinges are shown in
green. (b)Detail views of the unit cell, showing dimensions H, L, T, for different configurations. (i) The regular (non-reentrant) configuration
where 0q > . (ii) The auxetic (reentrant) configuration where 0q < . Because the thickness of the strip is significant, we assume that a piece
of the l-wall (of length t t 21 2+( ) ) is consumed in the strip fold. (iii) The stowed configuration. This is the auxetic configuration
with 0q a= = .
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and 2 directions, from inspection one can derive the
honeycomb dimensions: (2).

H N H h a, 2aux 1 aux* = + ( )

L N L t b2 cos , 2aux 2 aux hinge* a= - ( )

T T c, 2aux aux* = ( )

H N H h d, 2reg 1 reg* = + ( )

L N L t e2 cos , 2reg 2 reg hinge* a= - ( )

T T f. 2reg reg* = ( )

Table 1 shows the dimensions for the SMP deployable
honeycomb used in this work. These can be substituted into
(2) to predict the stowed and deployed dimensions of the
manufactured cellular structures. The dimensions used in this
work were selected to easily produce a working demonstrator.
The honeycomb cell dimensions are indeed quite large to
reduce the impact of manufacturing tolerances. However, the
model presented in this work is not limited to the dimensions
used here, but could be extended to prototypes with different
dimensional values. The limiting factor on scaling is most
likely provided by the material thickness. For example, if the
structure is scaled up several times its current size the
designer will eventually encounter problems folding the
resulting very thick hinges. Similarly, the scaling down will
eventually lead to the material becoming too thin for classical
macroscale engineering applications. Other factors which
could also make the model less valid are: (a) the combinations
of dimensions that cause the walls to self-intersect (i.e., an un-
manufacturable geometry) and (b) large changes in one
dimension compared to the others, which could cause a very
elongated geometry of the honeycomb.

2.2. Hinge moment

In this section we estimate the opening moment generated by
the SMP hinge. The hinges are manufactured in the deployed
position, and must be thermoformed into the stowed config-
uration. During thermoforming an applied moment Mext

produces a stress distribution sq through the thickness of the
hinge. We use an engineering curved beam theory model [51]

to model the hinge, with figure 4 showing the curved beam
geometry considered. The stress distribution due to bending
and the location of the neutral axis can be described by
equations (3) and (4).

M y

Aer
, 3exts = -q ( )

e R r . 4n= - ( )

When the hinges are activated and the strain is recovered
we assume that the distribution of the SMP activation strength

as is the same as the distribution of the stored stress sq. The
shape memory polymer generates a hinge opening moment
equal to Mext—i.e.: as s=q and M Mext smp= . Substituting
this into (3) we obtain:

M
Aer

y
. 5a

smp
s

= - ( )

From figure 4 it can be seen that y r rn= - , and we
substitute this into (5) to obtain:

M
Aer

r r
. 6

n
smp

as= -
-

( )

We use table 9.1 from [51] with R 0.6 mm= and
c d 2 0.5 mm= = to obtain e 0.183 mm= . We then sub-
stitute e into (4) to obtain r 0.417 mmn = . A h thinge= =
20 mm2. We assume that the maximum tensile strength as on
the convex face is equal to the measured activation strength as
of the SMP, and therefore we substitute r R c= + =
1.1 mm into (6) to obtain:

M 5.895 . 7smp as= ( )

From these calculations it is evident that Msmp is very
much dependent on the hinge thickness and the position of
the neutral axis.

