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a b s t r a c t

A constitutive model for tufts bridging a mode I delamination is presented. The tuft is modelled as a rod,
laterally supported by an elastic medium and clamped at both ends. A fracture mechanics approach is
introduced to describe the progressive debonding of the tuft from the embedding laminate. The debond-
ing model requires the identification of stiffness, strength and toughness properties, which depend both
on the laminate/tuft architecture and the constituent materials. Such identification is carried out via
experimental data obtained from tensile tests on single tufts inserted in a pre-delaminated non-crimp
fabric composite. The experimental results are complemented by micro-scale finite element analysis.
The mode I bridging law obtained from the constitutive model is implemented into a meso-scale cohesive
zone formulation. This formulation is applied to predict the response to delamination of tufted Double
Cantilever Beam (DCB) coupons. The cohesive zone approach is validated by means of experimental data
from DCB tests. It is shown that the proposed micro- to meso-scale modelling approach yields results in
good agreement with the experiments.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Through-the-thickness reinforcement (TTR) is applied to 2-
dimensional composites in order to control and suppress delami-
nation. Most common TTR methods include Z-pinning [1], stitching
[2] and tufting [3]. Tufting is the most recent among them and is
performed by inserting carbon, glass or aramid threads through
the thickness of a dry preform by means of a single needle. Neigh-
bouring tufts are interconnected to each other by a seam on one
side of the preform and form thread loops on the other. Once resin
infused, tufts become integral parts of the preform architecture,
making it locally 3-dimensional. Despite the proved potential of
tufts to counteract the propagation of delamination in composite
parts [4], a complete study of their crack bridging behaviour is
not available in the open literature.

The aim of this paper is to identify and describe the influence of
micro-structure on the mode I crack bridging response of tufts and
use the observations made at the micro-scale as the basis for the
development of a multi-scale modelling framework for tufted
composites.

An analytical micro-mechanical model is proposed to simulate
the mechanical response of tufts embedded in mode I delaminating
composites. The governing equations and assumptions of the
model are supported by experimental results obtained for single-
tuft coupons, complemented with observations of the tuft architec-
ture, morphology and failure mode. The suitability of this model
for the prediction of the mechanical behaviour of bridged inter-
faces has been assessed via its implementation into the finite ele-
ment model of a DCB coupon. A cohesive zone approach [5] has
been adopted for this purpose and experimental data have been
used to validate the overall multi-scale modelling strategy
presented.

2. Bridging mechanisms of fibrous tufts

2.1. Single-tuft tests

A set of pre-delaminated single-tuft coupons has been tested
under mode I conditions in order to derive the bridging law of
the tuft, i.e. the relation between the relative displacement of the
surfaces of a bridged crack and the force exerted by the tuft to
counteract it [6,7]. The specimens were made of four layers of biax-
ial carbon Non-Crimp Fabric (NCF) with an areal weight of 1010
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g/m2, stacked in a symmetric [(0/90)s]2 layup. The stack was sepa-
rated at the mid-plane by a thin release film. Each 0�/90� layer con-
tained equally arranged 24k HTS carbon fibre tows from Tenax,
held together by non-structural stitching. Each coupon was tufted
with commercially available 2k HTA40 carbon fibre sewing thread,
having a dry cross-section area of 0.077 mm2. Tufts were inserted
orthogonally to the release film. After insertion, each tuft featured
a free loop end 3–5 mm long. The tufted preform was injected with
aerospace grade epoxy resin (MVR444, Advanced Composites
Group) using a Vacuum Assisted Resin Transfer Moulding (VARTM)
process. Injection was carried out at 70 �C and 1 bar pressure, fol-
lowed by cure at 160 �C for 90 min at 4 bar. The cured panel was
subjected to post-cure in the oven at 180 �C for 120 min. The final
thickness was 4 (�0.01) mm, with resulting global fibre volume
fraction of 56.5%. The single-tuft coupons, with dimensions
20 mm � 20 mm � 4 mm, were tested in out-of-plane tension,
under displacement control, at a cross-head speed of 0.25 mm/
min. A Digital Image Correlation (DIC) system was used to monitor
the relative opening of the testing fixtures. Testing conditions are
illustrated in Fig. 1.

2.2. Tuft morphology

Micrographic analysis was carried out to assess the post-cure
tuft morphology, as shown in Fig. 2a. The insertion of tufts in a pre-
form causes a local disruption of the in-plane fibre architecture,
resulting in the formation of resin-rich regions around the
through-thickness reinforcement. This is consistent with what
has been reported for other TTR types in the open literature
[7,8]. The cross section of the tuft is modelled by both the fabric
architecture and the preform layup. Micrographs have revealed
resin-rich regions characterised by maximum and minimum diam-
eters of 5.6 mm (Coefficient Of Variation (COV) = 14.3%) and
0.55 mm (COV = 14.5%), respectively. The average impregnated
cross-sectional area of the tuft, measured at 25% and 75% thickness
of the samples, was 0.27 mm2 (COV = 11%). Sectioning of the spec-
imens has shown further that tufts are characterised by curved
profiles and a random arrangement of their constituting thread
segments, as in Fig. 2b. Such complex inherent features render a
topological definition of tufts very difficult, and help explain the
large experimental scatter in the derived bridging laws, as in
Fig. 3a.

