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Analytical Formulas for the Coverage of Tunable
Matching Networks for Reconfigurable Applications

Eyad Arabi, Member, IEEE, Kevin A. Morris, Member, IEEE, and Mark A. Beach, Member, IEEE,

Abstract—Tunable matching networks are essential compo-
nents for agile radio frequency systems. To optimally design such
networks, the total area they cover on the Smith chart needs to be
determined. In this work, the coverage areas of typical matching
networks have been determined analytically for the first time. It
has been found that the coverage area is encompassed by up to
five arcs. Analytical expressions for the centers and radii for these
arcs have been derived. The theoretical analysis is provided for
four typical matching networks and verified by circuit simulation
and measured data. Moreover, a dynamically load-modulated
power amplifier has been designed using the presented theoretical
techniques, which demonstrates a measured improvement in the
power added efficiency of up to 5% in the frequency range of
(0.8 - 0.9) GHz.

Index Terms—Smith chart, tunable matching networks, power
amplifiers, re-configurable, dynamic load modulation

I. INTRODUCTION

RECONFIGURABLE wireless transceivers are becoming
crucial for future systems such as long-term evolution

(LTE) and LTE-advanced. Such systems are required to be
frequency agile to enable optimal utilization of the congested
frequency spectrum. Therefore, these systems require tunable
components like antennas, filters, and matching networks
(MN).

Beside frequency agile systems, tunable MN are being used
heavily for applications such as tunable/wideband antennas
[1], efficiency-enhanced and load-sensitive power amplifiers
(PAs) [2], [3], and range-adaptive wireless power transfer [4].
One of the main parameters the RF designer needs to know
about a tunable MN, is the set of all complex impedances that
can be matched to a specific load (typically 50 Ω). This set
defines what is known as the coverage of the MN.

The Smith chart continues to serve as an indispensable tool
for the analysis and visualization of complex loads and reflec-
tion coefficients [5]. Compared to the complex impedance-
plane, the Smith chart is a superior tool because multiple
quantities can be read directly, such as the complex impedance
and admittance and the reflection coefficient. Therefore, the
coverage of MNs defined in the complex plane of the Smith
chart is of great benefit. This is particularly useful for PAs
because the coverage can be plotted along with other criteria
such as load-pull contours, noise circles, gain circles, etc.

In [6]–[11] the boundaries have been presented using sim-
ulations, which are less legible, do not indicate the limits of
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the tuning elements, and do not provide any physical insight
about the networks. In [12], theoretical formulas have been
presented; however, they provide the coverage for discrete
impedance points (states) and do not give the continuous
coverage, and they are not directly related to the tunable
capacitors commonly used in matching networks. Even though
the formulas in [13]–[15] can produce the coverage for the full
dynamic range, they are presented for the complex rectangular
plane, not the Smith chart and for Π networks only. In this
work, the coverage areas of four of the commonly used net-
works have been thoroughly investigated. Theoretical formulas
have been derived for the loci of the closed boundaries of the
coverage areas. These formulas are derived for the complex
space of the reflection coefficient rather than the impedance
and can, therefore, be plotted directly on the Smith chart. It
is assumed that the MN is connected to a resistive load at
one end, and the reflection coefficient seen looking towards
the other end defines the coverage area as illustrated in Fig.
1 (a). This configuration is different from the one in [6]–[10],
[12] where a resistive load is connected at one end with the
other end conjugately matched to a known impedance. The
configuration used here is particularly suitable for PAs where
conjugate matching is not necessarily required. The theoretical
analysis has been verified by circuit simulation as well as
measured data, which agrees well with the theory.

The theoretical formulas presented here are compact; there-
fore, very practical for use in CAD tools and provide a useful
instrument for the analysis of tunable MN.
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Fig. 1. Illustration of the boundary of the coverage area. (a) Problem
description. (b) Networks with only one tunable element. (c) Networks with
two tunable elements.

II. THEORY

The coverage of a tunable MN can be defined as the set
of all complex impedances that can be matched to a specified
load at a particular frequency. If the MN has only one tunable
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component, its coverage will be a linear path as shown in Fig.
1(a). If the MN has more than one tunable component, then
the coverage is typically an area on the Smith chart as shown
in Fig. 1(b). The boundary of such area will be referred to
here as the coverage boundary and is always a closed path.
In this work, MNs with two tunable elements (C1 and C2)
are analyzed. Nevertheless, the theoretical methods introduced
here can be applied to networks with a higher number of
tunable elements, but the formulas become large and less
practical. The two elements are not necessarily identical and
can take any values between Cmin and Cmax. The load is
assumed to be pure resistive taking a value of Y0 Ω−1.

