
Beta calibration: a well-founded and easily implemented improvement on
logistic calibration for binary classifiers

Meelis Kull Telmo de Menezes e Silva Filho Peter Flach
University of Bristol
University of Tartu

Universidade Federal de Pernambuco
Centro de Informática
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Abstract

For optimal decision making under variable class
distributions and misclassification costs a classi-
fier needs to produce well-calibrated estimates of
the posterior probability. Isotonic calibration is a
powerful non-parametric method that is however
prone to overfitting on smaller datasets; hence a
parametric method based on the logistic curve is
commonly used. While logistic calibration is de-
signed for normally distributed per-class scores,
we demonstrate experimentally that many clas-
sifiers including Naive Bayes and Adaboost suf-
fer from a particular distortion where these score
distributions are heavily skewed. In such cases
logistic calibration can easily yield probability
estimates that are worse than the original scores.
Moreover, the logistic curve family does not in-
clude the identity function, and hence logistic
calibration can easily uncalibrate a perfectly cal-
ibrated classifier.

In this paper we solve all these problems with
a richer class of calibration maps based on the
beta distribution. We derive the method from
first principles and show that fitting it is as easy
as fitting a logistic curve. Extensive experiments
show that beta calibration is superior to logistic
calibration for Naive Bayes and Adaboost.

1 INTRODUCTION

A predictive model can be said to be well-calibrated if its
predictions match observed distributions in the data. In par-
ticular, a probabilistic classifier is well-calibrated if, among
the instances receiving a predicted probability vector p , the
class distribution is approximately distributed as p. Hence
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the classifier approximates, in some sense, the class poste-
rior, although the approximation can be crude: for example,
a constant classifier predicting the overall class distribution
for every instance is perfectly calibrated in this sense. Cal-
ibration is closely related to optimal decision making and
cost-sensitive classification, where we wish to determine
the predicted class that minimises expected misclassifica-
tion cost averaged over all possible true classes. The better
our estimates of the class posterior are, the closer we get to
the (irreducible) Bayes risk. A sufficiently calibrated clas-
sifier can be simply thresholded at a threshold directly de-
rived from the misclassification costs. Thresholds can also
be derived to optimally adapt to a change in class prior, or
to a combination of both. In contrast, for a poorly cali-
brated classifier the optimal thresholds cannot be obtained
without optimisation.

Some learning algorithms are designed to yield well-
calibrated probabilities. These include decision trees,
whose leaf probabilities are optimal on the training set
(Provost and Domingos, 2003); as trees suffer from high
variance, using Laplace smoothing and no pruning is rec-
ommended (Ferri et al., 2003). Logistic regression is an-
other example of a learning algorithm that often produces
well-calibrated probabilities; as we show in this paper, this
only holds if the specific parametric assumptions made by
logistic regression are met, which cannot be guaranteed in
general. Many other learning algorithms do not take suf-
ficient account of distributional factors (e.g., support vec-
tor machines) or make unrealistic assumptions (e.g., Naive
Bayes) and need to be calibrated in post-processing. Well-
established calibration methods include logistic calibration,
also known as ‘Platt scaling’ in reference to the author who
introduced it for support vector machines (Platt, 2000) and
isotonic calibration, also known as the ROC convex hull
method and pair-adjacent-violators (Zadrozny and Elkan,
2002; Fawcett and Niculescu-Mizil, 2007).

Isotonic calibration is a non-parametric method that uses
the convex hull of the model’s ROC curve to discretise
the scores into bins; the slope of each segment of the con-
vex hull can be interpreted as an empirical likelihood ratio,
from which a calibrated posterior probability for the corre-
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sponding bin can be derived. Hence the resulting calibra-
tion map is a non-decreasing, piecewise constant function.
Logistic calibration is a parametric method which assumes
that the scores within each class are normally distributed
with the same variance, from which the familiar sigmoidal
calibration map can be derived with two parameters: a lo-
cation parameter m specifying the midpoint of the sigmoid
at which the calibrated score is 0.5; and a shape parameter
γ specifying the slope of the sigmoid at this midpoint. Be-
ing a parametric model, logistic calibration tends to require
less labelled data to fit the sigmoid; however, it can produce
bad results due to model mismatch.