Fig. 1. Mode I test on single-tuft specimen. The test is carried out in displacement
control with an Instron 5500R and a 5 kN load cell. The arrows at the fours corners
of the T-tabs identify the monitored displacements. Two cameras, one on the front
and one at the back of the specimen, have been used at this purpose. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. In-plane (a) and out-of-plane (b) tuft morphology in a NCF composite. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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2.3. Mechanical response of tufts

With reference to Fig. 3a, four stages can be identified in the
crack bridging response of tufts. Initially the bridging load
increases, approximately in a linear fashion, up to a critical load

in the range 50–100 N. Beyond this load, the slope of the load-
displacement curves decreases significantly, characterising the
second stage of the bridging response. Micrographs of partially
loaded specimens reveal debonding cracks developing along the
tufts at this stage, as shown in Fig. 3b. After reaching a peak value,
Pf , the load suddenly drops. At this stage, tufts break due to tensile
fibre failure, which in the majority of cases occurs in proximity of
the delamination plane. However, if fibre rupture occurs at a point
within the composite, frictional pull-out takes place and, after a
first large drop, the load decreases gradually to zero. Due to the
tufts curvature, fibres are not loaded uniformly and some fail
before others, as suggested by the presence of multiple load drops
during the debonding stage. This process reflects in the scatter that
can be appreciated in Fig. 3a, affecting the load to failure of tufts.

The mechanical energy involved in the process of mode I delam-
ination bridging operated by tufts, and denoted by WI , is therefore
determined by the work done to deform, disbond and finally pull-
out the tufts. For the tested specimens, the average value of this
energy is 35.6 mJ.

3. A mode I constitutive model for tufts

Micro-mechanical models of through-thickness reinforcements
include those of Jain et al. [9,10] and Cox et al. [11,12], which apply
both to stitches and to short rods, and those of Allegri et al. [13]
and Bianchi and Zhang [5], developed specifically for z-pins. Struc-
tural similarities between stitches and tufts make the first two
models particularly relevant for the purposes of this paper. The
aim of these models is the prediction of the bridging function char-
acteristic of a specific z-reinforcement. Once determined, this
bridging function, or bridging law, can be represented at the
meso-scale by employing discrete non-linear springs, homoge-
nised cohesive zone models or combinations of the two [14–18].

Jain et al. [9,10] proposed a simple analytical model for a single
stitch bridging a crack under mode I loading conditions. The TTR
unit was assumed perfectly cylindrical and in frictional contact
with the surrounding laminate. Cox et al. [11,12,19], extended this
model to inclined tows, considering mixed-mode and mode II load-
ing conditions. In these models the pre-debonding stage for the
stitch is neglected. With focus on mode I loading, a frictional slip
zone ðlsÞ is considered to start developing immediately along the
stitch under tensile load. For interconnected stitches, when ls
equals the embedded length of the stitch L, the load and displace-
ment keep increasing until the thread reaches its tensile strength
and breaks. In reference [11], Cox and Sridhar also accounted for
the anchoring action of the horizontal thread segments of the
stitch. When ls = L, a further load increase is considered to be
absorbed by these thread segments, which are pulled into the com-
posite contributing to the axial displacement of the vertical thread.

Here, we present an analytical micro-mechanical model devel-
oped to capture the experimentally determined bridging mecha-
nisms for tufts, as discussed in Section 2. The tuft is represented
as a rod of cross-sectional area A, embedded in an elastic medium.
It is inserted vertically and bridges a delamination at the mid-plane
of a laminate. Neglecting, at this stage, the complexities of the tuft
geometry and the consequences these may have on its mechanical
response, the same damage mechanisms are considered to develop
in both halves of the tuft. Under symmetric loading, this assump-
tion allows to model only half of the studied domain (see Fig. 4).
Unlike in the existing models [9–12], here the z-reinforcement is
assumed to have an initial elastic stage, during which it is fully
bonded to the composite. Where bonded, the tuft is capable of
transferring load to the material it is embedded in. This load trans-
fer causes a localised perturbation of the stresses and strains of the
composite surrounding the tuft. Adopting the fundamental
assumption of Cox’s shear-lag theory [20], we define the shear

(a)

(b)

