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Introduction

Helical lattice structures as investigated by Pirrera et al. [1] possess non-linear elastic responses that may be tuned to 
offer various distinct behaviours such as zero stiffness and multi-stability. Potential applications of such helices were  
explored in further detail by O'Donnell et al. [2] by combining the lattice with an elastic medium permitting the system 
to display pseudo-ductility, thus highlighting one of many possible applications. Other such applications include, for 
example, adaptive and deployable structures, robotics, and vibration isolators. By coupling the helical lattice with a  
secondary system, additional response characteristics, that cannot be achieved by the lattice alone, can be obtained. A 
natural extension of [1,2], explored in this paper, is to consider the effects of combining multiple concentric lattice  
structures, coupled through radial springs, resulting in a design space that offers significant potential for non-linear 
elastic tailoring. 

As is often observed in biological systems, structural hierarchy offers mechanisms through which novel response 
characteristics may be observed [3-6]. The helices in this investigation were inspired by the virus bacteriophage T4 [1].  
The composite behaviour of the system under investigation exploits such hierarchy in order to obtain highly tuned non-
linear force displacement behaviour.  The helices in each lattice are formed from pre-stressed composite strips, the  
lattices are then combined concentrically via elastic springs to form a composite helical  system. An outline of the  
analytical modelling framework developed to capture this behaviour is now discussed.

Energy Formulation

Pirrera et al. developed an energy based formulation for the helical lattice where individual helices are considered as 
inextensional strips that lie upon the surface of a cylinder [1]. The strips are sufficiently narrow that the  behaviour 
across the width can be ignored. Furthermore, the hinge points in the lattice structure remain fixed such that individual 
helices do not slide over each other but together can translate in space. If a further condition is imposed on the helical 
lattice, that of reinforcing strips with a common pitch angle, there is no lattice twist under extension and the lattice's 
length uniquely defines its state.

The energy associated with deformations of the helix can be defined in terms of the extension of a representative  
unit  cell  [1],  figure  1.  For  brevity  the  complete  formulation  is  not  presented  here,  instead  we  refer  to  the  non-
dimensional  energy  of  a  unit  cell,  ,  a  function  of  the  helical  lattice's  structural 
properties and lengthwise extension, . The remaining structural parameters, the reduced bending stiffness terms, , as 
defined in CLT [7], unit-cell dimension , and  , the helical strips' pre-curvatures, determine the energetic landscape 
allowing each individual lattice to be tuned significantly. 

Figure 1: Geometry of a helical lattice, projection onto the plane and its representative unit cell.



For the coupled system composed of multiple lattices, the global unit cell comprises multiple unit-cells of each  
lattice ordered with index  from the centre outwards, figure 2. For the sake of simplicity and manufacturability we fix 
an integer number of longitudinal unit cells in the global unit cell having a height,  . This therefore imposes the 
condition  ,  where   is  the  longitudinal  stacking  number.  Furthermore,  to  ensure  that  the  helices  are 
concentric,  the  number  of  unit  cells  in  a  circumferential  band  must  satisfy,  ,  where   is  the 
circumferential banding number of the   helix. The common extension of all the   helix's unit cells is  , 
thereby allowing the total energy associated with that helix to be defined as a multiple of the number of unit cells  
contained in the global unit, , and the system's helical energy as their sum, .

We are free to align each of the concentric helices radially, therefore there is at least one configuration for which  
hinge points align thus offering a location for the coupling springs – the maximum number of joining locations is given 
by greatest common divisor of all radial banding numbers, . For analysis purposes the multiplicity of joining points is 
redundant because several coupling springs between each concentric layer may instead be consolidated energetically 
into  one  effective  spring  of  stiffness,  .  For  a  given  global  cell  extension  the  radius  of  the   helix  is,

 The energy associated with deformation of the   spring,  ,  is 

then determined by the difference in radial diameter between concentric layers. This deformation is given relative to the  
spring's neutral position, . Thus the total spring energy is . The total energy of the coupled system can 
then be expressed as the total of all energetic contributions,  The effective force-extension relationships 
can be obtained directly from this energy formulation and the stability of any resulting equilibrium positions assessed. 
The full potential of the non-linear responses is then investigated by tuning the system's defining parameters. 

Conclusions

An energy-based model is presented for determining the response of hierarchical coupled helical lattice systems. 
The  hierarchical  structure  presented  offers  an  expanded  design  space  beyond  a  single  lattice  thereby  allowing 
significant potential for non-linear elastic tailoring. These structures offer a route to the development of bespoke non-
linear, yet repeatable, responses for various distinct applications.
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Figure 2: Layout of coupled helical system and the global unit cell composed of multiple unit cells of each helix.


