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Using classical density functional theory (DFT), we calculate the density profile ρ(r) and local com-
pressibility χ(r) of a simple liquid solvent in which a pair of blocks with (microscopic) rectangular
cross section are immersed. We consider blocks that are solvophobic, solvophilic and also ones that
have both solvophobic and solvophilic patches. Large values of χ(r) correspond to regions in space
where the liquid density is fluctuating most strongly. We seek to elucidate how enhanced density
fluctuations correlate with the solvent mediated force between the blocks, as the distance between the
blocks and the chemical potential of the liquid reservoir vary. For sufficiently solvophobic blocks, at
small block separations and small deviations from bulk gas-liquid coexistence, we observe a strongly
attractive (near constant) force, stemming from capillary evaporation to form a low density gas-like
intrusion between the blocks. The accompanying χ(r) exhibits a structure which reflects the incipient
gas-liquid interfaces that develop. We argue that our model system provides a means to understanding
the basic physics of solvent mediated interactions between nanostructures, and between objects such
as proteins in water that possess hydrophobic and hydrophilic patches. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978352]

I. INTRODUCTION

Understanding the properties of water near hydrophobic
surfaces continues to attract attention across several different
disciplines,1,2 ranging from the design of self-cleaning mate-
rials3,4 to biological self-assembly and protein interactions.5

Likewise, understanding the (water mediated) interactions
between hydrophobic and hydrophilic entities is important
in many areas of physical chemistry and chemical physics.
In a recent article, Kanduč et al.6 surveyed the field and
described informatively how the behaviour of soft-matter
at the nano-scale depends crucially on surface properties
and outlined the key role played by water mediated interac-
tions in many technological and biological processes. These
include colloid science, where altering the surface chemistry
can change enormously the effective interactions, e.g., those
preventing aggregation, and biological matter where effec-
tive membrane-membrane interactions can be important in
biological processes.

In attempting to ascertain the nature of effective inter-
actions, it is crucial to know whether a certain substrate, or
entity, is hydrophilic or hydrophobic. For a macroscopic (pla-
nar) substrate, the degree of hydrophobicity is measured by
Young’s contact angle θ. A strongly hydrophobic surface, such
as a self-assembled monolayer (SAM), paraffin, or hydro-
carbon, can have θ > 120◦, while a strongly hydrophilic sur-
face can often correspond to complete wetting, i.e., θ = 0,
meaning a water drop spreads across the whole surface. How-
ever, in the majority of systems encountered in the physi-
cal chemistry of colloids, in nanoscience, and in situations
pertinent to biological systems, the entities immersed in
water do not have a macroscopic surface area. Thus it is

important to ask to what extent ideas borrowed from a macro-
scopic (capillarity) description, which simply balance bulk
(volume) and surface (area) contributions to the total grand
potential but which make specific predictions for the effective
interaction between two immersed macroscopic hydropho-
bic entities, remain valid at the nanoscale. For example,
Huang et al.7 consider the phenomenon of capillary evap-
oration of simple point charge (SPC) water model between
two hydrophobic oblate (ellipsoidal) plates. These authors
discuss the validity of the macroscopic formula at which evap-
oration occurs and the form of the solvent mediated force
between the plates. More recently, Jabes et al.8 investigate the
solvent-induced interactions for SPC/E water between curved
hydrophobes; they consider the influence of different types of
confining geometry and conclude that macroscopic thermody-
namic (capillarity) arguments work surprisingly well, even at
length scales corresponding to a few molecular (water) diam-
eters. The survey article Ref. 6 emphasises the usefulness of
capillarity ideas for analysing water mediated forces between
two entities that have different adsorbing strengths.

Such observations raise the general physics question as to
how well should one expect capillarity arguments to work for
nanoscale entities immersed in an arbitrary solvent. Are these
observations specific to water? This seems most unlikely. In
this paper, we argue that insight into the fundamental aspects
of solvent mediated interactions, particularly those pertain-
ing to solvophobes, are best addressed by considering the
effective, solvent mediated interactions between nanostruc-
tures immersed in a simple Lennard-Jones (LJ) liquid. By
focusing on a model liquid with much simpler intermolecular
forces than those in water, one can investigate more easily and
more systematically the underlying physics, e.g., the length
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scales relevant for phenomena such as capillary evaporation
and how these determine the effective interactions.

A second, closely related, aspect of our present study is
concerned with the strength and range of density fluctuations
in water close to hydrophobic substrates. It is now accepted that
for water near a macroscopic strongly hydrophobic substrate
the local number density of the water is reduced below that in
bulk for the first one or two adsorbed molecular layers. Accom-
panying this reduction in local density there is a growing evi-
dence for a substantial increase in fluctuations in the local num-
ber density; these increase for increasing water contact angle.
An illuminating review9 surveys the field up to 2011, describ-
ing earlier work on density fluctuations, from the groups of
Garde, Hummer, and Chandler. The basic idea of Garde and
co-workers is that a large value of some, appropriately defined,
local compressibility reflects the strength of density fluctua-
tions in the neighbourhood of the substrate and should provide
a quantitative measure of the degree of hydrophobicity of the
hydrophobic entity.9 The idea is appealing. However, even for
a macroscopic planar substrate, there are problems in decid-
ing upon the appropriate measure. Once again, this issue is not
specific to water. If strong fluctuations occur at hydrophobic
surfaces one should also expect these to occur at solvopho-
bic surfaces, for similar values of chemical potential deviation
from bulk coexistence. In other words, pronounced fluctua-
tions cannot be specific to water near hydrophobic substrates.
This argument was outlined recently.10,11

Evans and Stewart10 discuss the merits of various different
quantities that measure surface fluctuations. They argue that
the compressibility χ(r), defined as the derivative of the equi-
librium density, ρ(r), with respect to the chemical potential µ
at fixed temperature T

χ(r) ≡

(
∂ρ(r)
∂µ

)
T

(1)

provides the most natural and useful measure for quantify-
ing the local fluctuations in an inhomogeneous liquid. This
quantity was introduced much earlier,12–14 in studies of wet-
ting/drying and confined fluids and is, of course, calculated in
the grand canonical ensemble. The usual isothermal compress-
ibility15 κT = χb/ρ

2
b, where χb ≡ (∂ρb/∂µ)T is the bulk value

of the compressibility; recall that χb → ∞ on approaching the
bulk fluid critical point. Note that χ(r) can be expressed11 as
the correlator

χ(r) = β〈N ρ̂(r) − 〈N〉〈 ρ̂(r)〉〉, (2)

where β = (kBT )−1, ρ̂(r) is the particle density operator,
N = ∫ ρ̂(r)dr is the number of particles, and 〈· · · 〉 denotes a
grand canonical average. Thus 〈 ρ̂(r)〉 = ρ(r) and 〈N〉 is the
average number of particles. Clearly χ(r) correlates the local
number density at r with the total number of particles in the
system. The measures of χ(r) introduced by other authors16,17

are designed for molecular dynamics computations which are
performed in the canonical ensemble rather than in the grand
canonical ensemble. The latter is more appropriate for adsorp-
tion studies.

Using density functional theory (DFT), Evans and
Stewart10 calculated χ(z) defined by Eq. (1) for LJ liq-
uids near planar substrates, with the wall at z = 0. They

investigated substrates which ranged from neutral (θ ≈ 90◦)
to very solvophobic (θ ≈ 170◦) and found that this quantity
is enhanced over bulk, exhibiting a peak for z within one
or two atomic diameters of the substrate. The height of the
peak increased significantly as θ increased and the substrate
became more solvophobic. In subsequent investigations, using
grand canonical Monte Carlo (GCMC) for SPC/E water11 and
GCMC plus DFT for a LJ liquid18 at model solvophobic sub-
strates, it was observed that the maximum in χ(z) increases
rapidly as the strength of the wall-fluid attraction is reduced,
thereby increasing θ towards 180◦, i.e., towards complete dry-
ing. For different choices of wall-fluid potentials, the dry-
ing transition is continuous (critical) and the thickness of the
intruding gas-like layer as well as the maximum in χ(z) diverge
as cos θ → −1.11,18 These observations pertain to the liquid at
coexistence, where µ = µ+

coex.
Much is made in the literature concerning the depleted

local density and accompanying enhanced surface fluctuations
of water at hydrophobic surfaces as arising from the particu-
lar properties of water, namely, the hydrogen-bonding and the
open tetrahedrally coordinated liquid structure, which is said
to be disrupted by the presence of large enough hydrophobic
objects. However, following from Refs. 10 and 11 we show
here that much of this phenomenology is also observed when
a simple LJ like solvent that is near to bulk gas-liquid phase
coexistence is in contact with solvophobic objects. The par-
ticular entities we consider are (i) planar surfaces of infinite
area and (ii) long blocks with a finite rectangular cross sec-
tion. For these objects to be solvophobic, we treat them as
being composed of particles to which the solvent particles are
attracted weakly, compared to the strength of the attraction
between solvent particles themselves. The contact angle of the
solvent liquid at the planar solvophobic substrate considered
here is θ ≈ 144◦. We also consider the behaviour at solvophilic
objects, for which the contact angle at the corresponding planar
substrate is θ ≈ 44◦.