The main contributions of this paper are (i) a demonstration
that such model mismatch is a real danger for a range of
widely used machine learning models and can make clas-
sifiers less calibrated; and (ii) the derivation of a new and
richer parametric family which fixes this in a principled and
flexible way. The outline of the paper is as follows. In Sec-
tion 2 we discuss the logistic calibration method and its
properties. Section 3 introduces our new beta calibration
method. In Section 4 we report on a wide range of exper-
iments showing that beta calibration is superior to logistic
calibration and the preferred calibration method for smaller
datasets. Section 5 concludes.

2 LOGISTIC CALIBRATION

2.1 What Is Calibration?

The aim of calibration in binary classification is to take an
uncalibrated scoring classifier s = f (x) and apply a cali-
bration map µ on top of it to produce calibrated probabili-
ties µ( f (x)). Formally, a scoring classifier is perfectly cal-
ibrated on a dataset if for each of its output scores s the
proportion of positives within instances with model output
score s is equal to s. Denoting the instances in the dataset
by x1, . . . ,xn and their binary labels by y1, . . . ,yn, a model
f is calibrated on this dataset if for each of its possible out-
puts si = f (xi) the following holds:

si = E[Y | f (X) = si]

where the random variables X ,Y denote respectively the
features and label of a uniformly randomly drawn instance
from the dataset, where the labels Y = 1 and Y = 0 stand
for a positive and negative, respectively. This expectation
can be rewritten as follows (I[·] is the indicator function):

E[Y | f (X) = si] =
∑

n
j=1 y j · I[ f (x j) = si]

∑
n
j=1 I[ f (x j) = si]

For any fixed model f there exists a uniquely determined
calibration map which produces perfectly calibrated prob-
abilities on the given dataset. That calibration map can be
defined as µ(si) = E[Y | f (X) = si]. However, usually we
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Figure 1: Examples of logistic curves with parameters γ ∈
{1,4,20}, m ∈ {0.25,0.5,0.75} and δ =−mγ .

do not want to learn perfect calibration maps on the train-
ing data, because these would overfit and would be far from
being calibrated on the test data. For example, if the model
f outputs a different score on each training instance, then
the training-perfect calibration map would produce only the
0/1-probabilities µ(si) = yi, which in most cases would be
overly confident and overfitting.

2.2 Logistic Family of Calibration Maps

Logistic calibration was proposed by (Platt, 2000) to reduce
overfitting by introducing a strong inductive bias which
considers only calibration maps of the following form:

µlogistic(s;γ,δ ) =
1

1+1/exp(γ · s+δ )

where γ,δ are real-valued parameters with γ ≥ 0 to ensure
that the calibration map is monotonically non-decreasing.
Monotonicity is enforced assuming that higher model out-
put scores suggest higher probability to be positive. For
easier interpretability we introduce the parameter m =
−δ/γ . This implies δ = −mγ , yielding the following al-
ternative parametrisation:

µlogistic(s;γ,−mγ) =
1

1+1/exp(γ · (s−m))
(1)

The parameter m determines the value of s for which the
calibrated score is 1/2; the slope of the calibration map at
s = m is γ/4. Figure 1 shows a variety of shapes that the
logistic calibration map can take.