The first step of the analysis is to sweep both capacitors
within their limits and observe the area covered by the
matching network. It has been found that the coverage area
is bounded by four arcs. The first two arcs are plotted by
letting C1 ∈ {Cmin, Cmax} and C2 takes all the real numbers
between Cmin and Cmax. The remaining two arcs are plotted
by letting C2 ∈ {Cmin, Cmax} and C1 takes all the real
numbers between Cmin and Cmax. These four arcs are parts
of circles which can be completely plotted by extending the
limits of the capacitors to -∞ and ∞. For lossless networks,
all of these circles are tangent to the |Γ| = 1 circle. The
value of the capacitor at the tangent point can be calculated
by solving for Yin that falls on the |Γ| = 1 circle according
to:

|Γ| =
∣∣∣∣Y0 − Yin
Y0 + Yin

∣∣∣∣ = 1 (1a)

|Y0 − Yin| = |Y0 + Yin|, (1b)

which is satisfied only when the real part of Yin is either
zero or ∞ corresponding to either an open or a short circuit,
respectively. A short circuit can be achieved by a shunt branch
with zero impedance (if the branch has only a capacitor the
capacitance can be set to ∞). An open circuit, on the other
hand, can be achieved by a series branch with infinitely large
impedance (if the branch has only a capacitor, its value can
be set to zero).

The centers and radii of the four circles can be calculated
from the tangent point and any other point. If the tangent
point is denoted A(xA, yA) and the other point is denoted
B(xB , yB), the center (xc, yc) and radius (Rc) of the circle
can be calculated, as derived in Appendix B, by:

xc =
xA
(
x2
B − x2

A + y2
B − y2

A

)
2 (−x2

A − y2
A + xAxB + yAyB)

, (2a)

yc =
yA
(
x2
B − x2

A + y2
B − y2

A

)
2 (−x2

A − y2
A + xAxB + yAyB)

and (2b)

Rc =
√

(xc − xA)2 + (yc − yB)2, (2c)

respectively.
The four circles for a hybrid network are plotted in Fig. 2

together with the coverage area using the theoretical formulas
presented here and verified by a commercial simulator. It can
be observed that a fifth circle (referred to in the figure as

C ′2) is also needed to complete the boundary. This circle is
a function of the inductors and transmission lines as well as
the frequency and is referred to here as the auxiliary circle.
For given values of these parameters, impedances inside the
auxiliary circle can not be matched even if the values of the
tunable capacitors extend from -∞ to ∞ [16]. As illustrated
in Fig. 2, the auxiliary circle is traced when C1 is swept while
C2 is assigned a critical value (C ′2), which resonates with the
transmission line when C2 = Y0/ω tan(θ). Formulas for C ′2
are derived for various network topologies in the following
section. The auxiliary circle becomes part of the boundary only
if C ′2 falls within the tuning range of C2. Since the auxiliary
circle defines a forbidden region, the constant circles of C1,min

and C1,max can not intersect with this circle, but only shares a
single point with it and thus the three circles must be tangent.

In the following sections, four different matching networks
are analyzed and the derived formulas to calculate the five
circles are presented.

Circuit simulation Theory
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Fig. 2. Illustration of the four main circles and the auxiliary circle that
form the boundary of the matching network. The coverage is verified by
a commercial simulator.

A. T-Matching Network
A lumped T-type MN is illustrated in Fig. 3(a). To ana-

lyze this network as mentioned in the previous section, the
coordinates of the points of the C1 and C2 circles need to be
calculated.

1) C1 variable and C2 constant: For the first case, C2 ∈
{Cmin, Cmax} while C1 can take any real number between
these two limits. To plot the complete circle, however, we will
let C1 ∈ R≥0. The first point to be calculated is the point at
which this circle is to the outer circle (|Γ| = 1). This point
is referred to as point A and corresponds to C1 = 0. Using
this value, the input admittance (Yin) becomes infinite, and
the real and imaginary parts of the input reflection coefficient
(Γin) are

xA1 = 1 and (3a)
yA1 = 0. (3b)

For the second point (point B), C1 is assumed to take an
infinitely large value, which corresponds to an RF short circuit.
Using this assumption, the real and imaginary values of Yin
can be calculated as:

<{Yin} =
Y0

(
ω2LC2

)2
(ω2LC2)

2
+ (Y0ωL)

2 (4a)
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and

={Yin} =
ωL
(
−ω2C2

2 − Y 2
0 + Y 2

0 ω
2LC2

)
(ω2LC2)

2
+ (Y0ωL)

2 , (4b)

from which the real and imaginary values of Γin are:

xB1 =
− (<{Yin})2

+ Y 2
0 − (={Yin})2

(<{Yin}+ Y0)
2

+ (={Yin})2 and (5a)

yB1 =
−2Y0={Yin}

(<{Yin}+ Y0)
2

+ (={Yin})2 , (5b)

respectively.
The coordinates of points A and B can be directly used in

equation (2) to calculate the centers and radii of the circles.
Two circles are obtained: one for C2 = Cmin and another for
C2 = Cmax.

