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Projection-based embedding provides a simple and numerically robust framework for multiscale
wavefunction-in-density-functional-theory (WF-in-DFT) calculations. The approach works well
when the approximate DFT is sufficiently accurate to describe the energetics of the low-level sub-
system and the coupling between subsystems. It is also necessary that the low-level DFT produces
a qualitatively reasonable description of the total density, and in this work, we study model systems
where delocalization error prevents this from being the case. We find substantial errors in embedding
calculations on open-shell doublet systems in which self-interaction errors cause spurious delocaliza-
tion of the singly occupied orbital. We propose a solution to this error by evaluating the DFT energy
using a more accurate self-consistent density, such as that of Hartree-Fock (HF) theory. These so-
called WF-in-(HF-DFT) calculations show excellent convergence towards full-system wavefunction
calculations. © 2017 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4974929]

I. INTRODUCTION

Density-functional theory (DFT) is an extremely power-
ful tool for exploring a range of chemical problems, including
reactivity,1–3 molecular spectroscopy,4,5 the study of inorganic
crystals,6 enzyme catalysis7 and simulations of materials,8

amongst many others. The attraction of the method is that it can
produce accurate results with a relatively low scaling—cubic
or lower—of computational cost with system size.

However, results can often be rather sensitive to the choice
of the approximate exchange-correlation functional, leading
to uncertain conclusions,2,3,9 particularly when there are no
experimental data to help inform this choice. The correlated
post-Hartree-Fock (HF) method of coupled-cluster theory with
singles, doubles and pertubative triples (CCSD(T)) is known
to provide much more consistently reliable results, at least for
systems whose electronic structure is dominated by a single
reference determinant.10

The O(N7) computational scaling of this method prevents
application to large chemical systems without further approxi-
mations, and two basic strategies have evolved to address this:
first, one can construct approximations that reduce computa-
tional scaling for the calculation on the whole system, as done
in various local-correlation approaches.11–19 A second strategy
is to develop multiscale techniques in which a high-level calcu-
lation on a chemically important subsystem is embedded into
a more approximate model describing the environment.7,20–24

In common with many other groups, we find that DFT
provides an excellent framework for constructing embedding
theories,25–30 based on a simple additive partition of the density

a)Electronic mail: fred.manby@bristol.ac.uk

into subsystem contributions,

ρ = ρA + ρB . (1)

The energy of the total system can then be calculated as

E[ρ] = E[ρA] + E[ρB] + ∆E[ρA, ρB] , (2)

where the first two terms are the energies of the isolated sub-
systems and the third includes all nonadditive contributions.
Most contributions to ∆E[ρA, ρB] are straightforward, but the
nonadditive-kinetic-energy term ∆Ts[ρA, ρB] is difficult. This
term is often approximated27,28,31–36 but can also be calculated
exactly through potential inversion methods,31,37–40 although
this remains numerically challenging.

Projection-based embedding avoids this issue by defining
subsystem densities in terms of disjoint subsets of orthogo-
nal orbitals such that ∆Ts[ρA, ρB] = 0.30 The fact that there
is no non-additive kinetic energy to approximate, coupled
with the simplicity of other terms, makes it straightforward
to achieve the exactness property that a DFT-in-DFT calcula-
tion is equivalent to performing DFT on the whole system. An
accurate wavefunction (WF) method (e.g., CCSD(T)) can then
be applied to subsystem A, with interactions between subsys-
tems and the energy contribution of subsystem B handled at
the DFT level.

The coulomb and exchange-correlation potential of the
subsystem B is added to the core Hamiltonian ĤA-in-B, which
describes all interactions between subsystems A and B. It
enforces orthogonality by using a level shift projector that
shifts all orbitals of subsystem B towards an infinite energy
(in practice, a large finite value is used). The total energy is
then calculated by

EA-in-B = 〈ΨA | ĤA-in-B |ΨA〉 + EB, (3)
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where ΨA is the wavefunction for subsystem A and EB is the
DFT energy of subsystem B. Further details can be found in
our previous work.30,41,42

Projection-based CCSD(T)-in-DFT embedding calcula-
tions for open-shell systems are performed with the following
procedure:

1. perform a restricted open-shell DFT calculation on the
entire system (HF or in general any self-consistent field
(SCF) method can be used);

2. localize the occupied molecular orbitals;
3. select atoms and the number of electrons in subsystem

A and determine the partitioning from the local molec-
ular orbitals. All open-shell orbitals are taken to be in
subsystem A, resulting in a closed-shell subsystem B;

4. form the embedded Hamiltonian ĤA-in-B;
5. perform restricted open-shell HF followed by a restricted

open-shell CCSD(T) calculations on subsystem A.