(c)
Fig. 3. (a) Mode I bridging force vs. opening displacement for 2k carbon tufts in
4 mm thick carbon NCF composite; (b) micrograph of a partially debonded carbon tuft
under load, at a displacement 2w = 0.1 mm; (c) results of pull-out tests carried out
on pre-delaminated single-tuft specimens manufactured as described in Section 2,
but with the end loops machined off. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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force at the tuft interface as a linear function of the relative dis-
placement between the tuft and the non-perturbed composite:
ps ¼ kz½wTðzÞ �wCðzÞ�, where kz is a parameter defined by the elas-
tic properties of the material around the tuft, wTðzÞ is the axial dis-
placement of the tuft and wCðzÞ the through-thickness
displacement of the undisturbed composite. As soon as a charac-
teristic load threshold is reached, the tuft starts to debond. This
process of progressive debonding is treated as a crack propagation
problem, whereby a cylindrical fracture grows along the tuft-
composite interface [21–23]. Along its debonded length, the tuft
stretches and slides, opposed by an assumed uniformly distributed
friction force, p0 [9,11,12,19]. This fracture mechanics-based
approach to describe the debonding process is one of the main dif-
ferences between the presented model and those available in the
open literature, where the energy dissipated for crack propagation
is generally neglected. Fully inserted tufts, as those considered in
this paper, are constrained to the top and bottom surfaces of the
composite they are embedded in, in the same way as stitches.
Neglecting any compliance of the composite surfaces, this con-
straint, exerted by the horizontal thread segments on one side
and the thread loops on the other, is represented in the model as
an encastre support for the tuft. For simplicity, any possible inter-
action between neighbouring tufts has been neglected in the for-
mulation of the model.

3.1. Governing equations

The response of the tuft has been divided into two stages called
bonded regime and progressive debonding regime, respectively.

In the bonded regime, the axial equilibrium of the tuft requires

EA
d2wTðzÞ

dz2
¼ kzðwTðzÞ �wCðzÞÞ; ð1Þ

where E is the equivalent Young’s modulus of the tuft modelled as a
cylindrical rod, A its cross-sectional area, wTðzÞ is the tuft axial dis-
placement and wCðzÞ the through-thickness displacement of the
composite volume unaffected by the presence of the tuft. Since no
forces are applied to the composite at the delamination plane, that
is a free surface, the through-thickness deformation of the unper-

turbed composite is zero ðdwCðzÞ=dz ¼ 0Þ and Eq. (1) can be re-
written in terms of the relative displacement between the tuft
and the composite, wðzÞ, as
EA

d2wðzÞ
dz2

¼ kzwðzÞ: ð2Þ

Having established that wð0Þ ¼ 0, since the tuft is constrained
to the external surfaces of the composite by means of the surface
seams and loop, and

EA
dwðzÞ
dz

� �
z¼L

¼ P; ð3Þ

where P is the force that needs to be applied to the tuft at the
delamination plane in order for half of the system to be in equilib-
rium (see Fig. 4), the solution to Eq. (2) is

wðzÞ ¼ P
EAa

sinhðazÞ
coshðaLÞ ; ð4Þ

where a ¼ ½kz=ðEAÞ�1=2. Eq. (4) defines the axial displacement of the
tuft as a function of the axial coordinate z and the external load P
(see Fig. 4). At the delamination plane ðz ¼ LÞ, this displacement
becomes

w ¼ wðz ¼ LÞ ¼ P
EAa

tanhðaLÞ; ð5Þ

which corresponds to half of the relative displacement between the
surfaces of a bridged crack.

If, on the other hand, we assume the tuft to be debonded over a
generic length ld, the axial equilibrium of the tuft is defined by the
following system of equations:

EA
d2wbðzÞ
dz2

¼ kzwbðzÞ if 0 6 z 6 L� ld; ð6aÞ

EA
d2wdðzÞ
dz2

¼ p0 if L� ld 6 z 6 L; ð6bÞ

where the subscripts b and d refer to the bonded and debonded por-
tions of the tuft, respectively. Eq. (6a) must satisfy the geometric
and natural boundary conditions defined as

wbð0Þ ¼ 0; ð7aÞ

EA
dwbðzÞ
dz

� �
z¼L�ld

¼ bP ; ð7bÞ

with bP ¼ P � p0ld, following from simple equilibrium considera-
tions. The tuft axial displacement in the domain z ¼ ½0; L� ld�, is

wbðzÞ ¼ P � p0ld
EAa coshðaL� aldÞ sinhðazÞ: ð8Þ

The solution to Eq. (6b) can now be obtained by imposing:

wdðL� ldÞ ¼ ŵ; ð9aÞ

EA
dwdðzÞ
dz

� �
z¼L

¼ P; ð9bÞ

where ŵ follows from Eq. (8) for z = L� ld. Satisfaction of the bound-
ary conditions implies

wdðzÞ ¼ 1
EA

p0z
2

2
þ ðP � p0LÞzþ

P � p0ld
a

tanhðaL� aldÞ
�

þ p0

2
L2 � l2d

� �
� PðL� ldÞ

i
; ð10Þ

Fig. 4. Schematic of the problem described by the analytical model. Despite the
irregular shape of the tuft and the fact that often failure occurs at a certain, but
small, distance from the delamination plane, for simplicity only half of the system is
studied, under the assumption of symmetric load and geometry.
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which defines the z-displacement of the tuft for L� ld 6 z 6 L, in the
regime of progressive debonding. At the delamination plane, this
displacement is

�w ¼ wdðLÞ

¼ P
EA

ld þ tanhðaL� aldÞ
a

� �
� p0ld

EA
ld
2
þ tanhðaL� aldÞ

a

� �
: ð11Þ

It can be noted that for a zero debonding length (ld = 0), Eq. (11) cor-
rectly coincides with Eq. (5). On the other hand, in the case of a fully
debonded tuft, the displacement at the delamination plane becomes

wld¼L ¼ L
EA

P � p0L
2

� �
; ð12Þ

which is independent from the elastic foundation stiffness, kz.