C1 C2

L1 L2 Z0, θ

L

L C1 C2

C1 C2C1 C2

(a) (b)
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Y2, Γ2

Yin
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Yin
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Yin
Γin

Yin
Γin

Fig. 3. Schematics of the four topologies analyzed in this work. (a) T-type. (b)
Π-type. (c) Ladder-type. (d) Hybrid Π. Γin = x+ jy is the input reflection
coefficient and Yin is the input admittance.

2) C1 constant and C2 variable: For this case C1 ∈
{Cmin, Cmax} while C2 ∈ R≥0. The first point in this case
corresponds to C2 = 0, which gives the following values of
the real and imaginary of Γin

xA2 =
Y 2

0

(
1− ω2LC1

)2 − (ωC1)
2

Y 2
0 (1− ω2LC1)

2
+ ω2C2

1

(6a)

yA2 =
−2ωY0C1

(
1− ω2LC1

)
Y 2

0 (1− ω2LC1)
2

+ ω2C2
1

. (6b)

This point has a unity magnitude regardless of the value of C1

and, therefore, always lies on the outer circle. For the second
point, the assignment: C2 = ∞ is used and the real and
imaginary values of Γin are:

xB2 =
Y 2

0

(
1− 2ω2LC1

)
+ ω2

(
Y 2

0 L
2 − C2

1

)
Y 2

0 (1− 2ω2LC1)
2

+ ω2 (Y 2
0 L+ C1)

2 (7a)

and

yB2 =
ωY0

(
Y 2

0 L− C1

) (
1− 2ω2LC1

)
− ωY0

(
Y 2

0 L+ C1

)
Y 2

0 (1− 2ω2LC1)
2

+ ω2 (Y 2
0 L+ C1)

2 ,

(7b)

respectively. These two points can be used in equation (2) to
calculate the centers and radii of the circles of C1 = Cmin
and C1 = Cmax.

3) Auxiliary Circle: The T-type network can match
impedances up to a maximum resistance. The first derivative
of the real part of the input impedance with respect to C2

can be used to determine the value of C2 that provides this
resistance as derived in Appendix B-B, and given by:

C ′2 =
1

ω2L
. (8)

The necessary condition for the auxiliary circle to be part of
the boundary is for this value to fall within the limits of C2:

Cmin < C ′2 < Cmax. (9)

The auxiliary circle itself can be plotted by using the value
of C2 defined in (8) with the formulas of section II-A1

In Fig. 4-(a), an illustration of the boundary of a T-type MN
is illustrated for L = 10nH and frequencies of 0.5 GHz, 1.2
GHz, and 2.5 GHz. The complete circles are also included for
the case of 1.2 GHz.
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Fig. 4. Illustration of the boundary at three different frequencies with the
values: Cmin=0.5 pF, Cmax=15 pF, θ=50, Z0=50 Ω, LT =10 nH, LΠ=6.2
nH and L1=L2 = 13 nH. (a) T-Network. (b) Π-Network. (c) Ladder Network.
(d) Hybrid-Π Network.
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B. Π-Type Matching Network

A typical Π-Type MN is illustrated in Fig. 3(b). It consists
of an inductor between two shunt capacitors. The analysis of
this network can be performed by the same method used in
the previous section.

1) C1 variable and C2 constant: For this case, the coordi-
nates of the first point are calculated by putting C1 =∞. At
this case the input of the MN appears to have a zero impedance
and, therefore, the real and imaginary values of Γin are

xA1 = −1 and (10a)
yA1 = 0 (10b)

respectively.
For the second point, C1 is assigned a value of zero and

the real and imaginary parts of the input admittance (Yin) are

<{Yin} =
Y0

(
1− ω2LC2

)
+ ω2Y0LC2

(1− ω2LC2)
2

+ (ωY0L)
2 (11a)

and

={Yin} =
ωC2

(
1− ω2LC2

)
− ωY 2

0 L

(1− ω2LC2)
2

+ (ωY0L)
2 (11b)

respectively. The real and imaginary parts of the reflection
coefficient (xB1 and yB1) can be calculated from Yin using
(5).

2) C1 constant and C2 variable: For the first point of this
case, C2 is assigned a value of ∞ (RF short circuit). The real
and imaginary parts of Γin are calculated to be

xA2 =
(ωY0L)

2 −
(
1− ω2LC1

)2
(ωY0L)

2
+ (1− ω2LC1)

2 and (12a)

yA2 =
2ωY0L

(
1− ω2LC1

)
(ωY0L)

2
+ (1− ω2LC1)

2 (12b)

respectively. This point has a unity magnitude regardless of
the value of C1. For the second point, C2 is assigned a value
of zero. The real and imaginary parts of Yin are:

<{Yin} =
Y0

1 + (ωY0L)
2 , and (13a)

={Yin} =
ω
(
C1 − Y 2

0 L+ C1 (ωY0L)
2
)

1 + (ωY0L)
2 , (13b)

respectively. These values can be used to calculate the coor-
dinates of Γin using (5).