This approach has been used to model adsorption of cobalt
onto graphene analogues;42 in conjunction with combined
quantum mechanics/molecular mechanics (QM/MM) to accu-
rately model an enzyme active site;43 in many-body expansions
of neutral water clusters;41,44 to investigate new cobalt-based
catalysts for hydrogen evolution;45 and to explore electrochem-
ical stability and solvation effects in battery electrolytes.46

Combinations of different methods, as in projection-based
CCSD(T)-in-DFT, are often accurate but can begin to break-
down in some regimes. For example, it is possible that the
chemical process in subsystem A induces a response in sub-
system B that is incorrectly handled by the low level of theory
in that region. Main sources of error in projection-based error
have been analysed by Goodpaster et al., who found that in
cases where embedding performs less well, the error is often
dominated by the non-additive exchange-correlation energy.47

Other errors such as those that occur from the use of DFT on
subsystem B, or in the embedding potential, were observed
to be relatively minor for the systems studied by Goodpaster
et al.47 In an earlier incarnation of our embedding work,
we observed some cases where errors primarily arose from
inaccuracies in the density computed using the local-density
approximation, in calculations of spin-state splittings of the
hexaaquairon(II) cation.48

Here we investigate cases where large errors occur for
CCSD(T)-in-DFT embedding but not for CCSD(T)-in-HF. We
show that these errors arise from an inaccurate description of
the density by DFT, which originate from the incomplete can-
cellation of the self-interaction component of the Coulomb
and exchange-correlation energies. This is a well-known prob-
lem for DFT, leading to issues such as the overstabilization of
hemibonded structures49–57 or in modelling the interaction of
charge-transfer complexes58 and in systems with a non-integer
number of electrons.59 The problems can be reduced through
self-interaction corrections60–62 or by including a portion of
exact exchange in a hybrid functional.63 However, for many
chemical problems, density errors driven by self-interaction
are small and are less important than errors in the evaluation
of the energy.57

Burke et al. show that in some chemical systems such
as odd-electron radical species, the self-interaction error from

DFT is large enough that it dominates over energetic errors
arising from using an approximate exchange-correlation func-
tional.57,64 They demonstrate that in such cases accuracy can be
greatly improved by evaluating the approximate DFT energy
using the qualitatively accurate HF density. These “density-
corrected” DFT calculations produce potential-energy sur-
faces that are much more accurate than those produced by
approximate DFT alone.57,64

Here we show that a similar self-interaction effect occurs
for some embedding calculations, which rely on an accurate
density to perform an effective partitioning of the system into
subsystems A and B. This could be of particular importance
for calculations on transition metal clusters, which often have
a large number of unpaired electrons.

II. IONISED WATER CLUSTERS

It is well-known that pure generalized-gradient approx-
imation (GGA) functionals incorrectly predict the water
dimer cation to have the hemibonded [H2O · · ·OH2]+ struc-
ture;51,65,66 more sophisticated theoretical methods49,56,66–70

and vibrational spectroscopy71 show that the correct geometry
is the contact-pair H3O+· · ·•OH. The overstabilization of the
hemibonded structure by GGAs is due to the self-interaction
error, which leads to the spurious delocalization of the elec-
tron hole.66,72,73 Where the self-interaction error is reduced,
by inclusion of exact exchange50,66,69,73 or self-interaction cor-
rections,67,74 DFT approximations typically predict the correct
geometry.

This problem is known to extend into larger cationic water
clusters, where many possible isomers can form,70,73,75,76 rep-
resenting various solvation structures for the dimer cation in
the aqueous solution. For (H2O)+n clusters with n ≤ 4, the
lowest-energy structures have an adjacent hydronium ion and
a hydroxyl radical, which is termed as a contact-pair isomer.
For n > 4, a separated-pair isomer is preferred, with at least
one water monomer separating the ion and radical.76 For the
purposes of using these systems to assess errors in embedding,
it is useful to choose the contact-pair isomers, as the hydroxyl-
hydronium ion pair is contained within a contiguous region.
Therefore, the two tetramer (n = 4) contact-pair isomers were
studied, with the structures shown in Figure 1.

Herr et al. found structure (1) to be lower in energy than
(2) by 4.85 kcal mol�1 using the EOM-IP-CCSD(dT)/CBSDT

method.76 We found restricted open-shell CCSD(T)/aug-cc-
pVTZ to be in excellent agreement, producing a relative energy
of 4.80 kcal mol�1 to use as a benchmark. The following DFT
and coupled-cluster calculations are all restricted open-shell
calculations to coincide with this benchmark number for the
case where subsystem A encompasses the whole system.