The simple LJ like solvent we consider consists of par-
ticles with a hard-sphere pair interaction plus an additional
attractive tail potential that decays ∼r−6, where r is the dis-
tance between the solvent particles. We use classical density
functional theory (DFT),15,19,20 treating the hard core interac-
tions using the White-Bear version of the fundamental mea-
sure theory (FMT),21,22 together with a mean-field treatment
of the attractive interactions, to calculate the solvent density
profile ρ(r) and local compressibility χ(r). An advantage of
using DFT is that having calculated ρ(r), one then has access
to all thermodynamic quantities including the various inter-
facial tensions. Calculating the grand potential as a function
of the distance between the blocks yields the effective solvent
mediated potential; minus the derivative of this quantity is the
solvent mediated force between the blocks.

When both blocks are solvophobic and the liquid is at
a state point near to bulk gas-liquid phase coexistence, we
find that the solvent mediated force between these is strongly
attractive at short distances due to the formation of a gas-
like intrusion. Proximity to coexistence can be quantified by
the difference ∆µ= µ − µcoex, where µcoex is the value at
bulk gas-liquid coexistence. For a slit pore consisting of two
parallel surfaces of infinite extent that are sufficiently
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solvophobic, θ > 90◦, a first order transition, namely, capillary
evaporation, occurs as ∆µ → 0, corresponding to the stabili-
sation of the incipient gas phase in the slit of finite width.23–25

The formation of the gas-like intrusion between the blocks that
we consider here occurs at smaller ∆µ. This is not a genuine
first order surface phase transition, owing to the finite size of
the blocks. However, this phenomenon is intimately related to
the capillary evaporation that occurs between parallel planar
surfaces with both dimensions infinite. It turns into the gen-
uine capillary evaporation phase transition as the height of our
blocks is increased to ∞. Note that some authors in the water
community, e.g., Refs. 2, 7, and 26 refer to this phenomenon
as “dewetting,” but given that this term is also used to describe
a film of liquid on a single planar surface breaking up to form
droplets, a network pattern, or other structures,27–31 we pre-
fer to use the more accurate term, capillary evaporation. The
important matter of nomenclature was emphasised in the Fara-
day Discussion on hydrophobic and structured surfaces; see
Refs. 32 and 33.

We also present results for the local compressibility χ(r)
in the vicinity of the blocks. Maxima in χ(r) correspond to
points in space where the density fluctuations are the greatest.
We find that the formation of the gas-like intrusion between
the hydrophobic blocks is associated with a local value of χ(r)
that is much greater than the bulk value. However, we find that
the solvent density fluctuations are not necessarily at points in
space that one might initially expect. For example, when there
is a gas-like intrusion, the value of χ(r) is larger at the entrance
to the gap between the blocks, rather than in the centre of the
gap.

We are not the first to use DFT to study liquids near
corners and between surfaces. Bryk et al.34 calculated the
solvent mediated (depletion) potential between a hard-sphere
colloidal particle, immersed in a solvent of smaller hard-
spheres, and planar substrates or geometrically structured sub-
strates, including a right-angled wedge. They found that in
the wedge geometry there is a strong attraction of the colloid
to inner corners, but there is a free energy barrier repelling
the colloid from an outer corner (edge) of a wedge. Hopkins
et al.35 studied the solvent mediated interaction between a
spherical (soft-core) particle, several times larger than the
(soft-core) solvent particles, and a planar interface. They
showed that when the binary solvent surrounding the large par-
ticle (colloid) is near to liquid-liquid phase coexistence, thick
(wetting) films rich in the minority solvent species can form
around it and on the interface. This has a profound effect on
the solvent mediated potential, making it strongly attractive.
A similar effect, due to proximity to liquid-liquid phase sepa-
ration, was found for the solvent mediated potential between
pairs of spherical colloidal particles.35–37 Analogous effects
arising from proximity to gas-liquid phase coexistence, i.e.,
when ∆µ is small were found in a very recent study.38 Such
investigations, studying the influence of proximity to bulk
phase coexistence on the solvent mediated potential between
pairs of spherical particles, provide insight regarding what
one might expect in the cases studied here, namely, pairs of
hydrophobic, hydrophilic, and patchy blocks.

The strong attractive forces between solvophobic objects,
decreased local density, and enhanced fluctuations close to

the substrate, all occur when the liquid is near to bulk gas-
liquid phase coexistence, i.e., when ∆µ is small. Note that
liquid water at ambient conditions is near to saturation. For
water at ambient conditions β∆µ ∼ 10−3. This dimensionless
quantity provides a natural measure of over-saturation, indi-
cating where our results might be appropriate to water and
to other solvents. The other key ingredient in determining the
physics of effective interactions is the liquid-gas surface ten-
sion γlg, which is especially large for water. More precisely,
it is the ratio γlg/∆µρl, where ρl is the density of the coex-
isting liquid that sets the length scale for the capillary evap-
oration of any liquid; see Eq. (14) below. The length scale in
water is, of course, especially important. The influential arti-
cle by Lum et al.39 underestimates this. Subsequent articles40

and the informative piece41 by Cerdeiriña et al. point to the
fact that for water under ambient conditions the characteris-
tic length for capillary evaporation is Lc ∼ 1.5 µm. The latter
authors analyse why this length scale is so long and conclude
this is due primarily to the large value of γlg of water at room
temperature.

The paper is arranged as follows: In Sec. II, we define
the model solvent and the DFT used to describe it. Results for
the fluid at a single planar substrate (wall) and between two
identical walls are discussed in Sec. III. Then, in Sec. IV, we
build a model for the two rectangular blocks and analyse the
density profiles and local compressibility around the pair of
blocks, comparing with results for the planar substrates. We
examine the effect of changing the distance between the two
blocks; this enables us to determine the effective solvent medi-
ated interactions between the blocks. These interactions differ
enormously between an identical pair of solvophobic and a pair
of solvophilic blocks. We also consider the case of (i) a solvo-
phobic and a solvophilic block and (ii) blocks made from up
to three patches that can be either solvophobic or solvophilic.
The density and local compressibility profiles exhibit a rich
structure in these cases and the resulting effective interactions
exhibit a considerable variety. We conclude in Sec. V with a
discussion of our results.

II. MODEL SOLVENT

DFT15,19,20 introduces the thermodynamic grand potential
functional Ω[ρ] as a functional of the fluid one-body density
profile, ρ(r). The profile which minimises Ω[ρ] is the equi-
librium profile and for this profile the functional is equal to
the grand potential for the system. For a fluid of particles
interacting via a hard-sphere pair potential plus an additional
attractive pair potential 3(r), the grand potential functional can
be approximated as follows:15,19,20

Ω[ρ] = Fid[ρ] + FHS
ex [ρ]

+
1
2

"
ρ(r)ρ(r′)3(|r − r′ |) dr dr′

+
∫
ρ(r)(φ(r) − µ) dr, (3)

where Fid = kBT ∫ ρ(r)(ln[Λ3ρ(r)] − 1) dr is the ideal-gas
contribution to the free energy, with Boltzmann’s constant
kB, temperature T, and thermal de Broglie wavelength Λ.
FHS

ex = ∫ Φ({nα}) dr is the hard-sphere contribution to the
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FIG. 1. Bulk fluid phase diagram in the density versus temperature plane. T c
is the critical temperature.

excess free energy, which we treat using the White-Bear ver-
sion of FMT,21,22 i.e., the free energy densityΦ is a function of
the weighted densities {nα}. φ(r) is the external potential and
µ is the chemical potential. The attractive interaction between
the particles is assumed to be given by a simple interaction
potential, incorporating London dispersion forces,

3(r) =


−4ε

(
σ
r

)6
r ≥ σ

0 r < σ
, (4)

whereσ is the hard-sphere diameter, and ε > 0 is the attraction
strength.