3) The Auxiliary Circle: This network can match
impedances up to a maximum conductance. The first derivative
of the real part of the input admittance with respect to C2

can be used to calculate the value of C2 that produces this
conductance as shown in Appendix B-A and given by the
following formula:

C ′2 =
1

ω2L
. (14)

The condition for the auxiliary circle to be part of the
boundary is the same as the one defined for the T-network in
equation (9), and the auxiliary circle can be plotted by using
the value of C′2 calculated in (14) with the formulas of section
II-B1.

In Fig. 4-(b), an illustration of the boundary of a Π-type
MN is illustrated for L = 6.2 nH and at frequencies of 0.5
GHz, 1.2 GHz, and 1.5 GHz. The complete boundary circles
are also plotted.

C. Ladder Matching Network

This type of MN is illustrated in Fig. 3(c). It consists of two
L-sections connected in series. The analysis of this network is
presented in the following sections.

1) C1 variable and C2 constant: For this case, C1 is
assigned the values of zero and ∞. When C1 = ∞ the real
and imaginary parts of Γin are clearly given by:

xA1 = −1 and (15a)
yA1 = 0 (15b)

respectively. When C1 = 0, on the other hand, the real and
imaginary parts of Yin are calculated as:

<{Yin} =
<{Y2} (1− ω={Y2}L1) + ω<{Y2}={Y2}L1

(1− ω={Y2}L1)
2

+ (ω<{Y2}L1)
2

(16a)

and

={Yin} =
={Y2} (1− ω={Y2}L1)− ω (<{Y2})2

L1

(1− ω={Y2}L1)
2

+ (ω<{Y2}L1)
2 ,

(16b)

respectively, where

<{Y2} =
Y0

1 + (ωY0L2)
2 , and (16c)

={Y2} =
ω
(
C2

(
1 + (ωY0L2)

2
)
− Y 2

0 L2

)
1 + (ωY0L2)

2 . (16d)

<{Yin} and ={Yin} can be used to calculate the real and
imaginary parts of Γin using equation (5).

2) C1 constant and C2 variable: For this case C2 is as-
signed zero and∞. For C2 =∞, which is an RF short circuit,
the real and imaginary parts of Γin are given respectively by

xA2 =
(ωY0L1)

2 −
(
1− ω2L1C1

)2
(1− ω2L1C1)

2
+ (ωY0L1)

2 , and (17a)

yA2 =
2ωY0L1

(
1− ω2L1C1

)
(1− ω2L1C1)

2
+ (ωY0L1)

2 . (17b)

This point is on the outer circle of the Smith chart because it
has a magnitude of one regardless of the value of C1. For the
second point, C2 = 0 and the real and imaginary parts of Yin
are given respectively by:
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<{Yin} =
Y0

1 + (ωY0 (L1 + L2))
2 (18a)

and

={Yin} =
ωC1 − ωY 2

0 (L1 + L2)
(
1− ω2C1 (L1 + L2)

)
1 + (ωY0 (L1 + L2))

2 .

(18b)

3) Auxiliary Circle: This network can also match
impedances up to a maximum conductance. The value of C′2
is calculated in Appendix B-C and is given by:

C ′2 =
1

ω2L1
+

Y 2
0 L2

1 + (Y0ωL2)
2 . (19)

The condition for the auxiliary circle to be part of the
boundary is given by equation (9), and the auxiliary circle can
be plotted by using the value of C′2 produced in (19) above
with the formulas of section II-C1.

In Fig. 4-(c) the coverage circles together with the associ-
ated boundary are plotted for values of L1 = L2=13 nH, and
frequencies of 0.5 GHz, 1.2 GHz, and 2.5 GHz.

D. Hybrid-Π Matching Network

The last network is a hybrid-Π, which consists of a trans-
mission line with two shunt variable capacitors at its ends
as illustrated in Fig. 3-(d). This network is analyzed in the
following sections.

1) C1 variable and C2 constant: In the first case C2 is
fixed and C1 is a variable. The two points are obtained as in
the previous sections by assigning zero and ∞ to C1. For the
latter the real and imaginary parts of Γin are:

xA1 = −1 and (20a)
yA1 = 0. (20b)

For the second point, C1 is assigned a value of zero. The real
and imaginary parts of Yin are then calculated as

<{Yin} =
Y 2

0 [Y0 − ωC2 tan θ + tan θ (ωC2 + Y0 tan θ)]

(Y0 − ωC2 tan θ)
2

+ (Y0 tan θ)
2

(21a)

and

={Yin} =
Y0

[
(ωC2 + Y0 tan θ) (Y0 − ωC2 tan θ)− Y 2

0 tan θ
]

(Y0 − ωC2 tan θ)
2

+ (Y0 tan θ)
2 .

(21b)

These values can be used in (5) to calculate the real and
imaginary parts of Γin, which can be used together with the
first point to calculate the centers and radii of the circles
associated with C1.