FIG. 1. Structures of the ionised water tetramers.
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FIG. 2. Errors in relative energy of structures (1) and (2) calculated with the
following methods: SCF methods (green); CCSD(T)-in-SCF embedding in
each SCF method (orange); CCSD(T)-in-(HF-SCF) embedding in each HF
density-corrected SCF method (blue). Errors are with respect to CCSD(T),
which predicts a relative energy of 4.85 kcal mol�1. All embedding calcula-
tions defined subsystem A as the 9 electrons of the hydroxyl-hydronium ion
contact pair. H&H is used as an abbreviation for the BH&HLYP functional.

Here we perform a range of embedding calculations on
this system (computational details are given in the Appendix).
Figure 2 shows the error in relative energy with respect to
CCSD(T) for various methods. The relative energies from the
non-embedded SCF methods (HF and all six DFT functionals)
vary in accuracy, with the energy of −0.6 kcal mol�1 predicted
by the local-density approximation (LDA) being in error by
4.2 kcal mol�1 from CCSD(T). The hybrid functionals B3LYP
(20% exact exchange), PBE0 (25%), and BH&HLYP (50%)
perform better than the pure functionals LDA, BLYP, and PBE,
showing the importance of exact exchange in the treatment of
this system. As with predictions of the ground-state structure
of the dimer cation,50,66,69,73 the improvement seen in relative
energy here with the inclusion of exact exchange is likely due
to a reduction of self-interaction error.

CCSD(T)-in-HF shows excellent agreement with
CCSD(T), with an error of just 0.5 kcal mol�1. However,
for these open-shell examples, CCSD(T)-in-DFT errors are
strongly dependent on the exchange-correlation functional.
This contrasts with our previous studies which showed a
great reduction of sensitivity to the choice of functional in
CCSD(T)-in-DFT calculations. When a pure GGA is used in
subsystem B, the relative energies computed using embedding
showed large errors, with a maximum of −10.8 kcal mol�1 for
LDA—significantly larger than the errors from DFT alone. The
hybrid functionals produced much better embedding results,
with CCSD(T)-in-DFT using PBE0, B3LYP, and BH&HLYP
showing errors of less than 0.5 kcal mol�1 from CCSD(T).

These results clearly show that whilst HF is reliable for
embedding, DFT requires exact exchange to achieve a similar
level of accuracy. This suggests that the self-interaction error

FIG. 4. The fractional population (active orbital charge) of the singly occu-
pied orbital on the M1 monomer of structure (2), as a function of the percentage
of exact exchange mixed into the BLYP functional (see text for details). The
water monomers of structure (1) do not show such large delocalization effects,
with a maximum fractional population of 0.001 electrons.

of LDA and GGAs may play a role. To investigate this, we
performed embedding calculations using the density-corrected
DFT scheme suggested by Burke and co-workers.57,64 These
calculations are performed precisely as described in the Intro-
duction, except that the molecular orbital for the whole system
is computed using the HF theory, and the DFT calculation
is performed without iterative update of these orbitals. HF-
density-corrected DFT (which we denote HF-DFT) calcu-
lations produced mildly improved relative energies, though
errors of up to 2.5 kcal mol�1 from CCSD(T) remain (not
shown in Figure 2). However, CCSD(T)-in-(HF-DFT) calcula-
tions are strikingly more accurate than CCSD(T)-in-DFT, with
all relative energies within 0.4 kcal mol�1 of CCSD(T). This
confirms that embedding calculations are particularly sensitive
to errors in the mean-field electronic density.

As further evidence that density errors underpin the poor
performance of CCSD(T)-in-DFT for these systems, we show
spin-density differences (relative to HF) in Figure 3. This illus-
trates the spurious delocalization of spin density from the
hydroxy radical M2 to the oxygen atom of water-molecule
M1. It can also be seen that the effect is significantly smaller
for BH&HLYP than for BLYP, a difference that is reflected in
the relative performance of these two functionals in embedding
calculations, as shown in Figure 2.