In Fig. 1 we display the bulk fluid phase diagram, showing
the gas-liquid coexistence curve (binodal) and spinodal calcu-
lated from Eq. (3). Bulk gas-liquid phase separation occurs
when T < Tc, where the critical temperature Tc = 1.509ε/kB

and the critical density ρcσ
3 = 0.249. The results presented in

the remainder of the paper are calculated along the isotherm
with T = 0.8 Tc. We approach bulk gas-liquid coexistence from
the liquid side, varying the chemical potential to determine
the bulk liquid density. At coexistence, the chemical potential
µ = µcoex takes the same value for both liquid and gas phases.
We define ∆µ = µ − µcoex, which gives a measure of how far
a given bulk state is from coexistence. In Fig. 2 we display the
bulk liquid density as a function of β∆µ, for T = 0.8 Tc.

FIG. 2. The bulk liquid density (solid line) and bulk compressibility (dashed
line) as a function of ∆µ = (µ − µcoex), for fixed temperature T = 0.8 Tc.

In addition to calculating density profiles and thermody-
namic properties of the system, we also calculate the local
(position dependent) compressibility in Eq. (1). In order to
calculate this quantity, we use the finite difference approxima-
tion

χ(r) =
ρ(r; µ + δµ) − ρ(r; µ − δµ)

2δµ
, (5)

with βδµ = 10−4. The bulk value of the compressibility χb

≡ (∂ρb/∂µ)T , as a function of the chemical potential, is also
shown in Fig. 2, for T = 0.8 Tc. We see that as the chemical
potential is increased away from the value at coexistence, the
bulk density increases (solid line) and χb decreases (dashed
line).

III. LIQUID AT PLANAR WALLS

Before presenting results for the liquid solvent around var-
ious different rectangular blocks, we describe its behaviour in
the presence of a single planar wall and confined between two
parallel planar walls. This is a prerequisite for understanding
the behaviour around the blocks.

A. Single hard wall with an attractive tail

Initially, we treat the wall as being made of a different
species of particle having a uniform density distribution and
interacting with the fluid via a pair potential of the same form
as the potential between the fluid particles, i.e., a hard-sphere
potential together with the attractive pair potential

3
h
4f (r) =



−4εh

4f

(
σ
r

)6
r ≥ σ

0 r < σ
. (6)

This is the same as the potential in Eq. (4), but with ε replaced
by the wall-fluid attraction strength parameter εh

4f > 0. Thus,
the external one-body potential due to a substrate made of
particles having uniform density ρ4, occupying the half space
z < 0 (i.e., the wall surface is located at z = 0), is

φ(r) ≡ φ(z) = ρ4

∫
z<0

dr′vh
4f (|r − r′ |), (7)

for z ≥ σ/2 and φ(z) = ∞ for z < σ/2. From this we obtain

φ(z) =



−
2
3
εh
4f ρ4σ

3π
(
σ

z

)3
z ≥ σ/2

∞ z < σ/2
, (8)

where z is the perpendicular distance from the surface of the
wall. Henceforth, for simplicity, we set ρ4σ3 = 1.

In Fig. 3 we display the fluid density profiles and the local
compressibility for the hard-sphere fluid (ε = 0, equivalent to
T → ∞) against a planar hard wall (εh

4f = 0). This is useful
for comparing with the later results, in order to assess the
influence of the attractive interactions. We see that for low
values of the bulk fluid density ρb, the density profile has a
little structure, as does χ(z). Increasing the bulk fluid density,
we observe oscillations developing near to the wall arising
from packing. The local compressibility χ(z) also develops
significant oscillations near the wall. For higher values of ρb,
we see that the contact value χ(σ2

+) is significantly larger than
the bulk value. We also note that it is possible for the local
compressibility χ(z) to be negative, while of course the bulk
value χb must be positive. This is because for larger values of
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FIG. 3. Density profiles ρ(z) and local compressibility χ(z) for a fluid of hard
spheres against a hard planar wall (εh

4f = 0) for different bulk densities.

ρb, the local density values at the minima of the oscillations
are much smaller than in bulk, reflecting the fact that layering
of the fluid at the wall becomes more pronounced.

We turn now to the case ε > 0 and consider the tem-
perature T = 0.8 Tc, where bulk gas-liquid phase separation
occurs. We set the wall attraction to be βεh

4f = 0.13, which
is rather weak, corresponding to a solvophobic substrate with
contact angle ≈144◦ at this temperature. The contact angle θ
is calculated using Young’s equation

γ4g = γ4l + γgl cos θ, (9)

where γ4g, γ4l, and γgl are the wall-gas, wall-liquid, and gas-
liquid surface tensions, respectively. These interfacial tensions
are each calculated separately via DFT in the usual manner
(see, e.g., Ref. 14 and references therein).

Fig. 4 shows liquid density profiles and the local com-
pressibility (both divided by their respective bulk values) on
the isotherm T = 0.8 Tc. At this temperature, the bulk den-
sity of the liquid at coexistence with the gas is ρbσ

3 ≈ 0.587.
For larger values of β∆µ, away from coexistence, the density
profiles exhibit oscillations at the wall, similar to the density
profile for pure hard-spheres against the hard wall (Fig. 3). As
coexistence is approached, the oscillations in the density pro-
files are slightly eroded, although for this value of βεh

4f = 0.13,
the changes in the density profile are not particularly striking.
This can also be seen from the inset in Fig. 4 which displays
the adsorption

Γ =

∫ ∞
0

dz(ρ(z) − ρb). (10)

FIG. 4. Scaled density profile and local compressibility for the liquid with
temperature T = 0.8 Tc at a single planar wall, Eq. (8), with βεh

4f = 0.13. The
corresponding bulk density ρb and compressibility χb can be obtained from
Fig. 2. Note that the contact angle for this choice of parameters is θ ≈ 144◦.
The inset in the upper panel shows the adsorption as a function of β∆µ.

Note that Γ is negative and remains finite as β∆µ→ 0. How-
ever, as can be seen from the lower panel of Fig. 4, where we
display the corresponding local compressibility profiles χ(z),
there is a significant increase in the local compressibility in lay-
ers adjacent to wall as coexistence is approached, β∆µ→ 0+.
We note also that the compressibility has oscillations whose
maxima match those in the density profiles.

B. Single soft Lennard-Jones wall

The wall, Eq. (8), considered in Subsection III A leads to
the fluid density profile and local compressibility having a very
sharp (and discontinuous) first peak at z = σ/2, particular to
this wall potential. The contact density ρ(σ/2) is related to the
bulk pressure via a sum rule [see, e.g., Eq. (68a) in Ref. 42],
which is satisfied by the present DFT. For general wall-
potentials there is no explicit formula for ρ(σ/2). However, it
is clear from the relation emerging from the sum rule that this
quantity must be very large for a potential such as (8).42 Real
molecular fluids interact with substrates via continuous (softer)
potentials. Thus, we now consider a planar wall composed of
particles that interact with the fluid particles via the LJ pair
potential

34f (r) = 4ε4f

[(
σ

r

)12
−

(
σ

r

)6
]

, (11)
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FIG. 5. Contact angle θ as a function of the wall attraction strength βε4f
in Eq. (12) for T = 0.8 Tc. The inset plots (1 + cos θ) versus βε4f . Note that
(1 + cos θ)→ 0 tangentially as βε4f = 0.0344. By contrast, (1 + cos θ)→ 2
linearly as βε4f = 1.11. Thus, drying is critical and wetting is first order for
this choice of wall.

where ε4f > 0 is the coefficient determining the strength of
wall attraction. Thus, using Eq. (7) with 3h

4f replaced by 34f ,
for z > 0 and φ(z) = ∞ for z ≤ 0, we have

φ(z) =



4ε4f ρ4σ
3π

(
σ9

45z9
−
σ3

6z3

)
z > 0

∞ z ≤ 0
(12)

where z is the perpendicular distance from the wall. The con-
tact angle calculated using Eq. (9) for the liquid against this
soft wall for T = 0.8 Tc is shown in Fig. 5. When we set the
wall attraction to be βε4f = 0.3, then the contact angle is
θ ≈ 144◦, which is the same contact angle that the fluid has
against the hard wall with an attractive tail potential (8), with
βεh

4f = 0.13—as treated in Fig. 3. Note that in Fig. 5, the
drying transition, where θ → 180◦, occurs at βε4f = 0.0344
and is continuous (critical). The numerical result from DFT for
this value agrees precisely with the analytical prediction from
the binding potential treatment for the same model potentials
treated in the sharp-kink approximation.43 The latter predicts a
continuous drying transition when βε4f (ρ4σ3)= βε(ρgσ

3),
where ρg is the density of the coexisting gas at the given tem-
perature. What is striking about this result is that it also applies
for the wall potential in Eq. (8), i.e., critical drying occurs at
the same value βεh

4f = βε4f = 0.0344. This is a consequence
of both potentials having the same asymptotic decay as z → ∞.
However, for the potential in Eq. (8) wetting, θ = 0, occurs at
a much smaller value of βεh

4f . Thus, the overall behaviour of
(1 + cos θ) vs wall strength is sensitive to the precise form of
the wall potential.