2) C1 constant and C2 variable: In this case, C1 is fixed
at either C1,min or C1,max while C2 is a variable. The two
circle points can be calculated by assigning zero and ∞ to
C2. When C2 = ∞ the real and imaginary parts of Yin are
given by

<{Yin} = 0, and (22a)

={Yin} = ωC1 −
Y0

tan θ
, (22b)

where Y0 is the characteristic admittance of the line, which
is also the same as the admittance of the load. Using these
values and equation (5), the real and imaginary parts of Γin
can be directly calculated.

In a similar way when C2 = 0 the real and imaginary parts
of Yin are given by:

<{Yin} = Y0, and (23a)
={Yin} = ωC1. (23b)

Once more, equation (5) can be used to calculate the real and
imaginary parts of Γin. From these two points, the centers
and radii of the circles associated with C1 can be directly
calculated using the relations in section II.

3) Auxiliary Circle: In this case the maximum conductance
that can be matched is a function of the transmission line
parameters and C2. The value of C2 that gives the maximum
conductance is derived in Appendix B-D and is given by:

C ′2 =
Y0

ω tan(θ)
, (24)

and the necessary condition for the auxiliary circle to be part
of the boundary is given by (9). The auxiliary circle can be
plotted by using the value of C′2 calculated in (24) and the
formulas of section II-D1. The coverage for three different
frequencies are illustrated in Fig. 4-(d).

III. IMPLEMENTATION OF THE THEORETICAL RESULTS

A. Connecting the Boundary Area

All five circles of the boundary coverage can be plotted
using the formulas presented in the previous section. Since
these circles intersect at multiple points, it is necessary to
provide a systematic way to identify and connect the arcs of
the boundary area. As illustrated in Fig. 5 (c), four points
can be identified for all the combinations of the maximum
and minimum values of the two capacitors. If the auxiliary
circle is part of the boundary, two more points are required
making a total of six points. To uniquely define any arc, the
starting and ending points together with its center and radius
are not sufficient, and a third point is needed. This point can
be selected arbitrarily as far as it corresponds to capacitances
between the minimum and maximum values. For convenience,
however, the median of the capacitances is chosen. Given this
information, the arcs can be plotted as detailed in Appendix
C.
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B. Design Guidelines

The design and optimization of tunable MNs depends highly
on the application at hand. However, important general rules
can be derived based on the theoretical analysis presented
in this work. The first task in the design is usually the
selection of the most suitable network topology. Apart from
other application-dependent requirements, the main factor in
the selection is the range of capacitance required. The topology
that provides the required coverage using capacitors with the
smallest range should be favored. Also, the network that offers
smaller capacitances should be selected because the quality
factors of variable capacitors is highest at their lowest values.
Once a suitable network is selected it can be optimized using
the tool presented in this work with the following steps:

1) Use the formulas in Appendix B to calculate the values
of L or θ to guarantee coverage of the maximum con-
ductance (resistance for the case of the T-NW).

2) Calculate C′2 using L or θ from the previous step.
3) Ensure that C2,min < C ′2 < C2,max by re-selecting L and

θ. This will guarantee wide boundary coverage because
C′2 defines a critical limit.

4) Since the auxiliary circle is included in the boundary
by design, select the value of C2,min (C2,max for the
case of the T-NW) close to C′2 because values of C2,min

below and above C′2 result in identical impedances and
therefore duplicate coverage as shown in Fig. 5 (a) and
(b). This condition can be derived for the case of the
Π NW, without loosing generality, by assigning C2 =
C′2 ± C∆ in equation (33) to give:

<{Yin} =
Y0

(ωL)
2

[Y 2
0 + (±ωC∆)2]

, (25)

which clearly does not depend on the sign of C∆. There-
fore, as far as C2,min < C ′2, a region on the coverage
area is covered twice as illustrated in Fig. 5 (b) (this area
can also be observed in Fig. 2 as the densely covered
region).

5) After selecting L, θ and C2,min (or C2,max for the case
of the T), the rest of the parameters can be selected
according to the required coverage.

11

C′
2 ± C∆

Uncovered
Area

Duplicated
Area

(a) (b) (c)

min
min

min
max

min
max
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max

medmaxmed
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med
max

max
aux

min
aux

med
aux

Fig. 5. (a) Coverage area with C2,min=C′
2. (b) Coverage area with

C2,min < C′
2. The duplicate area is covered twice for the case of (b), while

the uncovered area is dropped for the case of (a). (c) Illustration of the five
arcs and 11 points of the boundary. Each point is defined by the values of C1

and C2 ∈ {min, max, med, aux}, which refer to the minimum, maximum,
median, and C′

2, respectively.

IV. MEASUREMENTS AND DISCUSSIONS

To verify the theoretical formulas presented in the previous
sections, prototypes for all four matching networks have been
fabricated and measured. The RT/Duroid R© 5880 substrate has
been used with a thickness of 0.508 mm. The printed circuit
boards were fabricated using Laser etching. For the tunable
capacitor, the varactor BB388 from Infineon has been used.
The fabricated circuits are shown in Fig. 7.