It appears that the delocalization of spin density from
monomer M2 to M1 decreases with increasing fraction of
exact exchange. To confirm this, we investigated the degree
of this delocalization in calculations using hybrid analogues
of BLYP with

EX = aEHF
X + (1 − a)EBLYP

X (4)

FIG. 3. Differences in the spin density of structure (2)
relative to the HF spin density calculated using (a) BLYP
and (b) BH&HLYP. Blue and purple colours refer to
positive and negative difference densities, respectively.
Densities were plotted using an isovalue of 0.002 with
the Avogadro software package.77,78
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FIG. 5. The error in relative energy for CCSD(T)-in-DFT calculations from
CCSD(T), varied with the population of the singly occupied orbital on the
M1 monomer. The functionals used are displayed in red with full circles. EHF

X
is exact HF exchange scaled in as a percentage, where specified. A linear
trendline is shown.

as a function of the fraction of exact exchange. Figure 4
shows the population of spin density on monomer M1 as a
function of a. Populations were computed using the active-
orbital charges of the intrinsic-bond-orbital (IBO) method—
this method determines the fraction of the orbital that resides
on each atom of the species and has been shown to be much
less sensitive to the basis set than the Mulliken population
method.79 As expected, increasing the proportion of exact
exchange in the functional decreases the degree of delocali-
sation onto the M1 oxygen systematically. The effect is much
larger for structure (2) than structure (1), and the delocalization
effect in the former dominates in the energy error.

Figure 5 clearly highlights the linear relationship between
the degree of delocalisation of the singly occupied orbital
(measured as the fractional population of the unpaired elec-
tron on monomer M1) and the error in the relative energy.
Meta-GGAs such as the Minnesota functionals from the Truh-
lar group9,80–82 are a popular choice of functional for many
DFT studies. CCSD(T)-in-M06-L performs significantly bet-
ter than other non-hybrid GGAs, with an absolute error below
2 kcal mol�1. This error is again further reduced with the
inclusion of exact exchange in M06, M06-2X, and M06-HF.

For this ionised water system, the self-interaction error
causes DFT to produce a poor density. This causes some error
in the DFT energies, but these remain at least in reasonable
agreement with more accurate methods. However, embedded
Hartree-Fock (and thus coupled-cluster) theory appears to be
much more sensitive to deficiencies in the density, presumably
due to the role that the density plays in determining the subsys-
tem partition, and this can cause large errors in relative energy
for CCSD(T)-in-DFT. The reduction of self-interaction (and
delocalisation) by using hybrid functionals improves the den-
sity and the relative energies. However, an alternative solution
is to use a density correction (HF-DFT), which dramatically
reduces sensitivity on the choice of functional, as shown in
Figure 2.

III. COMPARISON OF OPEN- AND CLOSED-SHELL
REACTIONS

For the cases considered so far, the density errors in
DFT arise from spurious delocalisation of unpaired electrons.
Therefore, we now investigate the role of this error in open-

FIG. 6. Left: formation of hexane from open-shell methyl and pentyl rad-
icals. Right: formation of butylamine borane from closed-shell borane and
butylamine molecules. The partitioning into subsystem A (red) and subsys-
tem B (blue) corresponds to the smallest embedding calculations, with 18
electrons in subsystem A.

and closed-shell systems with otherwise similar chemistry. The
open-shell system here is the coupling of methyl and pentyl
radicals to form hexane, and the closed shell analogue is the
formation of a dative bond between borane and butylamine
(Figure 6).

Subsystem A was initially chosen to include the two react-
ing atoms (radical carbons in hexane, boron, and nitrogen in the
amine borane) and connected hydrogen atoms, thus including
18 electrons. The nature of the system allows the size of sub-
system A to be systematically increased to include successive
–CH2– fragments. With this increase in the size of subsystem
A, the reaction energy should converge to the CCSD(T) solu-
tion, which is reached exactly when subsystem A encompasses
the whole system.

The results are shown in Figure 7. The left panel shows
embedding results for the formation of hexane from open-
shell reactants, and CCSD(T)-in-HF can be seen to converge
to the CCSD(T) solution faster than CCSD(T)-in-BLYP, with
respect to the size of subsystem A. This is most pronounced
with the smallest subsystem A for this system (18 electrons,
two chain atoms), where CCSD(T)-in-HF gives an error in
relative energy of −0.2 kcal mol�1, while CCSD(T)-in-BLYP
gives an error of −7.3 kcal mol�1.