Fig. 6 shows liquid density profiles and the local com-
pressibility (both divided by their respective bulk values) on
the isotherm T = 0.8 Tc. For large values of β∆µ, the density
profiles exhibit oscillations at the wall similar to the density
profiles for the walls in Figs. 3 and 4. However, as coexis-
tence is approached, the degree to which the oscillations in the
density profiles near the wall are eroded is greater than that
for the case of the wall (8) and a region of depleted density
appears at the wall. Note that for this value of εwf , the low

FIG. 6. Scaled liquid density profile and local compressibility at a single
planar wall, Eq. (12), with T = 0.8 Tc and βε4f = 0.3. The bulk densities cor-
responding to the chemical potentials β∆µ in the key can be read from Fig. 2.
Note that the contact angle for this choice of parameters is θ ≈ 144◦. The
inset in the upper panel shows the adsorption as a function of β∆µ.

density film close to the wall remains finite in thickness right
up to coexistence, β∆µ→ 0, since the wall-liquid interface is
only partially dry: θ < 180◦. This can also be seen from the
inset which shows the adsorption (10). Although Γ is some-
what larger in magnitude than that for the wall potential (8),
displayed in the inset to Fig. 4, it remains finite at coexistence.
In the lower panel of Fig. 6, we display the corresponding
local compressibility profiles χ(z) in the vicinity of this solvo-
phobic surface. We observe that in the first few adsorbed
layers, the local compressibility increases significantly, i.e., the
range over which χ(z)/χb is significantly greater than unity
increases as β∆µ→ 0. Moreover the maximum near z/σ = 2,
corresponding to the second particle layer, grows rapidly as
β∆µ decreases.

C. Two planar walls

We now consider briefly a pair of planar walls, where the
distance between the walls is L. The external potential is

φ24(z) = φ(z) + φ(L − z), (13)

where φ(z) is given by the soft wall Eq. (12). Capillary evapo-
ration from this planar slit can occur as β∆µ→ 0, whereby the
liquid between the two solvophobic planar walls evaporates as
coexistence is approached. The value of L at which this occurs
can be estimated from the Kelvin equation23,44

L∗ ≈
−2γlg cos θ

∆µ(ρl − ρg)
, (14)
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FIG. 7. The figure shows the capillary evaporation line calculated via DFT
(dashed) and that from the Kelvin equation (14) (solid), for two parallel pla-
nar walls with βε4f = 0.3 and T = 0.8 Tc. The critical point of the capillary
evaporation is marked with a circle. For values of L below the critical value,
there is no capillary evaporation. The inset shows the coexisting gas and liquid
density profiles when L = 6σ, i.e., β∆µ ≈ 0.266.

where L∗ ≡L − 2σ is defined as roughly the distance between
maxima of the density profile, corresponding to the first
adsorbed layer at each wall. L∗ is the effective distance between
the walls. γlg is the gas-liquid interfacial tension, θ is the single
planar wall contact angle, and ρg and ρl are the coexisting gas
and liquid densities, respectively. Eq. (14) is appropriate to a
partial drying situation.44

Fig. 7 shows the capillary evaporation phase transition
line, comparing the prediction from the Kelvin equation (14)
with that calculated from DFT. This is the line in the (∆µ, L)
plane where the gas-filled slit and liquid-filled slit are at ther-
modynamic coexistence, i.e., these states have the same grand
potential, temperature, and chemical potential. The inset in
Fig. 7 shows the density profiles of coexisting gas and liquid
states for L = 6σ. As we expect, the Kelvin equation is accu-
rate for large L, but is less reliable for small L. Nevertheless
for values down to L ≈ 4σ and β∆µ = 0.53, where the critical
point occurs in DFT, the Kelvin equation prediction remains
fairly good. This may come as a surprise to some readers,
given that the equation is based on macroscopic thermody-
namics. Note that Eq. (14) does not account for a capillary
critical point.23,44 We have also investigated the solvent medi-
ated potential between two planar walls, i.e., the excess grand
potential arising from confinement. The derivative of this quan-
tity with respect to L jumps at capillary evaporation. We return
to this later.

IV. TWO RECTANGULAR BLOCKS

In this section, we describe the properties of the liquid
around two rectangular cross section beams of length a—the
two “blocks” illustrated in Fig. 8. We assume that the blocks
are long, i.e., we take the limit a → ∞. The distance between
the closest faces of the blocks is xG and we set the size of the
cross section of the two blocks to be b × c, where b = 8σ
and c = 3σ. We locate the origin of our Cartesian coordinate
system to be midway between the two blocks.

The external potential due to the two blocks is defined
in a manner analogous to that used above for the planar wall

FIG. 8. An illustration of two rectangular cross section solid blocks immersed
in the liquid. The cross sectional area of each block is b× c, and the length of
the blocks is a. We assume a → ∞. In the case sketched here, the blocks are
made of a uniform density of particles of the same diameter σ as the liquid
particles, interacting with the liquid particles via the potential in Eq. (11).
“P1”, “P2,” and “P3” denote three different paths along which we display
density profiles and the local compressibility in Figs. 9–13 below.

potential [cf. Eq. (7)], i.e., the potential due to the two blocks
is

φ(r) = ρ4

∫
D

dr′34f (|r − r′ |), (15)

where D is the region of space occupied by each of the blocks.
The parameter ε4f characterises the strength of the attrac-
tion between the blocks and the fluid. When ε4f is small, the
blocks are solvophobic, but for larger values of ε4f they are
solvophilic. Later we consider blocks having some sections
that are solvophobic and others that are solvophilic: these are
the so called “patchy” blocks. Note that the region D is where
the fluid is completely excluded, with φ(r) = ∞ and is made
of two volumes with cross sectional area b × c = 8σ × 3σ.
However, the effective exclusion cross-sectional area of each
block is ≈b∗ × c∗ = 10σ × 5σ, which includes an exclusion
zone of width σ around each of the blocks.

A. Two solvophobic blocks
1. Blocks at fixed separation xG

The results we present first are for a pair of blocks with
soft solvophobic surfaces with βεwf = 0.3, at the temperature
T = 0.8 Tc. Recall that for the single soft planar wall this value
of ε4f corresponds to a contact angle θ ≈ 144◦ and that for
the pair of planar walls the capillary evaporation critical point
is at β∆µ = β∆µcc = 0.53—see Fig. 7. In Figs. 9 and 10, we
display density profiles and the local compressibility χ(r), for
various β∆µ and fixed xG = 5σ.

The density profiles in Fig. 9 show that as coexistence is
approached, i.e., as β∆µ→ 0, the density in the space between
the pair of blocks becomes very small, i.e., gas-like. This
is somewhat analogous to the capillary evaporation observed
between two infinite planar walls—see Fig. 7. For larger values
of β∆µ, away from the value where bulk gas-liquid coexis-
tence occurs, we see oscillations in the density profile arising
from the packing of the liquid particles around the blocks.
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FIG. 9. Density profile σ3ρ(x, y) around the pair of solvophobic blocks separated a distance xG = 5σ apart, for three values of the chemical potential. The
temperature T = 0.8 Tc and wall attraction strength βε4f = 0.3.

We also note that the density is higher near the corners of the
blocks.