A. Measurements

First, the C-V characteristics of the varactor have been
measured at the frequencies of interest. To take the mea-
surement, a circuit board has been fabricated for the varactor
with one end shorted to the ground. The capacitance has been
extracted from the S11 measurement. In Fig. 6 the capacitance
is plotted against the reverse voltage for various frequency
points. A model provided by the manufacturer has been used
to generate the simulated results presented in the figure.
Since the used varactor is packaged, its capacitance changes
with frequency due to the effects of the package parasitics.
These parasitics originate from the wire-bonds and are mostly
inductive resulting in a self-resonant-frequency, which can be
clearly observed in the figure.
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1

SRF

Fig. 6. Measured and simulated capacitance of the varactor against the bias
voltage at multiple frequencies.

Lumped components in the theoretical analysis presented
in the previous sections are assumed to be ideal, and the
entire networks are assumed to be infinitesimally small. These
assumptions can not be realized in practice as surface mounted
components (SMT) are not ideal, and the circuits have to be
large enough for fabrication and measurement reasons. To ob-
tain results comparable with the ideal theory, the circuits have
been made as small as possible. Moreover, the input/output
connectors and feed lines have been de-embedded from the
measured S-parameters. The parasitic effects of the solder
and small conductive patterns connecting the SMT compo-
nents have not been de-embedded. However, these parasitic
effects are proportional to the frequency and can be reduced
considerably by lowering the test frequency. For this reason,
a relatively low frequency of 500 MHz has been chosen to
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verify the theory. From the good match between the theory
and measurement, it can be concluded that if the circuits are
small enough, and the parasitics reduced (integrated designs),
the theory can also be verified for higher frequencies.

T-Network Π-Network

Ladder Network Hybrid Network

Fig. 7. Photographs of the fabricated prototypes.

The measurements of the matching networks have been
performed using a digital power supply (TTi MX100TP) and
a network analyzer (Keysight N5242A) both controlled by a
PC. The DC voltages of the two varactors have been swept
from 2 to 28 V in steps of 0.5 V. The measurement has been
automated, and a total of 2809 points have been measured for
each frequency. The results are compared to the theory for all
matching networks in Fig. 8.

B. Analysis and Discussion
From Fig. 8 (a) a good agreement between theory and

measurements can be observed with the four arcs clearly
identifiable from the measurements. The minor discrepancy is
mainly due to the ideal components assumed in the theoretical
analysis. It can also be observed that the points at the edge of
the chart, which are predicted by the theory, are not obtained
in the measurement. As proofed by equation (1), when the
matched impedance is on or close to the outer circle, its real
part should be either zero or ∞. This condition can only be
satisfied if the matching network is purely reactive, which is
not the case in the fabricated circuits. A slight phase shift can
also be observed which is mainly due to the parasitic effects
of the large, manually-soldered circuit.

For the case of the Π network (Fig. 8-(b)), the same
discussion above applies with a slightly more evident phase
shift. The parasitics on each circuit are different because each
circuit has a different layout. Therefore, the phase change,
which is mainly due to the parasitics, vary from one design to
the other. It can also be observed that the circle of C2,max is
slightly distant from the measured boundary, which indicates
that the value of C2,max has not been estimated correctly.
The maximum value of the capacitance occurs when the bias
voltage is low. In such case, the C-V curve experiences an
infinite slope as shown in Fig. 6 resulting in an uncertainty in
the estimation of the maximum values. Another consequence
of this uncertainty is the difference between the maximum
limits of the two capacitors even if they are identical due to
the effects of the parasitics.

For the case of the Ladder circuit, a very good match
between theory and measurements is achieved as shown in
Fig. 8 (c). The phase shift in this case is very minor.

Measurement Theory

1

Measurement Theory

1

Measurement Theory

1

Measurement Theory

1

(a) (b)

(c) (d)

Fig. 8. Measurements of the fabricated prototypes compared with the theory.
(a) T-NW. (b) Π-NW. (c) Ladder NW. (d) Hybrid Π NW.

For the hybrid circuit, the comparison has been made at 1
GHz instead of 500 MHz (Fig. 8 (d)) because the size of the
lumped circuit is small.

On all the measurements, one or two points can be observed
to fall outside of the boundary. These points are found to occur
at the lowest bias voltage where the varactor operates on or
near its self resonant frequency (SRF) as clear in Fig. 6, which
explains the unexpected behaviour.

V. DESIGN EXAMPLE: LOAD MODULATED PA

As an example of the presented design tool, a PA has
been designed with load modulation capability. One of the
challenges of PAs is the deterioration of the Power Added
Efficiency (PAE) as the power is reduced (backed-off) from
its maximum value. This limitation is more serious for applica-
tions with high Peak-to-Average Power Ratio (PAPR), where
the input signal is considerably backed-off for most of the
time. If a tunable MN is used at the output of the PA, the
efficiency at power back-off can be increased by varying the
output impedance presented to the transistor according to the
magnitude of the input signal.