As in Section II, this error for CCSD(T)-in-BLYP is
observed to be a result of spurious delocalisation of the singly
occupied orbital in the pentyl radical. HF gives an orbital
charge on the first carbon atom outside subsystem A to be

FIG. 7. Errors in reaction energies relative to CCSD(T) for embedding calcu-
lations with an increasing number of carbon, boron, or nitrogen chain atoms
included in subsystem A, for the open-shell hexane system (left) and the
closed-shell butylamine borane system (right). Subsystem-A size is defined
in terms of the number of non-hydrogen atoms in both reactants and products.
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0.96, compared to 0.92 for BLYP densities. Again, the den-
sity correction removes this delocalisation error, with the
CCSD(T)-in-(HF-BLYP) error reduced to −2.0 kcal mol�1.
However, unlike the corresponding calculations in Section II,
these density-corrected embedding calculations are still not
as accurate as CCSD(T)-in-HF. This suggests that other non-
density errors such as those described by Goodpaster et al.47

come into play for this system, and that those errors are larger
with DFT in subsystem B than with HF.

It should be noted that where three chain atoms are
included in subsystem A, CCSD(T)-in-BLYP is consider-
ably more accurate than non-embedded BLYP, regardless of
the density error. Although density-correction should be used
where relevant, we usually recommend that subsystem A is
defined to include atoms that neighbour the reacting atoms
(i.e., three chain atoms in this system) as a minimum to ensure
reliable results are achieved.

The right-hand panel in Figure 7 shows the same embed-
ding results for the formation of the amine-borane system,
which involves only closed-shell species. CCSD(T)-in-HF is
again seen to converge to CCSD(T) faster than CCSD(T)-in-
BLYP. However, in this case, the error for CCSD(T)-in-BLYP
using the smallest subsystem A is much smaller: 1.7 kcal mol�1

compared to 0.6 kcal mol�1 for CCSD(T)-in-HF. Furthermore,
CCSD(T)-in-(HF-BLYP) shows no significant improvement
on CCSD(T)-in-BLYP. This suggests that the errors observed
for this system are not due to inaccuracy of the BLYP den-
sity, which is expected as there are no unpaired electrons.
This is confirmed by the reverse calculation, where a BLYP
density is used in an HF embedding calculation (CCSD(T)-in-
(BLYP-HF)). An error of 0.7 kcal mol�1 is produced, which
is in very close agreement with the CCSD(T)-in-HF calcu-
lation. Therefore, the error presumably comes from another
source and is again seen to be somewhat larger with BLYP than
with HF.

IV. CONCLUSIONS

Projection-based embedding30 is an effective method for
performing wavefunction-in-density-functional-theory (WF-
in-DFT) calculations, and even when subsystem A is
small, coupled-cluster-type accuracy is typically approached.
Previous work has shown that the main sources of embed-
ding error are either small or can be improved with cor-
rection terms,30,47 and WF-in-DFT can be used to greatly
reduce dependence on the choice of approximate density
functional.43

For some open-shell systems, the self-interaction error in
approximate density functionals leads to qualitative errors in
the electronic density. In subsequent projection-based embed-
ding calculations nothing that is done in subsystem A can
compensate for the global inaccuracy of the density, so large
energetic errors arise. The inclusion of exact exchange reduces
the delocalization error of approximate DFT calculations, but a
more systematic and satisfactory solution is obtained by using
the density-corrected DFT.57,64 The use of density-corrected
DFT for embedding eliminates the major pathology intro-
duced by the delocalization error, producing more consistently
reliable accuracy across closed- and open-shell systems. This

approach can be expected to improve the reliability of embed-
ding calcualtions in cases where delocalization error arises,
for example, in dissociative processes involving an odd num-
ber of electrons;59,72 dissociation of metal halides, even when
the electron number is even;83 and in the computation of
transition-state energies.
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APPENDIX: COMPUTATIONAL DETAILS

Geometries forthe ionised water clusters (Section II) were
taken from the CCSD(T)/aug-cc-pVTZ optimised structures
of Herr et al.76 Geometries for the species involved in the
reactions of hexane and butylamine borane (Section III) were
optimised using the Gaussian09 Revision D.01 software pack-
age84 with B3LYP-D385–87 in the 6-31G(d)88,89 basis set.
Single-point energies were obtained using HF, DFT (LDA,90

BLYP,86,91 PBE,92 B3LYP, BH&HLYP,86,93 PBE0,94,95

M06-L,80 M06,82 M06-2X,82 M06-HF81), and CCSD(T),96,97

as well as CCSD(T)-in-SCF embedded single-point energy
calculations using the SCF methods listed above. All of these
single-point calculations were performed using the MOLPRO
2015.1 software package.98,99 Whilst the basis-set truncation is
available to reduce the computational cost of projection-based
embedding,41,44 the calculations here were small enough to
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Interdiscip. Rev.: Comput. Mol. Sci. 2, 242–253 (2012).
99H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani,
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