3. Prototype, results and discussions

3.1. SMP honeycomb manufacturing

The particular SMP used in this work consists of a styrene-
based polymer synthesised by mixing styrene and butyl
acrylate with benzoyl peroxide and cross-linking agent divi-
nylbenzene, followed by stirring at room temperature (further
details can be found in [52]). The glass transition temperature
of the polymer is (T 70 Cg »  ) and serves as the shape
memory transition temperature. The shape memory action is a
one-time transition from a ‘learned’ temporary shape back to
the as-manufactured permanent shape. To create a deployable
SMP honeycomb, we used the SMP’s permanent shape for
the deployed configuration, and the temporary shape for the
stowed phase. Heating of the stowed configuration would
cause it to return to its deployed configuration. A casting
process was used to fix the honeycomb deployed shape dur-
ing the cure of the polymer. The mixture of styrene, butyl
acrylate, benzoyl peroxide and divinylbenzene was poured
into moulds and cured at 75 °C for 24 h. To simplify the

Table 1. Honeycomb dimensions.

Dimension Value

h 20 mm
l 10 mm
θ 30◦

t1 2.5 mm
t2 1.25 mm
b 25 mm
thinge 1 mm

stoa 0◦

depa 45◦

stoq 90- 
depq 30◦
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Figure 5. The manufacturing process used to produce the SMP honeycomb. (a) A diagram of the moulds used to form the strip components.
The moulds are aligned and held closed by bolts, and washers are used to control the thickness of the component. Rubber tubing (grey line) is
used to seal the working section. (b) The working section of the strip moulds is coated with release film. (c) Uncured SMP is poured into the
closed hinge moulds before being cured at 75 C◦ for 24 h. (d) The cured part is removed from the strip moulds. (e) The cured part is cut into
strips. (f) The components are thermoformed into their stowed shape. (g) The stowed strips and hinges are bonded using cyanoacrylate
adhesive to form the stowed honeycomb.

Figure 4. Curved beam geometry (adapted from [51]). An external moment Mext is applied to the curved beam. This generates the
circumferential stress distribution sq. Msmp is the hinge opening moment generated by the activation of the SMP.
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moulds, the honeycomb was split into strip and hinge com-
ponents (see figure 3(a)). The hinges and strips were ther-
moformed into their stowed configurations and subsequently
assembled to form the stowed honeycomb. Figure 5 shows
the manufacturing process in detail.

3.2. Activation force measurement

To estimate the hinge moment generated by the SMP hinges
the activation strength of the SMP was determined experi-
mentally using the procedure described in figure 6. An Instron
tensile test machine with a temperature controlled chamber
(500 N load cell) was used to heat rectangular SMP coupons
and measure the activation force generated by the shape
memory action. The activation strength is then given by

F Aa as = . Six specimens were tested, using a strain rate of
5 mmmin−1 for the stretching phase, and a heating rate of
10 °Cmin−1 for the recovery phase. The mean value of the
activation strength across the whole sample population was
0.49MPa, with a standard deviation of 0.118MPa. We sub-
stitute the measured as into (7) to predict a final hinge
moment M 2.89 Nmmsmp = .

3.3. SMP honeycomb deployment experiment

We performed a deployment test of the SMP honeycomb
demonstrator to measure the volume of the deployed state
relative to the stowed configuration, and compare the volume
change to the one provided by the theoretical prediction. The
stowed configuration was heated to 100 C◦ using the test
machine temperature chamber, and deployment was
observed. When no further movement was recorded, the
honeycomb was removed from the chamber and the dimen-
sions H, L, and T were measured using Vernier calipers
(several measurements were taken per dimension and aver-
aged). Plates were placed under and over the honeycomb to
gain a flat surface in order to measure the thickness. Figure 7
shows the stowed and fully deployed configurations.

Figure 8 shows the experimental results compared to the
analytical predictions. It is evident that the stowed volume
was larger than expected, while the deployed volume showed
a lower deployment ratio ( 20%» ). It is also possible to
observe that both the H and L dimensions were slightly larger
than predicted in the stowed configuration ( 2%» ), indicating
that the thermoformed state was not completely uniform and

Figure 6.A schematic of the activation strength experiment in force/
displacement/temperature space. (1) The specimen was heated to
T 80 C=  while held at constant displacement. Thermal expansion
of the specimen caused a small compressive load. (2) The
temperature was held constant at T 80 C=  while the specimen was
stretched to 20 mm2d = at a constant rate of 5 mm/min. Force was
measured. (3) The specimen was held at constant 2d d= and cooled
to room temperature. This fixed the temporary shape of the SMP. (4)
At room temperature, the specimen was released from the machine
grips to release any elastic strain 2 1d d-( ). (5) The specimen was
reinserted into the grips and heated to T 80 C=  at a rate of
10 °C min−1 while held at constant 1d d= . The recovery force F1
generated by the specimen was measured.