The local compressibility χ(r) provides a measure of
the strength of the local fluctuations within the fluid and so
large values of this quantity reveal regions in space where
the local density fluctuations are greatest. In Fig. 10, we
see that for β∆µ= 0.4, well away from bulk coexistence,
the local compressibility is largest around the surface of
the two blocks, decreasing in an oscillatory manner as the
distance from the blocks increases. When the chemical poten-
tial deviation is smaller, β∆µ= 0.22, the local compressibility
in the vicinity of the outside of the blocks is similar to the
case for the larger value of β∆µ= 0.4. However, in the region
between the two blocks, we see that the local compressibil-
ity is significantly larger, indicating strong fluctuations in this
region. For β∆µ= 0.22, we see from Fig. 9 that the average
density in the gap between the blocks is intermediate between
the bulk gas and liquid coexisting densities and so we expect
that typical microstates of the system include both gas-like and
liquid-like average densities in the gap. The fluctuations of the

system between these two typical states are what lead to the
high values of the local compressibility.

Approaching even closer to the bulk coexistence point
leads to the gas being stabilised in the gap between the
blocks—see the density profiles for β∆µ= 0.01 in Fig. 9. For
this value of β∆µ, we see from Fig. 10 that the region where
the local compressibility is largest is not in the gap between
the blocks, but is instead at the entrance to this region, where
there is an “interface” between the bulk liquid and the gas-
like intrusion between the blocks. It is the fluctuations in this
interface that lead to the maxima in the local compressibility
χ(x, y).

We now present results for xG = 7σ, i.e., with the gap
between the blocks being slightly larger. In order to display in
more detail the properties of the density profiles and local com-
pressibility around the pair of blocks, we plot these along the
three different paths P1, P2, and P3, illustrated in Fig. 8. The
density and compressibility profiles are, of course, symmetri-
cal around the mid-line through the gap between the blocks,
so we display profiles around the right hand block only. From

FIG. 10. The local compressibility kBTσ3χ(x, y) around the pair of solvophobic blocks, for three states approaching bulk coexistence. The corresponding
density profiles are displayed in Fig. 9.
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FIG. 11. Left: density profiles ρ(x) ≡ ρ(x, 0) (top) and local compressibility χ(x)≡ χ(x, 0) (bottom) of the fluid along path P1 for various values of the
chemical potential and for T = 0.8 Tc, βε4f = 0.3, and fixed distance xG = 7σ between the blocks. Right: the corresponding functions ρ(x) ≡ ρ(x,±b/2) and
χ(x) ≡ χ(x,±b/2) on path P3. Note that ρ(r), χ(r) ≡ 0 within the block.

Fig. 8, we see that paths P1 and P2 are along the lines of
symmetry and path P3 is along the horizontal side of the block.

In Fig. 11, we display results along paths P1 and P3. On
both paths, both the density and the local compressibility are,
of course, zero within the block. Focussing first along the por-
tion of path P1 not in the gap between the blocks, we see that the
profiles for varying β∆µ are very similar to those displayed in
Fig. 6 for the planar LJ wall: as β∆µ is decreased, the density in
the vicinity of the wall decreases and the maxima in χ(r) near
the wall increase. Comparing with the density profiles along
the parallel path P3, along the horizontal size of the blocks, we
see that away from the gap between the blocks the local den-
sity is slightly higher than along path P1 (this is the influence
of the corner), but both the density and compressibility follow
the same trend as along path P1.

Moving on to examine the behaviour in the gap between
the blocks, in Fig. 11 we see that on decreasing β∆µ, along
path P1 the density decreases and at β∆µ . 0.04 there is a
discontinuous change in the density profile. The density pro-
files for β∆µ = 0.03 and 0.01 are almost identical and
correspond to a dilute “gas” state. The strong fluctuations
connected to the onset of this transition result in very large
values of χ(x, 0) for β∆µ = 0.05 and 0.04. χ(x, 0) exhibits
a discontinuous change in the gap between the blocks at
the value of β∆µ where the density profile jumps. More-
over, along the portion of path P3 along the end of the gap
between the blocks, we also observe a large jump in the
density profile as coexistence is approached. Along path P3,

the local compressibility also jumps. Unlike on path P1, where
in the gap χ(x, 0) takes small gas-like values for β∆µ = 0.03
and 0.01, on path P3 χ(0,±b/2)/χb is very large for these
values of β∆µ, reflecting the occurrence of gas-liquid inter-
facial fluctuations. All of this is reminiscent of the capillary
evaporation observed for two planar solvophobic walls. How-
ever, the transition occurs at a smaller value of β∆µ due to
the finite dimensions of the blocks. Specifically, the transition
occurs at β∆µ . 0.04, whereas for the planar slit with L = 7σ
evaporation occurs at β∆µ = 0.21; see Fig. 7.

In Fig. 12 we display density profiles and the local com-
pressibility along path P2 (see Fig. 8), which starts from the
origin (the midpoint between the blocks) and goes along the
positive y-axis. For small β∆µ, i.e., β∆µ = 0.03 and 0.01, we
see that the density is gas-like in the gap between the blocks,
increasing to the bulk liquid value outside the gap, y & 8σ. The
density profile changes discontinuously at β∆µ. 0.04 and for
larger values, the density is liquid-like throughout path P2. For
smaller values of the chemical potential, β∆µ. 0.04, there
is a local maximum in the local compressibility along this
path and the location of the maximum occurs roughly where
the density profile ρ(0, y)/ρb = 0.5. Thus, as the chemical
potential is varied, the local compressibility maximum splits
and shifts along the y-axis in the gap between the blocks.
Recall that along the y-axis the system is symmetric around
the origin, therefore for small β∆µ there is a peak in χ(r)
at each of the entrances to the gap, i.e., for y≈ ± 5σ [cf.
Fig. 10].



124703-10 Chacko, Evans, and Archer J. Chem. Phys. 146, 124703 (2017)

FIG. 12. Density profiles ρ(y) ≡ ρ(0, y) and local compressibility χ(y)
≡ χ(0, y) along path P2 for various values of the chemical potential and for
T = 0.8 Tc, βε4f = 0.3, and fixed distance xG = 7σ between the blocks. Path
P2 goes from the midpoint between the two blocks (y = 0) into the bulk liquid
(y = ∞) parallel to the vertical surfaces of the two blocks—see Fig. 8.

2. Varying the separation between the blocks

In Fig. 13 we show how the midpoint density ρ(0, 0) ≡ ρ0

varies as the distance between the two blocks xG is changed.
The figure also shows how the local compressibility at the ori-
gin χ(0, 0) ≡ χ0 varies with xG. For β∆µ = 0.1, 0.2, and 0.3,
there is a discontinuous change in the density. The magnitude
of the “jump” gets larger as β∆µ approaches zero. Note that if
the density, or more precisely the adsorption, jumps from one
finite to another finite value at a particular value of xG then so
must the local compressibility. This is a signature of the first
order transition which occurs in the present mean-field DFT
treatment. For β∆µ & 0.4, the density varies smoothly with xG.
In the lower panel of Fig. 13, we observe a peak in χ0 when the
midpoint density crosses ρ0/ρb = 0.5. The height of this peak
appears to be maximal at β∆µ ≈ 0.4, the value at which the
transition in ρ0 appears to change from discontinuous to con-
tinuous. In other words, capillary evaporation still manifests
itself as a first order transition, with its accompanying critical
point, in our mean-field treatment of “evaporation” between
two blocks of finite cross-sectional area. Bearing in mind the
effective one-dimensional nature (b and c finite but a → ∞)
of the capillary-evaporation-like transition we observe in the
fluid between the blocks, we expect the divergence in χ0 to be
rounded, in reality, by finite size effects. Likewise, we expect
the jump in ρ0 to be rounded in reality.

In Fig. 14 we display a plot of the excess grand potential
per unit length, W (xG) ≡ (Ω(xG)−Ω∞)/a, as a function of xG.

FIG. 13. Midpoint density, ρ(0, 0) = ρ0, and compressibility, χ(0, 0) = χ0,
as a function of the distance between the blocks xG, for various values of the
chemical potential and fixed for T = 0.8 Tc andβε4f = 0.3. The jumps inρ0 are
marked with dotted lines for β∆µ = 0.1, 0.2, and 0.3. There are accompanying
jumps in χ0 at the same state points that are not easy to ascertain on the scale
of these plots. For β∆µ = 0.5, 0.4, we observe continuous variation of ρ0 and
χ0. There is no sharp, first order transition. A critical transition must occur,
within mean-field, between β∆µ = 0.3 and 0.4, resulting in a divergence of
χ0.