3.2. Debonding criterion

When the process of debonding starts, a crack is considered to
propagate along the lateral surface of the cylindrical tuft. The
energy required for an infinitesimal increment of the debonded

length is GC;int lpdld, where GC;int is referred to as ‘fracture toughness
of interface’ and lp is the cross-section perimeter of the z-
reinforcement. Since friction is assumed to act along the debonded
length of the tuft, for the principle of stationarity of the total
energy, the energy available for fracture growth is

Gintlpdld ¼ dWext � dUfr � dUe; ð13Þ

where Gint is the equivalent mode II strain energy release rate of the
interface, Wext is the total work done by conservative forces on the
system, Ufr is the energy dissipated by friction and Ue is the elastic
strain energy. It follows that the energy available for a unit incre-
ment of the crack surface is

Gint ¼ dðWext � Ufr � UeÞ
lpdld

: ð14Þ

The numerator of Eq. (14) is the energy difference between a state
in which the debonded length is ld and a second state in which the
debonded length is ld þ dld, as illustrated in Fig. 5. Following this cri-
terion, and with few manipulations (see Appendix A), Eq. (14) can
be re-written as

Gint ¼ 1
lp

P
dw
dld

þ kzw2
bðL� ldÞ � p0wdðL� ldÞ

� �
: ð15Þ

By substituting the expressions of dw
dld

;wbðL� ldÞ and wdðL� ldÞ in

Eq. (15), one obtains

Gint ¼ tanhðaL� aldÞ
lpEAa

a tanhðaL� aldÞ
2

3P2 � 4Pp0ld þ p2
0l

2
d

h i
þ p2

0ld � 2Pp0

� �
:

ð16Þ

For ld ¼ 0 and Gint ¼ GC;int , Eq. (16) provides the critical load marking
the onset of debonding

PC ¼
p0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ 3

2G
C;intlpEAa2

q
3
2a tanhðaLÞ

: ð17Þ

The critical load depends on both the fracture toughness of
interface and the friction force acting along the debonded portion
of tuft. To initiate debonding, the applied load needs to be high
enough to provide sufficient energy for the crack to propagate
and to equilibrate the forces, including p0, acting along the TTR.

During debonding, Gint ¼ GC;int and P ¼ PC þ DP. The substitution

of GC;int in place of Gint in Eq. (16) provides a relation between load
and debonded length during the regime of progressive debonding.
For a given ld, the corresponding load value is determined:

P ¼ p0 ldatanhðaL� aldÞ þ 1½ � �
ffiffiffi
D

p
2

3
2a tanhðaL� aldÞ

; ð18Þ

where

D ¼ p2
0flda tanhðaL� aldÞ½a tanhðaL� aldÞld þ 1� þ 4g

þ 6GC;intlpEAa2: ð19Þ

4. Identification of model parameters

The proposed model requires the evaluation of a series of geo-
metrical and physical input parameters. The cross-sectional area
and perimeter of the tuft, A and lp, and the composite thickness,
2L, can be determined from micrographs. The equivalent Young’s
modulus, E, the friction force, p0, the foundation stiffness, kz, and

the equivalent mode II fracture toughness of interface, GC;int , are
physical parameters requiring ad� hoc experiments to be
determined.

4.1. Tufting thread characterisation

The most common architecture of commercially available con-
tinuous carbon fibre threads consists of a given number of fibre
bundles, called yarns, interlaced together so that each yarn follows
a helical path. The structure of the tufting thread resembles that of
a rope, without a central core. When the thread is embedded into a
preform, the preform architecture controls the final shape of its
cross-section and the length of its perimeter, lp. For a specific pre-
form, lp and A need to be measured from micrographs of tufted
samples. As for the parameter defining the equivalent elastic mod-
ulus of the tuft in the model, E, this is determined by the elastic
properties and volume fractions of the fibres and matrix constitut-
ing the tuft, as well as by the in situ geometry of the tuft. The latter
is influenced both by the in-plane fibre architecture and stacking
sequence of the preform and by the process of consolidation. This
makes the identification of the final shape of the tuft, and conse-
quently of the equivalent elastic modulus E, not trivial, which is
the reason why E has been selected as one of the calibration
parameters of the model.

Fig. 5. Schematic of the two states of the system considered for the definition of the
strain energy release rate of interface. From state 1 to state 2 the only variation
consists in an increase Dld of the debonded length of the tuft.
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4.2. Elastic foundation stiffness

As explained in Section 3, stress transfer between the tuft and
the composite over the bonded length of the tuft has been taken
into account by modelling the material around the tuft as a bed
of tangential springs of stiffness kz [20]. A way of approximately
quantifying this stiffness parameter is by means of Finite Element
(FE) calculations. The model illustrated in Fig. 6 has been used to
characterise kz as a function of the tuft equivalent elastic modulus
E and the tuft embedded length, L. In this model, the tuft is
described as a cylindrical rod of cross sectional area A (defined in
Section 3.1), fully bonded to the surrounding medium. The FE anal-
yses have been carried out using Abaqus 6.14. A static-general step
has been implemented using C3D8 elements. A linearly varying
displacement field has been applied at the nodes of the tuft, as
shown in Fig. 6, and the reaction force on the top surface of the
composite has been requested in output. Elastic transversely iso-
tropic properties have been assigned to both the tuft and the
composite.