2.3 Fitting the Logistic Calibration Maps

In order to fit the parameters of logistic regression we
need to decide how we measure the goodness of fit. I.e.,
we need to measure how good the probability estimates
p̂i = µlogistic(si;γ,δ ) are, given the actual labels yi. A well-
known method to evaluate any estimates p̂i is to use log-
loss, which penalises predicting p̂i for a positive instance
with a loss of − ln p̂i and for a negative instance with a loss
of − ln(1− p̂i). E.g., the fully confident predictions p̂i = 0
and p̂i = 1 incur loss 0 if correct, and loss ∞ if wrong,
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Figure 2: Calibration maps for two datasets. The x-axis repre-
sents uncalibrated scores. The “empirical” dots show the true-
positive rates obtained from 10 bins of the uncalibrated scores
produced by Adaboost.

whereas the least confident prediction p̂i = 0.5 has loss ln2
regardless of the correct label. The overall log-loss can be
expressed as follows:

LL(p̂,y) =
n

∑
i=1

yi(− ln p̂i)+(1− yi)(− ln(1− p̂i))

where p̂ = (p̂1, . . . , p̂n) and y = (y1, . . . ,yn). Log-loss can
be rewritten as follows:

LL(p̂,y) =− ln
n

∏
i=1

p̂yi
i (1− p̂i)

1−yi

=− ln

(
∏
yi=1

p̂i ∏
yi=0

(1− p̂i)

)

which is the negative log-likelihood of the labels in the
data. This implies that minimising log-loss is equivalent
to maximising log-likelihood, which is a common fitting
method known as maximum likelihood estimation (MLE).

In practice, the logistic calibration maps can be fitted by
minimising log-loss using some gradient-based optimisa-
tion procedure, such as the “minimize” function provided
by SciPy (Jones et al., 2001), which uses a quasi-Newton
method to perform the optimisation. However, as the task
is simply univariate logistic regression with feature s and
label y, it can be solved using the standard logistic regres-
sion functionality in any machine learning toolkit, such as
WEKA (Hall et al., 2009), Scikit-learn (Pedregosa et al.,
2011), etc.

2.4 Why Logistic Calibration Can Fail

As mentioned in the introduction, logistic calibration can
fail if its parametric assumptions are not met. We now
demonstrate that this failure can be substantial and can ac-
tually lead to ‘calibrated’ scores that are worse than the
original. Figure 2 shows two datasets where the score dis-
tortions (black dots) are clearly not sigmoidal. Isotonic cal-
ibration (green line) captures this but logistic calibration
(blue) line results in a very poor fit, particularly in the left

figure. The red line shows that our proposed beta calibra-
tion method provides a similar fit to isotonic calibration on
this dataset. Note that this calibration map has an inverse-
sigmoid shape, which is outside of the logistic family of
calibration maps. This is no coincidence: the inverse sig-
moid is appropriate for classifiers that tend to produce ex-
treme scores close to 0 or 1, such as Adaboost. The logistic
family, on the other hand, assumes that scores are too close
to the midpoint and need to be pulled to the extremes.

On the right we see a dataset again without a clear sig-
moidal pattern in the uncalibrated scores. Here isotonic
calibration provides the best fit, but beta calibration learns
a calibration map that is almost the identity, which at least
does not make matters worse like logistic calibration does.
Note that the identity map is not a member of the logistic
family.

In order to derive beta calibration from first principles we
first revisit a derivation of logistic calibration itself.

2.5 Logistic Calibration from First Principles

We show that the parametric assumption made by logistic
calibration is exactly the right one if the scores output by a
classifier are normally distributed within each class around
class means s+ and s− with the same variance σ2. This
gives class-specific probability density functions (PDFs)

p(s|+) =C exp[−(s− s+)2/(2σ
2)]

p(s|−) =C exp[−(s− s−)2/(2σ
2)]

with C = 1/
√

2πσ , hence the likelihood ratio is

LR(s) =
p(s|+)

p(s|−)
= exp[(−(s− s+)2 +(s− s−)2)/(2σ

2)]

=exp[(2(s+− s−)s− (s+2− s−2))/(2σ
2)]

=exp[(s+− s−)/σ
2(s− (s++ s−)/2)]

=exp[γ(s−m)]

with γ = (s+−s−)/σ2 and m= (s++s−)/2. For γ > 0 this
is a monotonically increasing function with LR(m) = 1.