Ω∞ ≡ Ω(xG → ∞) is the value of the grand potential when
the two blocks are far apart. W (xG) is the solvent mediated
interaction potential per unit length between the two blocks.
Since W (xG) becomes increasingly negative as xG decreases,
this indicates that the solvent mediated interaction between the

FIG. 14. The solvent mediated potential (excess grand potential) between a
pair of solvophobic blocks, as a function of distance between blocks xG for
fixed T = 0.8 Tc and βε4f = 0.3. The dotted lines are the estimates for the
two cases β∆µ = 0.05 (lower) and 0.20 (upper) calculated from Eq. (18), with
E = 0. The DFT results display two branches—see text.
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pair of solvophobic blocks is attractive. For smaller β∆µ, i.e.,
for states nearer to coexistence, the solvent mediated poten-
tial W (xG) is longer ranged; the gas intrusion between the
blocks lowers the free energy out to larger separations. Close
inspection of Fig. 14 shows that there are actually two solu-
tion branches to the grand potential. For β∆µ & 0.4 there is
only a single smooth branch (not shown). When there are two
branches, the one at large xG corresponds to the case when
the density between the blocks is liquid-like and the other,
at smaller xG, to when there is a gas-like intrusion. Where the
branches meet corresponds to the value of xG where the evapo-
ration transition occurs for a given β∆µ. The solvent mediated
force between the blocks jumps at the transition. Note that the
potential W (xG) in Fig. 14 for finite size blocks (i.e., finite b) is
very different from the corresponding potential between two
infinite planar walls (i.e., b→ ∞). For example, from Fig. 14
we see that when β∆µ = 0.05 the two branches in W (xG) meet
at xG ≈ 8σ. In contrast, for the infinite walls at the same β∆µ,
the two branches meet at xG ≈ 21σ.

In the same manner used to derive the Kelvin equation
(14), we can use macroscopic thermodynamics to obtain a
simple estimate for W (xG). The grand potential of the system
with no blocks present is Ω0 = −plV , where pl is the pressure
of the bulk liquid, and V is the volume of the system. The grand
potential of the system with one block present in the liquid is

Ω1 = −pl(V − ab∗c∗) + 2(ac∗ + ab∗)γ4l + 4aEl, (16)

where a, b∗, and c∗ are the effective dimensions of the block, as
illustrated in Fig. 8. Note that b∗c∗ > bc is the effective cross
sectional area of the block, which includes the fluid exclusion
region around the blocks, as discussed below Eq. (15). Thus
(V − ab∗c∗) is the volume occupied by the liquid. Recall that
we assume the block is long, i.e., a → ∞. 2(ac∗ + ab∗) is the
surface area of the block in contact with the liquid and γwl is
the planar wall-liquid interfacial tension. El is a free energy
per unit length so that the final term in Eq. (16) is the line-
tension-like contribution to the grand potential arising from
the four edges of the block (corners on the cross section in
Fig. 8) in contact with the liquid.

Similarly, we can estimate the grand potential when there
are two blocks present. If the pair of blocks are close enough
together (see, e.g., the density profile for β∆µ = 0.01 in Fig. 9)
there is a portion of “gas” phase between the blocks, so the
grand potential is

Ω2 = −pl(V − 2ab∗c∗ − ab∗x∗G) − pgab∗x∗G
+ (4ac∗ + 2ab∗)γ4l + 2ab∗γ4g + 2ax∗Gγgl

+ 4aEl + 4aEgl, (17)

where pg is the pressure of the gas at the same chemical poten-
tial as the (bulk) liquid. x∗G is the effective thickness of the
“gas” region between the blocks and when implementing the
Kelvin equation (14), we set x∗G = xG − 2σ. γ4g is the pla-
nar wall-gas interfacial tension, γgl is the planar gas-liquid
interfacial tension, and Egl is the free energy per unit length
contribution, i.e., the final term in Eq. (17) is due to the inner
edges of the blocks connecting to a gas-liquid interface. Hence,
from Eqs. (16), (17), and (9) the solvent mediated potential,
W (x∗G) = (Ω2 − 2Ω1 +Ω0)/a, is given by

W (x∗G) ≈ E + 2b∗γlg cos θ + [2γgl + b∗(ρl − ρg)∆µ]x∗G, (18)

where E = 4(Egl �El). We have used the standard Taylor
expansion of the pressures around the value at gas-liquid bulk
coexistence, pcoex, to give pl − pg ≈ (ρl − ρg)∆µ, where ρl

and ρg are the coexisting bulk liquid and gas densities, respec-
tively. Eq. (18) predicts that the solvent mediated potential is
linear in the distance between the blocks x∗G, and thus the force
−∂W/∂x∗G = −2γgl − b∗(ρl − ρg)∆µ is constant when there is
a gas-like state between the blocks. The result from Eq. (18),
with E = 0, is displayed as thin dotted lines in Fig. 14 for the two
extreme cases, β∆µ = 0.05 and 0.2. One can see that the gra-
dient of W (xG) predicted by Eq. (18) agrees very well with the
DFT results. However, each line is shifted vertically relative
to the DFT curve. This is probably the consequence of having
neglected the unknown contribution from the edges, E. The dif-
ference between the result from Eq. (18) and the DFT implies
that |E | < 0.5kBT/σ. Note that the force −∂W/∂x∗G does not
depend on E nor on cos θ. That the macroscopic thermody-
namic result in Eq. (18) agrees rather well with the microscopic
DFT results might, once again, come as a surprise to some
readers, bearing in mind the microscopic cross-sectional size
of the blocks and that the distance between these is only a few
solvent particle diameters. The validity of Eq. (18) is partly
due to the fact that the correlation length in the intruding gas
state is rather short, but this kind of agreement between results
of microscopic DFT and simple macroscopic thermodynamic
estimates has been observed previously for related problems;
see, e.g., Refs. 35–38. Note that the condition W (x∗G) = 0 in
Eq. (18) yields

x∗G =
−2γlg cos θ

(ρl − ρg)∆µ + 2γlg/b∗
(19)

for the separation at which capillary evaporation occurs for
identical blocks, i.e., the “gas” is thermodynamically stable
relative to the liquid for smaller separations. This is a particular
case of the formula introduced by Lum and Luzar.45 In the limit
b∗ → ∞, the solvent mediated force per unit area is constant,
equal to (ρl − ρg)∆µ, in the “gas.” The same result is valid
for ∆µ→ 0, in the condensed “liquid” in the case of capillary
condensation.44

B. Two solvophilic blocks

So far we have discussed the properties of an identical pair
of solvophobic blocks. Now we increase the parameter ε4f so
that the surface of the blocks attracts more strongly than the
liquid, i.e., the surfaces of the blocks become solvophilic. We
set βε4f = 1, which for the planar wall has the contact angle
θ = 43.7◦, see Fig. 5. The density profiles for the blocks of the
same dimensions (not displayed) are, for all values of β∆µ,
qualitatively similar to the profile corresponding to β∆µ = 0.4
in Fig. 9, but with higher densities at the surface of the blocks
and larger amplitude oscillations in the density profile around
the blocks. The same is true for the local compressibility. The
key difference between a pair of solvophobic blocks and a
pair of solvophilic blocks is that there is no capillary evapo-
ration of the liquid in the gap between the solvophilic blocks
as β∆µ→ 0. This has profound consequences for the solvent
mediated potential.

Fig. 15 shows the solvent mediated potential W (xG)
between the solvophilic blocks. We see pronounced
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FIG. 15. The solvent mediated potential (excess grand potential) between a
pair of solvophilic blocks, as a function of distance between blocks xG for
fixed T = 0.8 Tc and βε4f = 1. Note that the contact angle for this choice of
parameters is θ ≈ 44◦. The black dotted line is the corresponding potential
per unit area between infinite walls multiplied by b, the height of the blocks.

oscillations as the distance between the blocks is decreased.
Also, since W (xG) decreases (albeit in damped oscillatory
fashion) as xG is increased, this indicates that the effective
interaction potential between a pair of solvophilic blocks is
repulsive. Note that W (xG) is almost independent of β∆µ in
this particular case. The results in Fig. 15 are quite similar to
those obtained for two planar walls with the same βε4f (thin
dotted black line). Note that for planar walls the asymptotic
decay, L → ∞, of the excess grand potential per unit area W (L)
is known46,47 for various choices of the fluid-fluid and wall-
fluid potentials. For our present choice [Eqs. (4) and (12)], with
βε4f = 1, the theory predicts βW (L) ∼ 0.934L−2, as L → ∞,
i.e., the solvent mediated force per unit area −(∂W/∂L)T ,µ is
repulsive and decays ∼L−3. We are not able to investigate the
asymptotics numerically for blocks.