The first step in the design of load-modulated PAs is
to identify the optimal output impedances for various input
powers. If an accurate transistor-model is available, this task
can be achieved by load and source pull simulations. In this
work the GaN HEMT transistor CGH40010F from Cree has
been used, which has a good simulation model. Load pull
simulations have been performed for input power levels from
30 dBm down to 20 dBm (10 dB back-off) at a frequency of
0.8 GHz. The transistor is biased for a class B operation and
the second and third harmonics have been optimized for the
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maximum power level and kept constant for the other power-
values.

The second step is to properly terminate the harmonics.
Since they are kept constant in the previous step, a static
network between the transistor and the tunable network has
been used (Fig. 10). After designing this network, the load-pull
data at the transistor plane has been transformed to the tunable
network plane as shown in Fig. 10. The transformed trajectory
is plotted in Fig. 9 against the coverage of all four network
topologies, where the techniques discussed in section III-B
have been used. As expected, all four networks can provide
the required coverage, but the T-network is chosen due to its
lower capacitance-range (Fig. 9-e) and wider coverage.

1 1

1

C1,max C2,min C2,max

C1,min Auxiliary LP Data

1

C2,min C1,max C2,max

C1,min Auxiliary LP Data

1

1

C1,min

C1,max

C2,
max

C2,

min

(a) (b)

(c) (d)

(e)

30
dBm18

dBm
Π

h-Π

Ladder

T

Fig. 9. The coverage of all the networks and the load-pull trajectory (beyond
the static NW) of the OMN for input power of 18-30 dBm. (a) T-NW. (b) Π
NW. (c) Ladder NW, (d) Hybrid-Π NW. (e) Cost comparison.
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Fig. 10. Schematic of the load-modulated power amplifier with varactors in
anti-series configurations.
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V1

V2

Input
Matching
Network

Tunable
Matching
Network

Static Output
Matching Network

Fig. 11. Photographs of the fabricated power amplifier.

A. Results and Discussion

A prototype amplifier has been fabricated as shown in
Fig. 11. The MTV4090 tuning varactor has been used due
to its high power handling capability. To increase the power
handling even more, the tunable capacitors have been im-
plemented as multiple varactors connected in an anti-series
configuration as shown in Fig. 10 and 11.

The PAE is measured at 0.8 and 0.9 GHz for the full
dynamic range of the tunable network (V1 and V2 between 5
and 70 V). All the measurement has been taken below the 2
dB compression point to maintain a constant gain between 13
and 15 dB. Any measurement resulting in a gain below 13 has
been dropped. The results are shown in Fig. 12 where it can
be observed that the amplifier achieves a maximum efficiency
of 60% and 5 % improvement in the PAE at 10 dBs of power
back-off for the case of 0.9 GHz and 2% for the case of 0.8
GHz.

The presented design demonstrates relatively low efficiency
improvement, which is due to the losses of the varactors,
the package parasitics, and the manual soldering. However, it
demonstrates the benefit of the presented theoretical analysis
and design guidelines in the design and optimization of tunable
PA.
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Fig. 12. Measured power added efficiency of the dynamically load modulated
power amplifier against the output power at 0.9 GHz and 0.8 GHz. The input
power is swept from 20 to 28 dBm and the measured gain is steady at (13-15)
dB.

VI. CONCLUSION

In this work, analytical formulas for the coverage area for
four typical matching networks have been derived for the
Smith chart for the first time. These theoretical formulas have
been validated by circuit simulation and measured results,
which agree very well with the theory. The MNs analyzed
in this work all have two tuning components (capacitors) and
are lossless. Also, only perfect matching is considered. The
findings of this work can be extended further by including
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the effects of imperfect matching as well as the losses. Nev-
ertheless, the formulas presented here are compact, therefore,
suitable for circuit simulators and can be plotted directly on the
Smith chart, which enables rapid design of tunable systems.
As an example, a load-modulated power amplifier has been
designed and tested using the theoretical tools presented in
this work.

APPENDIX A
DERIVATION OF THE CENTER AND RADIUS OF AN INNER

TANGENTIAL CIRCLE

1
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Fig. 13. (a) Illustration of a circle tangential with the Γ = 1 circle. (b)
Illustration of an arc defined by three points together with the center and
radius.

In this section the center and radius of a circle tangent
to the |Γ| = 1 circle are derived. The circles are illustrated
in Fig. 13-(a), where the tangent point is denoted A(xA,yA)
and the center is denoted C(xC ,yC). Point B(xB ,yB) is any
other point on the circle. Triangle 1 and 2 on Fig. 13-(a) are
similar, therefore, the ratio of their corresponding sides are in
proportion, thus

xC
xA − xC

=
yC

yA − yC

xC =
xA
yA
yC . (26)

Evaluating the value of the radius RC from triangles 1 and 3
and equating them gives:

(xA − xC)2 + (yA − yC)2 = (xB − xC)2 + (yB − yC)2

(2xB − 2xA)xC + (2yB − 2yA) yC

= x2
B + y2

B − x2
A − y2

A.
(27)

Substituting form (26) in (27) gives

(
2xAxB
yA

− 2x2
A

yA
+ 2yB − 2yA

)
yC

= x2
B + y2

B − x2
A − y2

A.