We then derive a calibrated probability as follows:1

µlogistic(s;γ,−mγ) =
1

1+LR(s)−1 =
1

1+ exp[−γ(s−m)]

giving the exact same form as in Eq.(1).

Conversely, it is easy to see that every function of this form
corresponds to some pair of Gaussians with equal variance.
Indeed, one can choose Gaussians with unit variance and
with the means s+ =m+γ/2 and s−=m−γ/2 on positives
and negatives, respectively.

1Here we assume a uniform prior over the classes, hence the
likelihood ratio equals the posterior odds. Adapting to a non-
uniform prior can be done by moving the decision threshold on
the calibrated probability away from 1/2.
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3 BETA CALIBRATION

3.1 Beta Calibration from First Principles

The derivation of logistic calibration assumes normal dis-
tribution of scores within each class. For probabilistic clas-
sifiers such as Naive Bayes the Gaussians are unreasonable
due to infinite support, because the probabilities are always
in the range [0,1]. Hence it makes sense to derive an al-
ternative parametric family of calibration functions using
distributions with finite support. A natural choice is the
beta distribution which has PDF

p(s;α,β ) =
sα−1(1− s)β−1

B(α,β )

where α > 0 and β > 0 are shape parameters and B(α,β )
is the normalising beta function.

Now assume that the scores on both classes are beta-
distributed with parameters α0,β0 and α1,β1, respectively.
The likelihood ratio then becomes

LR(s;α0,β0,α1,β1) =
sα1−1(1− s)β1−1

B(α1,β1)

/ sα0−1(1− s)β0−1

B(α0,β0)

=
sα1−1(1− s)β1−1

sα0−1(1− s)β0−1

/ B(α1,β1)

B(α0,β0)

=
sa

(1− s)b

/
K

where a = α1 − α0, b = β0 − β1, and K =
B(α1,β1)/B(α0,β0). For later convenience we use
the parametrisation with K = e−c:

LR(s;a,b,c) =
sa

(1− s)b

/
e−c

As before, we can turn this likelihood ratio into a calibrated
probability µbeta(s;a,b,c) = 1/(1+LR(s;a,b,c)−1),
which finally gives the beta calibration map family:

µbeta(s;a,b,c) =
1

1+1
/(

ec sa

(1−s)b

)
We will require each calibration map to be monotonically
non-decreasing, which implies a,b ≥ 0. Conversely, it is
easy to see that every function of this form corresponds to
some two beta distributions for the scores on positives and
negatives. For this consider any a,b > 0 and c ∈ R and
fix α0 = 1,α1 = 1+a,β0 = M+b,β1 = M for some value
M≥ 0. Then indeed a=α1−α0 and b= β0−β1, it remains
to be shown that B(α1,β1)/B(α0,β0) = e−c. For this note
that the value of B(x+a,y)/B(x,y+b) is 0 for x = 1,y = 0
but tends to ∞ when x→ ∞ while y = 1. Due to continuity
there must exist values x,y for which this ratio equals e−c.

3.2 Examples of Beta Calibration

A simple case where beta calibration gives exactly the
right calibration map is the following. Suppose we have
k features, each being a copy of the same perfectly cali-
brated feature with values x = (x1, . . . ,xn) on the training
instances. Naive Bayes would consider these features inde-
pendent and output s = xk

xk+(1−x)k on these instances. This
pushes the probability estimates towards the extremes and
the perfect calibration map must bring these back to their
original calibrated values x. Since s/(1−s) = (x/(1−x))k,

the perfect calibration map is x = 1/(1 +
(

s1/k

(1−s)1/k

)−1
),

which belongs to the beta calibration family with the pa-
rameters a = b = 1/k and c = 0.