C. One solvophobic and one solvophilic block
and patchy blocks

Subsections IV A and IV B discuss the solvent mediated
interactions W (xG) between pairs of blocks that are identi-
cal. We now present results for W (xG) for the case when
one of the blocks is solvophobic and the other is solvophilic.
We also consider various pairs of blocks having a mixture of
solvophobic and solvophilic patches. We split each block into
a maximum of three segments. The DFT results for the solvent
mediated potentials between the various blocks are shown in
Fig. 16, with the inset giving a sketch of the arrangement of
the patches: dotted regions are solvophobic and diagonally
striped regions are solvophilic. In all cases in Fig. 16, we
notice that there is a local minimum of W (xG) occurring when
xG ≈ 2σ. This is the distance at which the two exclusion zones
around the blocks meet, so that for xG less than this value,
the fluid density between the blocks is almost zero. In gen-
eral, the range of the solvent mediated interaction decreases
as β∆µ is increased. Note that having blocks with only one
solvophobic segment causes the solvent mediated potential
W (xG) to become attractive. Nevertheless, W (xG) retains the
oscillatory behaviour of the pure solvophilic blocks observed

in Fig. 15. Furthermore, the oscillations in the potential are
enhanced when the solvophilic patches are together on the
ends of the blocks—see Fig. 16(d). In Fig. 17, we display a
series of density profiles and local compressibility profiles cor-
responding to all the cases displayed in Fig. 16. We observe
that whenever two solvophobic segments are opposite one
another, a gas-like region forms between the blocks provided
these are sufficiently close (as they are in Fig. 17) and this
leads to large values of the local compressibility χ(r) in these
regions.

It is particularly instructive to compare the results in
Figs. 16(e) and 17(e), corresponding to two solvophobic
patches facing each other at both ends of the blocks, with the
corresponding ones for identical uniform solvophobic blocks,
Figs. 9, 10, and 14. For β∆µ= 0.05, the solvent mediated
potential in Fig. 16(e) has a form close to that in Fig. 14. The
separation, xG ≈ 5σ, at which capillary evaporation occurs is
smaller for the patchy case than for the uniform case, xG ≈ 8σ.
However, in both cases one finds a linear solvent mediated
potential at smaller separations; the magnitude of the force
is similar in both cases. Such behaviour is consistent with
reduced area of (facing) solvophobic regions. Recall that for
two identical blocks Eq. (18) implies that the force does not
depend on cos θ.

D. Blocks shifted vertically

The results presented in Subsections IV A– IV C are for
the case when the centres of the blocks are at y = 0 and only
the distance between the closest faces xG is varied. Now we
fix xG = 5σ and move one of the blocks vertically along the
y-axis [cf. inset of Fig. 18]. The vertical distance from the
x-axis is defined as yS (in Subsections IV A–IV C, yS = 0).
The solvent mediated potential W (yS) for a pair of solvophobic
blocks and a pair of patchy blocks (divided into two segments:
half solvophobic and half solvophilic, aligned evenly) is shown
in Fig. 18. In both cases we see that W (yS) is attractive, with a
minimum at yS = 0. This indicates that the preferred position
(lower grand potential) is when the pair of blocks is aligned,
with yS = 0. We also see that for a given chemical potential,
the range and depth of the potential are greater for a pair of
fully solvophobic blocks [Fig. 18(a)] than for a pair of two-
segment blocks aligned evenly [Fig. 18(b)]. This is as one
would expect, since the amount of solvophobic area on each
block is greater in the former case (a). For a pair of solvophobic
blocks, we showed in Fig. 14 that the solvent mediated poten-
tial W (xG) varies approximately linearly with xG, on the “gas
branch” arising for smaller values of xG. However, we see from
Fig. 18(a) that for fixed xG the solvent mediated potential is
not a linear function of yS . For the pair of two-segment blocks
aligned evenly (Fig. 18(b)), we do not see any oscillations in
the solvent mediated potential as yS is varied—recall that there
are oscillations as xG is varied—see Fig. 16(b). Close inspec-
tion of Fig. 18 shows that within the present mean-field DFT
approach there are actually two solution branches to the grand
potential for both types of blocks. The branch for large yS cor-
responds to a liquid-like density between the blocks, while the
other branch at smaller yS , corresponds to the density between
the blocks being gas-like. Consistent with our earlier discus-
sion, the evaporation transition occurs at the value of yS where
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FIG. 16. The solvent mediated potential (excess grand potential) between various pairs of blocks as a function of distance between blocks, xG, for fixed
T = 0.8 Tc. The structure of each block is specified by the inset where dots represent solvophobic areas (βε4f = 0.3) and the diagonal lines represent solvophilic
areas (βε4f = 1). When patchy blocks are aligned the same way, we call this “even” alignment, otherwise we refer to this as “odd.” Thus, in (b) there is even
and in (c) odd alignment. For (d)–(f), the block is split into three segments; (d) and (e) are even while (f) is odd.

the two branches meet and the solvent mediated force between
the blocks jumps at this point. The value of yS at which this
transition occurs varies with β∆µ.

Note that it is straightforward to derive a formula for W (ys)
analogous to that in Eq. (18), making the same assumptions.
However, the assumption that the gas-liquid interface meets
the blocks at the corners is no longer necessarily true and the
resulting formula gives poor agreement with the DFT.

E. Blocks at an angle

So far we have considered pairs of blocks with their faces
aligned parallel to each other. We now consider a pair of iden-
tical solvophobic blocks with the second block rotated by an
angle α with respect to the centre of the first, i.e., α is the angle
between the orientation vectors of the two blocks. In Fig. 19,
we plot the density and compressibility profiles as the angle α
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FIG. 17. Liquid density profiles σ3ρ(x, y) (top) and the local compressibility kBTσ3χ(x, y) (bottom) around different pairs of blocks for the temperature
T = 0.8 Tc and chemical potential β∆µ = 0.01. In all the cases, the blocks are a distance xG = 5σ apart. The labels (a)–(f) refer to the same pair of blocks as
described in Fig. 16.

FIG. 18. The solvent mediated potential (excess grand potential) between (a) an identical pair of solvophobic blocks and (b) a pair of patchy blocks divided
into two segments: half solvophobic and half solvophilic, aligned evenly, as a function of yS , the vertical distance between the horizontal lines through the block
midpoints—see inset. For the solvophobic segment βεwf = 0.3 and for the solvophilic segment βεwf = 1. T = 0.8 Tc and xG = 5σ. Note that in (a) and (b)
there are two branches—see text.

FIG. 19. Liquid density profiles σ3ρ(x, y) (top) and the local compressibility kBTσ3χ(x, y) (bottom) around a pair of (identical) solvophobic blocks, for fixed
temperature T = 0.8 Tc and chemical potential β∆µ = 0.05. The distance between the centre of blocks is fixed: xC = 8σ and the relative orientation angle α is
varied. The density and compressibility profiles for α= 0 are not shown since these form part of the sequence in Figs. 9 and 10.
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is varied while keeping the distance between the centres of the
blocks fixed, xC = 8σ (note that xC , xG). The temperature
T = 0.8 Tc and chemical potential β∆µ = 0.05 are also fixed.
We present results for a range of angles; by symmetry we only
need to consider the range 0◦ ≤ α ≤ 90◦.

Fig. 19 (top) shows that as α is increased for fixed
xC = 8σ, the gas-like region between the blocks remains. The
area of one of the interfaces between the gas-like region
and the bulk liquid increases, while the other decreases.
Additionally, we see that the volume of the gas-filled region
between the blocks decreases as α is increased from zero,
since the blocks become closer to each other. Note also that
for the larger values of α, the gas-liquid interface does not
connect to the corners of the blocks, which must be taken into
account if generalising Eq. (18) to derive an approximation for
W as a function of α. From the corresponding compressibility
profiles in Fig. 19 (bottom), we see that χ(r) is largest in the
gas-liquid interfaces, as previously. Also, the peak value of the
compressibility increases as α is increased from zero, attaining
its maximum value when α ≈ 45◦. Increasing α further leads
to a drop in the peak value of the compressibility.