Fig. 7a shows that kz has a strong dependency on the thickness
of the composite, which in the analysed models corresponds to the
embedded length of the tuft, L. This result would suggest that the
adoption of a constant kz value throughout the process of progres-
sive debonding of the tuft is not valid, and it can only be accepted
as a consequence of the low sensitivity of the model to kz in that
stage of the bridging response, as demonstrated by the plot in
Fig. 7b. kz varies not only with the embedded length of the tuft,
but also with the boundary conditions of the tufted unit-cell. This
means that its value would need to be re-evaluated for every new
tufted structure under investigation. However, Fig. 7b shows that
any variation of kz has little influence on the constitutive law of
the tufted interface, within the limits of experimental repeatabil-
ity. This implies that the curve calibrated on the results of the
single-tuft tests has general validity, i.e. it can be used to predict
the delamination behaviour of any tufted composite structure
manufactured with the same materials and fibre architecture of
the single-tuft specimens, independent of any variation of the
boundary conditions. The effect of a different composite thickness
can be predicted with the use of the analytical model only. Fig. 7c
further shows that kz is also a function of the equivalent longitudi-
nal modulus of the tuft, E; hence, in order to be able and determine
the value of kz for a particular system, it is necessary to know the
values of L and E for that specific system. However, since E is a cal-
ibration parameter, its value cannot be known a priori. This obsta-
cle can be overcome using the empirical formula below, which

establishes a relation between E and kz, based on the results of
Fig. 7d:

P
w

¼ aEþ b ¼
EA

ffiffiffiffi
kz
EA

q
tanh

ffiffiffiffi
kz
EA

q
L

� � : ð20Þ

For the system described in Section 2, the coefficients a and b
have been determined to have values 0.1571(�0.0196) mm and
6976 (�1528) N/mm, respectively. Eq. (20) has been used during
the process of model calibration to determine which value of kz
corresponded to the E value providing the best fit.

4.3. Friction force

The friction force, p0, acting along the debonded length of the
tuft, is influenced by two different mechanisms. First, thermal
residual stresses due to post-cure cool down affect the interfacial
friction between the tuft and the composite. Secondly, the irregu-
larity of the tuft longitudinal profile promotes mechanical inter-
locking between the tuft and the surrounding resin material.
Since these irregularities have not been accounted for in the pro-
posed model formulation, their effect reflects on the value of p0,
as well as on the values of the other material parameters of the
model. The quantification of p0, which in this study is assumed
to be uniformly distributed [9,12,11], has been carried out by
means of pull-out tests on single-tuft specimens in which the tuft
loop has been machined off. The load-displacement curves
obtained for the specimens described in Section 2 are reported in
Fig. 3c. Given the average maximum force PPO in the tuft at pull-
out initiation, the tuft cross-section perimeter lp, and the effective
pull-out length, LPO, the equivalent uniform friction stress opposing
the sliding of the tuft can be calculated as [6]

s0 ¼ PPO

lpLPO
ð21Þ

For the considered composite system, s0 = 36 (COV = 16.7%)
MPa and the equivalent friction force distributed along the tuft,
defined as p0 ¼ s0lp, is 80.6 N/mm.

4.4. Fracture toughness of interface

The process of debonding has been modelled as the propagation
of a crack at the interface between the tuft and the composite, in
pure mode II. This is a simplification derived from the assumption
of the tuft as a straight rod. In reality, tufts often display curved
profiles with irregular perimeters, which translates into a variable
stress-state at the tuft-composite interface and a debonding crack
propagating in mixed-mode. The mode mixity varies during crack

growth, as therefore does GC;int . Depending on the in situ shape of
the tuft, debonding may affect only a portion of its lateral surface,
i.e the portion subjected to the highest tensile and shear stresses.
The assumption of a debonding crack propagating uniformly and
symmetrically in the two halves of the delaminated tufted com-

posite is expected to reflect inevitably on the input value of GC;int ,
which is therefore difficult to be determined a priori. Based on
these considerations, the fracture toughness of interface has been
selected, together with E, to be calibrated on experimental data
sets obtained from single-tuft tests.