Figure 7. (a) Stowed configuration and (b) deployed configuration of
the SMP honeycomb.
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more material was consumed in the strip folds than initially
expected. In the deployed configuration, the honeycomb
expanded fully in the H-direction but not completely in the L-
direction. It is worth mentioning that the thickness T was
virtually unchanged after deployment, while the dimension H
had a final measured 5%» difference from the theoretical
prediction. The hinges did not provide a deployment as
effective as the one observed in the strips, likely due to the
different thicknesses of the components. As mentioned in
section 2.2, the thickness of the hinge and the position of the
neutral axis have a large effect on the opening moment
generated by the hinge. This is supported by the fact that the
strip folds (thickness between t 2.51 = mm and t 1.252 =
mm) deployed fully while the hinge folds (t 1hinge = mm) did
not. Furthermore, the SMP Kirigami honeycomb demon-
strator showed the feasibility of the concept and the general
validity of the geometric formulas for the deployment ratio.

From figure 8 we can see that the deployment path taken
by our demonstrator goes from the minimum to the maximum
possible volume. The minimum volume configurations cor-
respond to starting α angles of 0 and 90, with a maximum
starting volume at 45a = . For the hexagonal centresym-
metric open honeycomb configuration used the maximum
volume at deployment corresponds to an angle 30q = . It is
however worth noticing that, aside from the one adopted in
this work, other possible paths (e.g. starting from a different
corner of the design envelope) are possible. This shows that
the shape change exhibited by our demonstrator is by no
means the only possible motion, and different geometries and
SMP materials with multiple activation temperatures could
produce different results. The current volumetric or stowage

deployment ratio is 5.2 (figure 8), but the theoretical volume
surface is based on the fixed honeycomb dimensions used in
this work. By changing these dimensions we could achieve an
even greater volume change, or we could optimise the hon-
eycomb for a specific task—e.g. deployment along a certain
direction.

4. Conclusions

We have manufactured a working demonstrator to test the
feasibility of using SMPs to actuate the folds in open Kirigami
honeycombs. The concept shown in this paper builds on pre-
vious work, to create a model which takes into account the
thickness of the honeycomb cell walls. The moment activation
can be controlled through the geometry of the hinge and the
tupe of shape memory material used. The model shows good
agreement with the deployment experiment. In this work we
chose our honeycomb configuration to have the largest possible
ratio of stowed to deployed volume, but in principle one could
optimise the configuration for a specific application or use with
different SMPs. For more complex structures, the recent work
by Chen et al [53] could be used to model structures with
hierarchical and sequential folds.Though the demonstrator
successfully deployed, there is room for improvement. While
the hinge moment generated by the SMP was large enough to
overcome friction and deploy the honeycomb, it is currently
very low for practical purposes and would not be suitable for
larger structures. The hinge design could be significantly
improved by including a paper layer to offset the SMP further
from the neutral axis and make it more mechanically effective.

Figure 8. Experimental results versus analytical predictions for honeycomb deployment. Left: a surface plot showing the theoretical volume
in α, θ space. The line shows the predicted volume change during deployment according to the analytical models. The blue squares represent
the measured volume of the honeycomb’s stowed and deployed states. Right: the variation of the individual honeycomb dimensions with α
and θ (only θ shown on the x-axis).
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A paper-SMP laminate manufacturing method could also allow
us to better control the hinges’ range of motion and design
more complex Kirigami mechanisms.
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