In Fig. 20 we plot the solvent mediated potential for
two solvophobic blocks as a function of α for a fixed dis-
tance between the centres of the blocks, xC = 8σ, correspond-
ing to the profiles in Fig. 19. We see that the minimum of
the solvent mediated potential occurs when α = 90◦ for fixed
xC = 8σ. This is because as the angle is varied, the blocks
become closer to each other as α → 90◦ (see Fig. 19)
and this leads to the excess grand free energy being lower.
However, if we rotate the solvophobic blocks and also move
the centres of the blocks such that closest distance between
the two blocks xG is always constant, we find the minimum of
the grand potential is when α = 0◦ (not shown). In this case,
it is because rotating to α = 90◦ results in a smaller area of
the block surfaces being opposite to one another than when
α = 0◦. Generically the attractive well in the solvent mediated
potential between the blocks becomes deeper (i.e., stronger
attraction) as β∆µ→ 0.

In order to analyse further the solvent mediated potential
between the solvophobic blocks, we fix the relative orientation

FIG. 20. The solvent mediated potential (excess grand potential) between
a pair of solvophobic blocks for various values of chemical potential as a
function of the relative orientation angle, α. As in Fig. 19, we fix the centres
of the pair of blocks such that the distance between the centres xC = 8σ and
rotate one of the blocks by α. T = 0.8 Tc and βε4f = 0.3.

FIG. 21. The solvent mediated potential (excess grand potential) between a
pair of solvophobic blocks for various values of the chemical potential as a
function of the distance between the closest points of the blocks, xG, with one
of the blocks rotated at fixed angle α = 45◦. T = 0.8 Tc, and βε4f = 0.3.
Note that for small values of β∆µ there are two branches—see text.

between the blocks at α = 45◦ and vary the separation between
the blocks xG, which is the distance between the closest points
on the pair of blocks. W (xG) is shown in Fig. 21 for fixed
temperature T = 0.8 Tc and wall attraction βε4f = 0.3. In the
inset, we sketch the relative orientations of the two blocks.
Thus, xG is the distance from the left-most corner of the right
hand block to the near face of the left hand block. From Fig. 21,
we see that the solvent mediated potential between the pair of
solvophobic blocks with fixed α = 45◦ is qualitatively similar
to that for α = 0◦, see Fig. 14. For small β∆µ, i.e., for states
nearer to coexistence, the solvent mediated potential W (xG)
is longer ranged (although not as long-ranged as when the
faces are parallel, α = 0◦, shown in Fig. 14) and also has
two solution branches to the grand potential. The branch for
large xG corresponds to the liquid-like density between the
blocks and the other, at smaller xG, is when the density between
the blocks is gas-like. Once again the evaporation transition
occurs at the value of xG where the two branches cross and the
solvent mediated force jumps at this value of xG for the given
β∆µ.

V. CONCLUDING REMARKS

Using classical DFT, we have calculated the liquid den-
sity profile and the local compressibility around pairs of
solvophobic, solvophilic, and patchy blocks immersed in a
simple LJ like solvent. We have also calculated an impor-
tant thermodynamic quantity, namely, the solvent mediated
interaction potential between the blocks W (xG). When both
blocks are solvophobic, the potential W (xG) is an almost linear
function at small separations xG, is strongly attractive, and is
very sensitive to the value of β∆µ; see Fig. 14. In this regime,
treating the system using macroscopic thermodynamics, i.e.,
using Eq. (18), turns out to be a rather good approximation
for W (xG). This success of macroscopic theory may seem
surprising, given that the blocks we consider have the
microscopic cross sectional area ≈10σ × 5σ. However, it is
in keeping with recent simulation studies6,8 of water induced
interactions between hydrophobes. In contrast, when both
blocks are solvophilic, the potential W (xG) is oscillatory but
overall repulsive and exhibits only a weak dependence on
β∆µ; see Fig. 15. When the blocks are patchy, the nature of
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the solvent mediated potential is complex. However, we find
that if solvophobic patches are present, are sufficiently large,
and near to one another (facing each other on the opposing
blocks), then their contribution to the effective potential dom-
inates (see Fig. 16). Then the potential W (xG) is still strongly
attractive and is nearly linear in xG for small β∆µ, particularly
if the solvophobic patches are on the ends of the blocks [see
Fig. 16(e)]. From Fig. 18 we see that for fixed xG there is a
minimum in W as a function of the vertical distance yS , when
the solvophobic patches on the blocks are aligned.

For a pair of identical solvophobic blocks, the solvent
mediated potential per unit length of the blocks is ≈ −5kBT
when the blocks are close to contact (see Fig. 14). Thus, if
we assume that the blocks are actually finite in length, with
length a = 10σ (i.e., finite blocks of size 10σ × 10σ × 5σ),
then when the blocks are close to contact we have W (xG . σ)
≈ −50kBT or about �120 kJ mol�1 at ambient temperature.
This is the same order of magnitude as the solvent medi-
ated potentials between a hydrophobic (polymeric) solute of a
similar size and a hydrophobic SAM surface measured in com-
puter simulations employing a realistic model of water—see
Fig. 6(c) in Ref. 9 and also Ref. 48. Moreover, it is important
to note that when the SAM surface is strongly hydrophobic,
the solvent mediated potentials in Ref. 9 display a portion
that is almost linear. Hydrophobic interactions also play a role
in determining the structure of proteins: simulations suggest
capillary evaporation between hydrophobic patches can lead
to strong forces between protein surfaces.49 Given these obser-
vations, we expect that the results described here for a simple
LJ-like liquid incorporate the essential physics of a realistic
model of a water solvent close to saturation.

In the vicinity of a single solvophobic surface the solvent
density is lower, when β∆µ is sufficiently small. However,
the thickness of the depleted layer is only one or two par-
ticle diameters—see Fig. 6 corresponding to θ ≈ 144◦. This
is consistent with the x-ray studies of water at a water-OTS
(octadecyl-trichlorosilane) surface reported in Ref. 50 and with
simulation results for SPC/E water at non-polar substrates.51

When two solvophobic surfaces become sufficiently close, a
gas-like region forms between the blocks. The extent of this
can be large, see, e.g., Fig. 9, and the density profile passing
from the gas inside to the liquid outside of the blocks closely
resembles the free gas-liquid interfacial profile—see Fig. 12.
Moreover, the local compressibility is large in the neigh-
bourhood of this interface, indicating that it is a region with
large density fluctuations. Given that this interface is pinned
to the corners of the blocks—see Fig. 9—we do not expect
significant “capillary wave” broadening of the profile beyond
the present mean-field DFT, as one would normally expect at
a macroscopic free interface.

As the separation between solvophobic blocks is
increased, there is a jump in the solvent mediated force when
the blocks reach a particular distance, xG = xJ , where the state
minimising the grand potential changes from one with a gas-
like density between the blocks to one where this is liquid-like.
Within DFT, the potential W (xG) has two branches and there
is a discontinuity in the gradient at xJ—see, e.g., Fig. 14.
We do not display the metastable portions of the branches
of W (xG); these do not extend very far from the crossing point

indicating that the height of the nucleation barrier is small.
This is due to the small size of the blocks and the small val-
ues of xG. For hydrophobic surfaces with greater surface area
and at a greater distance apart, the free energy barrier should
be larger; for a recent discussion of nucleation pathways to
capillary evaporation in water see Ref. 26.

We have also studied the local compressibility χ(r) in
the liquid between and surrounding the pairs of blocks of dif-
fering nature. The local compressibility exhibits pronounced
peaks; these indicate where the local density fluctuations are
large. These fluctuations are maximal close to the incipient gas-
liquid interface—see, for example, the central plot in Fig. 10,
which is for β∆µ = 0.22, and also Figs. 17(b) and 17(e) for
β∆µ = 0.01. Fig. 19 displays how for angled blocks χ(r)
depends on alignment and the confining geometry. When pro-
nounced fluctuations, in conjunction with a depleted surface
density, are observed in simulations of water at hydrophobic
interfaces, this phenomenon is often ascribed to the disrup-
tion of the water hydrogen bonding network. Given that we
observe a similar behaviour for a simple LJ-like liquid close
to solvophobic substrates, we argue that this phenomenon is
by no means specific to water. Rather it is due (i) to the weak
bonding between the fluid and the (solvophobic) surface and
(ii) the system being close to bulk gas-liquid phase coexistence,
i.e., a small value of β∆µ. Thus, since the LJ-like fluid consid-
ered here is representative of a broad class of simple liquids,
we expect a strong attraction between solvophobic surfaces,
enhanced density fluctuations near such surfaces, and other
features of hydrophobicity to manifest themselves whenever
the solvent, whatever its type, is near to bulk gas-liquid phase
coexistence. There are obvious advantages, both in simulation
and theory, in performing detailed investigations for simple
model liquids, especially when tackling subtle questions of
surface phase transitions such as critical drying.18
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