5. Calibration of the model

For calibration purposes, the proposed analytical model has
been implemented in MATLAB and formulated in two steps, the
first representing the bonded regime and the second describing pro-

Z

Fig. 6. Finite element model of a delaminated single-tuft composite panel with a
[(0/90)s]2 layup. Exploiting symmetry, only one-eighth of the system has been
modelled. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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gressive debonding. The critical load, PC , and corresponding critical
displacement, wC , are determined by means of Eqs. (17) and (5).
The bridging law in the bonded regime is obtained by discretising
the displacement range up to w ¼ wC , and evaluating the corre-
sponding values of P through Eq. (5). The load-displacement curve
is linear up to P ¼ PC . The length of debonding, ld, is given as input
to the second part of the script. Given the values of ld; P can be
determined from Eq. (18) and the corresponding displacement
obtained by means of Eq. (11). In this regime, the bridging law is
non-linear due to the energy dissipated by the system for increas-
ing the debonded length of the tuft and for overcoming friction.
Table 1 provides a summary of the model input parameters, with
their experimentally determined values. The only two parameters
requiring calibration are the equivalent axial elastic modulus of the
tuft, E, and the fracture toughness of the tuft-composite interface,

GC;int , as discussed in Section 4. These unknown parameters have
been identified by means of the Genetic Algorithm (GA) routine
in MATLAB [13]. The cost function to be minimised in the GA opti-
misation scheme is

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Pw þ �2Wb

þ �2Wdb

q
; ð22Þ

where �2Pw is the relative mean square error associated with the
averaged load-displacement data points, and �2Wb

and �2Wdb
are the

relative mean square errors of the work done by the external forces
in the bonded and progressive debonding regimes (neglecting the
work of partial frictional pull-out, if present), respectively. The opti-
misation has been carried out considering 50 combinations of pop-
ulations of 50 individuals each. An initial range of values has been
assigned to each calibration parameter: [0.1240,000] MPa and

[02] kJ/m2 for E and GC;int , respectively. The upper bound for the tuft
equivalent Young’s modulus has been chosen as the tensile modu-
lus of the impregnated carbon fibre yarns forming the tuft

(Tenax�-J HTA40 H15 1K 67tex [24]), whereas GC;int is allowed to
vary in a range of carbon-epoxy laminates common values of frac-
ture toughness [25]. The values of the calibrated parameters are
reported in Table 1 and the resulting calibrated bridging law is dis-
played in Fig. 8. As mentioned in Section 2.3, the failure load of the
tuft is a function of the tuft in situ topology and cannot therefore be
determined from independent tensile tests on impregnated tufting
threads. Hence, in this paper, an experimentally-based failure crite-
rion deduced from mode I testing of single-tuft coupons has been
selected. In particular, the calibrated bridging law of Fig. 8 has been
interrupted at the average measured deformation at failure of the
tested carbon-fibre tufts (see Table 1). The debonded length corre-
sponding to this deformation is ls = 1.77 mm, 88.5% of the embed-

(a) (b)

(d)(c)

Fig. 7. (a) Variation of kz with the embedded length of the tuft, from the model of Fig. 6; (b) sensitivity of the analytical model to kz; (c) variation of kz with the tuft Young’s
modulus; (d) plot of P/w vs. E for three thicknesses of the composite panel, fixed tuft geometry and fixed composite mechanical properties.

Table 1
Analytical model: input parameters and results of calibration process (COV in
brackets).

Symbol Measured From calibration

L 2 mm –
A 0.27 –
lp 2.24 (6.3%) mm –
p0 80.6 N/mm (see Section 4.3) –
�f 0.05 (20%) mm –
WI 35.6 mJa –

GC;tuft
I

131.8 kJ/m2 –

E – 14.64 GPa
kz – 2.176E+4 N/mm2

GC;int – 0.543 kJ/m2

GC;tuft
I

– 130.4 kJ/m2

a Obtained neglecting the contribution of partial pull-out events.
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ded length of the tuft. As for the energy involved in the process, the
current model predicts that the energy loss due to friction and to
debonding contribute to approximately 40% and 13% of the total
energy of the system, respectively. Thus, although the energy dissi-
pated by friction is dominant, the energy spent for crack propaga-
tion at the tuft-composite interface is not negligible. This supports
the modelling strategy detailed in Section 3.

The determined E and GC;int parameters can now be used to pre-
dict the response to delamination of tufted meso-scale structures
with the same characteristics, in terms of tufting thread material
and preform material and architecture, of the single-tuft speci-
mens the model has been calibrated on.

6. Validation of the model

6.1. Mode I double cantilever beam test on tufted specimens

The new micro-mechanical analytical model has been validated
by comparing meso-scale FE simulations to delamination tests of
DCB specimens. Fig. 9 shows the schematics of sample dimensions
and tuft row positioning used in the DCB tests. The longitudinal
axis of the DCB specimen is parallel to the 0� ply orientation at
the mid-plane of the specimen. The tufts were inserted normal to
the laminate plane, in a square pattern with 5.6 mm � 5.6 mm
spacing, resulting in an areal density of tufts of 0.86%. The tufting
seams were aligned orthogonal to the 0� ply orientation, with the
first tuft row positioned 15 mm from the end of the release film,
covering a total delamination length of 100 mm. A 10 lm thick
PTFE film, at the mid-plane of the preform, extends 61 (�0.5)
mm from the edge producing an initial crack length of 50 mm in
the consolidated panels. Each panel was injected using the VARTM

process, resulting in a consistent laminate thickness of 4.0 (�0.01)
mm and a fibre volume fraction of 56%.