(28)

Multiplying through by yA and re-arranging to get yC as

yC =
yA
(
x2
B + y2

B − x2
A − y2

A

)
2 (−x2

A − y2
A + 2xAxB + 2yAyB)

, (29)

and substituting in (26) to get xC as

xC =
xA
(
x2
B + y2

B − x2
A − y2

A

)
2 (−x2

A − y2
A + 2xAxB + 2yAyB)

. (30)

The radius RC can be calculated directly from triangle 1 as

RC =

√
(xA − xC)

2
+ (yA − yC)

2
. (31)

APPENDIX B
DERIVATION OF THE CENTERS AND RADII OF THE

AUXILIARY CIRCLES

In this section the value of the capacitor (C2) that produces
the auxiliary circle is derived for all the topologies presented
in Fig. 3.

A. Π Matching Network
The value of C2 that gives maximum conductance is referred

to as C′2 and can be calculated by first evaluating the real part
of the admittance just before the last branch as

Y2 =
(Y0 + jωC2)

(
1
jωL

)
Y0 + j

(
ωC2 − 1

ωL

) . (32)

The real part of which (conductance) can be calculated as:

<{Y2} =
HHH
Y0C2

L + Y0

(ωL)2 −HHH
Y0C2

L

Y 2
0 +

(
ωC2 − 1

ωL

)2 . (33)

To evaluate the maximum conductance the derivative of <{Y2}
with respect to C2 must be zero, which gives:

2Y0

(
1− ω2LC ′2

) (
ω2L

)(
(Y0ωL)

2
+ (ω2LC ′2 − 1)

2
)2 = 0. (34)

Therefore,

1− ω2LC ′2 = 0, and (35)

C ′2 =
1

ω2L
. (36)

B. T-Matching Network
In this case, the last branch is a series capacitor (C1), the

forbidden area can be defined by the maximum resistance that
can be matched before C1. The value of C′2 can be calculated
by evaluating the real part of the impedance just before the
last branch as

<{Z2} = <{Zin} =
Z0ω

2L2

Z2
0 +

(
ωL− 1

ωC2

)2 . (37)

Equating the first derivative with respect to C2 to zero gives:

2Z0ωL
2

C′22

(
ωL− 1

ωC′2

)
(
Z2

0 +
(
ωL− 1

ωC′22

)2
)2 = 0. (38)

Since C ′2 =∞ can be excluded,

C ′2 =
1

ω2L
(39)
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C. Ladder Matching Network

For this case, a simple transformation can be used to
transform Y0 and L2 from a series to a parallel configuration.
This network can then be analysed in the same way as the
Π network. The parallel conductance and susceptance can be
calculated to be

Y ′0 =
Y0

1 + (Y0ωL2)
2 and (40)

B0 =
−ωY 2

0 L2

1 + (Y0ωL2)
2 , (41)

respectively. From the results of the Π network in (equation
(36)) and assuming that B0 is capacitive

C ′2 −
−Y 2

0 L2

1 + (Y0ωL2)
2 =

1

ω2L1
, and (42)

C ′2 =
1

ω2L1
+

Y 2
0 L2

1 + (Y0ωL2)
2 . (43)

D. Hybrid Π Matching Network

This network can be analyzed in the same way as the Π
network.

Y2 = Y0
Y0 + j (ωC2 + Y0 tan(θ))

Y0 − ωC2 tan(θ) + jY0 tan(θ)
, (44)

from which the real part can be evaluated as

<{Y2} = <{Yin} =
Y 3

0

(
1 + tan2(θ)

)
(Y0 − ωC2 tan(θ))

2
+ (Y0 tan(θ))

2 .

(45)
Applying the maximum conductance condition results in

2Y 3
0 ω tan(θ) [1 + tan(θ)] [Y0 − ωC2 tan(θ)][
(Y0 − ωC2 tan(θ))

2
+ (Y0 tan(θ))

2
]2 = 0, (46)

which gives

C ′2 =
Y0

ω tan(θ)
. (47)

APPENDIX C
PLOTTING AN ARC KNOWING ITS CENTER RADIUS AND

THREE POINTS

In this section plotting an arc with a radius of RC and
center C(xC ,yC) and three points A, B and D is illustrated as
shown in Fig. (13(b)). First the angles of the three points are
calculated as

θi = tan−1

(
yi − yC
xi − xC

)
, i ∈ {A,B,D} (48)

Next, a vector of the ordered (ascending or descending)
angles can be formulated as

θ = [θA, θ2, θ3, ..., θk, θD, θk+2, ..., θB ] . (49)

The angles in this vector always represent the right arc because
they include θD. From this vector, the x and y coordinates of
any point in the arc can be simply calculated using:

x+ jy = RC (cos(θ) + xC + j [sin(θ) + yC ]) . (50)
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