As another example, suppose that we do not know that the
scores s are already calibrated and we still apply calibra-
tion. In such a case we would like the calibration procedure
to learn the identity mapping. Since the identity function
does not belong to the logistic family, logistic calibration
would uncalibrate the scores. However, the beta calibra-
tion family does contain the identity function, parametrised
by a = b = 1 and c = 0, and hence would keep the scores
calibrated.

Similarly as for logistic calibration we can define a mid-
point m such that LR(m) = 1, which gives K =ma/(1−m)b

and hence the alternative parametrisation

LR(s;a,b,c) = LR(s;a,b,b ln(1−m)−a lnm)

=
sa

(1− s)b

/ ma

(1−m)b

Figure 3 shows a variety of shapes that the beta calibration
maps can take for different values of a (horizontally), b
(vertically) and m (within each figure). The panels on the
descending diagonal shows cases where a = b; we refer to
this as beta[a=b] calibration. On the bottom right we see the
familiar sigmoid shapes which are achieved with a= b> 1.
The midpoint can be moved using m, but notice the curves
are not translation-invariant as logistic sigmoids are. On the
top left we see pure inverse-sigmoid curves a = b < 1 that
are able to correct for extreme probabilities. The middle
panel shows that the family includes the identity map on the
diagonal, which can be pulled away in either direction by
varying m, resulting in non-sigmoidal curves that would be
appropriate if one class suffers from extreme scores while
the other tends to be scored towards the middle. It can be
shown that the beta[a=b] calibration family is closed under
inversion.

The off-diagonal panels show various asymmetries that can
be introduced by allowing a 6= b. These asymmetries are
strongest if one parameter is larger than 1 while the other
is smaller than 1.
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Figure 3: Examples of beta curves with parameters a,b ∈
{0.2,1,5}, m ∈ {0.25,0.5,0.75} and c = b ln(1− m)−
a lnm.

3.3 Fitting the Parameters

One way of fitting beta calibration maps is to minimise log-
loss with the same methods as in logistic regression. This
can be performed using any optimisation tool, supplying it
with the objective function and its gradient. However, in
the following we derive results which reduce these tasks
to fitting logistic regression in a different feature space, al-
lowing to implement beta calibration by simply calling any
logistic regression implementation, which is contained in
all standard machine learning toolkits.

Proposition 1. For any a ≥ 0 and c,s ∈ R:
µbeta(s;a,a,c) = µlogistic(ln s

1−s ;a,c).

Proof. It is sufficient to prove that the corresponding like-
lihood ratios are equal.

LRlogistic(ln
s

1− s
;a,c) = exp[a ln

s
1− s

+ c]

=

(
s

1− s

)a

ec = LRbeta(s;a,a,c)

The result in Proposition 1 shows that applying the beta
calibration map with two parameters a and c where b = a
gives the same result as applying the logistic calibration
map on the log-odds, i.e. on the log-ratios of scores
and there complements, with γ = a and δ = c. There-
fore, the optimal parameter values in minimising log-loss
of beta-calibrated probabilities and in minimising log-loss
of the logistic-calibrated log-odds-transformed scores coin-
cide also. Hence, we can use logistic calibration (i.e. uni-

Algorithm 1 Beta[a=b] calibration via logistic regression

Require: ytrain and strain are the label and model output
score vectors on training instances, stest is the model
output score vector on test instances

1: s′← ln strain
1−strain

2: (a,c) ← fit univariate logistic regression to predict
ytrain from s′

3: p̂test← 1/(1+1/(ec sa
test

(1−stest)a ))

4: return p̂test

Algorithm 2 Beta calibration via logistic regression

Require: ytrain and strain are the label and model output
score vectors on training instances, stest is the model
output score vector on test instances

1: s′← lnstrain
2: s′′←− ln(1− strain)
3: (a,b,c) ← fit bivariate logistic regression to predict

ytrain from s′ and s′′

4: p̂test← 1/(1+1/(ec sa
test

(1−stest)b ))

5: return p̂test

variate logistic regression) for fitting the beta[a=b] calibra-
tion maps, as shown in Algorithm 1. Note that the operators
in the algorithm apply on vectors component-wise.