Delamination tests on the DCB specimens were performed on a
universal test machine Instron 5500R, with 5 kN load cell, at a con-
stant crosshead displacement rate of 1 mm/min. In absence of
standardised procedures for testing through-the-thickness rein-
forced bi-directional laminates, mode I tests were performed fol-
lowing the guidelines developed for ‘unreinforced’ unidirectional
composites [26]. Prior to testing, the initial pre-crack was propa-
gated for 5 mm from the film insert. The new crack tip ensured
the measured initiation values to be independent of the insert film
thickness. Finally, for monitoring purposes, one side of each beam
was coated with a thin layer of brittle white spray-on paint and
marked with millimetre increments to enable visual monitoring
of the crack tip position. On the opposite side, a black and white
speckle pattern was applied for monitoring of crack propagation
and for measurement of opening displacements with a Digital
Image Correlation (DIC) system (Limess VIC 2D and VIC 3D).

To avoid premature flexural failure of the 2 mm thick beams of
the tufted DCB specimens (see Fig. 10), 3 mm thick strips of cured
unidirectional composite were bonded to both sides of the sam-
ples, as suggested by other authors [27,28]. The unidirectional lam-
inate had 10 layers of carbon fibre uni-weave fabric (OCV Technical
Fabrics™, 12k Grafil 34-700) with an areal weight of 310 g/m2,
injected with MVR444 epoxy resin.

6.2. Meso-scale FE model

6.2.1. Modelling tufted interfaces at the meso-scale
Cohesive zone modelling is the approach selected to model the

delamination behaviour of the tufted DCB specimens of Section 6.1.
The application of this approach implies the use of cohesive ele-
ments to simulate the delamination behaviour of both the unrein-
forced interface and the discrete through-thickness reinforcements
[5]. The former is governed by a bilinear traction-separation law in
which the onset of damage is related to the interfacial strength, i.e.,
the maximum traction on the traction-separation jump relation,
and the propagation of delamination follows a fracture mechanics
criterion. When the area under the traction-separation jump rela-
tion is equal to the intrinsic fracture toughness of the resin, the
tractions are reduced to zero and a new delamination front is
formed [29,30]. As for the cohesive elements used to simulate
the behaviour of the tufted regions, their constitutive law has been
obtained using the micro-mechanical model presented in this
paper (see Fig. 11). This constitutive law describes the initial loca-
lised elastic deformation of the tufts and material surrounding
them (bonded regime), followed by progressive debonding of the
tufts up to failure. It should be noted that the localised deformation
taking place in the material around the bonded tufts can only be
accounted for via the constitutive law of the interface elements,
as the meshes of meso-scale models are generally too coarse to
capture it. To avoid any further unrealistic through-thickness
deformation of the material above and below the bridged interface

Fig. 8. Result of the calibration process for the input parameters listed in Table 1.
The continuous curves in the plot are the maxima and minima envelopes of the
experimental data presented in Fig. 3a. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Schematic of specimen configuration for mode I DCB delamination testing. The same fabric, resin and tufting thread were used as in the corresponding single-tuft tests.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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elements, columns of rigid elements have been inserted in the
arms of the DCB model at the tuft locations. The implementation
of the mode I constitutive law of tufts into this finite element
framework has been achieved via a user-defined constitutive for-
mulation in which an arbitrary normalised traction-separation
law can be prescribed.

6.2.2. Model description
The tufted DCB specimens of Section 6.1 have been simulated in

the explicit finite element code, LS-DYNA v971-R7.1. 8-node selec-
tively reduced-integration solid elements with hourglass control
were employed to simulate both the composite NCF and UD beams
with at least 6 elements in the through-thickness direction. This
was done for both sub-laminates in order to capture the bending
stiffness and laminate rotations. Symmetry conditions were
exploited by modelling only one half of the specimen and taking
into account the periodic arrangement of the tufts. In the tufted
beam, tufts were modelled discretely with rigid elements and a

tuft-to-tuft distance of 5.6 mm (see Fig. 12). The displacement rate
was approximately 1 mm/s (defined initially by a smooth ramp
rate followed by a constant velocity boundary condition imposed
at the load application points), which made dynamic effects negli-
gible. Mass scaling was used to reduce the solution time. A sum-
mary of the elastic homogenised properties assigned to the
composite beams and a list of the cohesive parameters used to
describe the mechanical responses of the un-tufted and tufted
interfacial regions are provided in Tables 2 and 3, respectively.
Due to the presence of the stiffening UD tabs, the average initiation
fracture toughness measured for the tested DCB specimens has
been used as the mode I matrix fracture toughness and its value

is GC;resin
I = 0.257 kJ/m2 (COV = 5.9%). The fracture toughness of the

tufted interface, GC;tuft
I , has been calculated as the overall bridging

work of the tuft,WI , divided by its cross-sectional area A. Following
a mesh convergence study, in which the results were checked dur-
ing the elastic and crack propagation phases, a minimum cohesive
element length of 0.25 mm in the direction of crack propagation
was adopted. This allowed the model to have three cohesive ele-
ments in the fully developed process zone ahead of the crack tip,
in agreement with current meshing guidelines for cohesive zone
models [31,30].

6.3. Results and discussion

Fig. 13 shows a comparison of the predicted and experimental
DCB test results, for a tufted areal density of 0.86%. The numerical
curve has been obtained by implementing the calibrated analytical
traction-separation law in the constitutive cohesive zone model of

the tuft (GC;tuft
I = 130.4 kJ/m2). It is clear that the delamination ini-

tially propagates through the untufted region, up to the first tuft
row. Here, the localised bridging of the tufts causes a significant
load increase, i.e. almost 130%. After failure of the first row of tufts,
a large-scale bridging zone fully develops. For the laminate and
DCB configuration considered here, the bridging region comprises
two rows of intact tufts. With further opening displacement, the
crack propagates unstably and is arrested by the presence of the
localised reinforcements, causing the rows of tufts to progressively
stretch and fail [15]. In this region of the load-displacement curve,

Fig. 10. (a) DIC image of untabbed DCB specimen, failed in flexure at first tuft row;
(b) large scale tuft bridging in DCB sample with 0.86% tufting, reinforced by UD
stiffeners. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 11. Traction-separation laws of localised tuft and of pure resin employed in cohesive elements. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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the FE model underestimates the bridging response of the tufts,
showing a more pronounced saw-tooth behaviour compared to
the experimental curves. This could be corrected by considering
the effect of fibre bridging, caused by the in-plane fibres of the fab-
ric, on crack propagation (see Fig. 9).

7. Conclusions

A multi-scale modelling framework for predicting the mode I
delamination behaviour of tufted composites has been presented
and validated. It applies to the case of structures tufted through
their entire thickness, with loops long enough to anchor the tufts
and prevent them from pulling-out under load. The proposed
multi-scale approach is based on a micro-mechanical model
describing the mode I response of bridged interfaces, coupled with
a meso-scale cohesive zone formulation for tufted structures. In
the paper, this strategy has been applied successfully for the pre-
diction of the delamination behaviour of 4 mm thick double can-
tilever beam specimens containing an array of tufts at 0.86%
areal density.

The modelling approach presented has the advantage of requir-
ing the calibration of only two parameters at the micro-scale (i.e. at
single-tuft level), namely the equivalent Young’s modulus of the
cylindrical tuft and the equivalent mode II fracture toughness of
the tuft/composite interface, and it captures the main bridging
mechanisms observed for tufts under tensile loading, i.e. initial lin-
ear elastic deformation of the bonded tuft, followed by a progres-
sive debonding event and frictional sliding of the debonded tuft,
which are responsible for the non-linearity of its response. Despite
the level of idealisation, the micro-scale model presented, when
implemented into interface elements at the meso-scale, was cap-
able of predicting the stiffness and first load peak of the tested
DCB specimens within the limits of experimental repeatability.
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Appendix A. On the formulation of the debonding process

Eq. (16) has been obtained by imposing the limit for Dld ! 0 to
the energy variation characterising the system described in Fig. 4,
when the length of the debonding crack increases of Dld. With ref-
erence to Fig. 5, in state 1 the energy of the system is

E1 ¼
Z w1

0
PðwÞdw� 1

2

Z L�ld

0
kzw2

bðsÞds� p0

Z L

L�ld

Z wdðsÞ

0
dwds

� 1
2

Z L�ld

0

NbðsÞ2
EA

ds� 1
2

Z L

L�ld

NdðsÞ2
EA

ds ðA:1Þ

and, similarly, in state 2 the energy is

E2 ¼
Z w2

0
PðwÞdw� 1

2

Z L�ðldþDldÞ

0
kzw2

bðsÞds

� p0

Z L

L�ðldþDldÞ

Z wdðsÞ

0
dwds� 1

2

Z L�ðldþDldÞ

0

NbðsÞ2
EA

ds

� 1
2

Z L

L�ðldþDldÞ

NdðsÞ2
EA

ds ðA:2Þ

where

w2 ¼ w1 þ Dw1

Dld
Dld: ðA:3Þ

The energy variation between state 1 and state 2 becomes:

E2 � E1 ¼
Z w1þ

Dw1
Dld

Dld

w1

PðwÞdwþ 1
2

Z L�ld

L�ðldþDldÞ
kzw2

bðsÞds

� p0

Z L�ld

L�ðldþDldÞ
wdðsÞds

� 1
2

Z L�ld

L�ðldþDldÞ

NbðsÞ2 � NdðsÞ2
� �

EA
ds: ðA:4Þ

Finally, for Dld small, Eq. (A.4) can be re-written in the form

E2 � E1 ¼ Pðw1Þdw1

dld
dld þ dld

2
kzw2

bðL� ldÞ � p0wdðL� ldÞdld

� dld
2

NbðL� ldÞ2 � NdðL� ldÞ2
� �

EA
ðA:5Þ

in which NbðL� ldÞ ¼ NdðL� ldÞ for continuity.
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