Furthermore, it turns out that we can use bivariate logis-
tic regression to fit the full 3-parameter beta calibration
maps. This is due to our result stated in Proposition 2
showing that applying the beta calibration map with param-
eters a,b,c gives the same result as applying the bivariate
logistic regression model on the log-scores and negative-
log-complement-scores with the same parameters a,b,c.
The resulting beta calibration algorithm is shown as Algo-
rithm 2.

Proposition 2. For any a,b ≥ 0 and c,s ∈ R:
µbeta(s;a,b,c) = µbilogistic(lns,− ln(1− s);a,b,c), where
µbilogistic(s′,s′′;a,b,c) = 1/(1 + 1/exp[as′ + bs′′ + c]) is
the bivariate logistic regression model family.

Proof. It is sufficient to prove that the corresponding like-
lihood ratios are equal.

LRbilogistic(lns,− ln(1− s);a,b,c)

= exp[a lns−b ln(1− s)+ c]

=
sa

(1− s)b ec = LRbeta(s;a,b,c)

One subtle issue with Algorithms 1 and 2 is that in principle
fitting might result in either a < 0 or b < 0 or both, yielding
calibration maps that are either monotonically decreasing
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Table 1: Description of the 41 classification datasets from
UCI used for the experiments.

Name Samples Features Classes

abalone 4177 8 3
autos 159 25 6
balance-scale 625 4 3
car 1728 6 4
cleveland 297 13 5
credit-approval 653 15 2
dermatology 358 34 6
diabetes 768 8 2
ecoli 336 7 8
flare 1389 10 6
german 1000 20 2
glass 214 9 6
heart-statlog 270 13 2
hepatitis 155 19 2
horse 300 27 2
ionosphere 351 34 2
iris 150 4 3
landsat-satellite 6435 36 6
letter 35000 16 26
libras-movement 360 90 15
lung-cancer 96 7129 2
mfeat-karhunen 2000 64 10
mfeat-morphological 2000 6 10
mfeat-zernike 2000 47 10
mushroom 8124 22 2
optdigits 5620 64 10
page-blocks 5473 10 5
pendigits 10992 16 10
scene-classification 2407 294 2
segment 2310 19 7
shuttle 101500 9 7
sonar 208 60 2
spambase 4601 57 2
tic-tac 958 9 2
vehicle 846 18 4
vowel 990 10 11
waveform-5000 5000 40 3
wdbc 569 30 2
wpbc 194 33 2
yeast 1484 8 10
zoo 101 16 7

or not monotonic at all. This did not ever happen in our ex-
periments but if this situation is important to be avoided
then logistic regression should be fitted with constraints
a,b ≥ 0. Alternatively, one could still use non-constrained
logistic regression, but after this explicitly check if the con-
straints are satisfied. The variables with negative coeffi-
cients could then be eliminated (i.e., the respective coeffi-
cient fixed to be zero) and unconstrained logistic regression
could be fitted again.

4 EXPERIMENTS

We evaluated the effect of applying beta calibration and
its variations to the scores produced by Naive Bayes and
Adaboost on 41 datasets from UCI (Lichman, 2013), see

Table 1 for details. Multiclass datasets were transformed
into binary by calling the biggest class positive and the
other classes negative. We compared the performance of
beta calibration, beta[a=b] calibration, beta[m=1/2] calibra-
tion, isotonic calibration, logistic calibration and uncali-
brated probabilities, in terms of Brier score (BS) and log-
loss (LL), which are both proper scoring rules (Kull and
Flach, 2015) and hence well-founded measures for assess-
ing the quality of predicted probabilities. Supplementary
material additionally evaluates accuracy.

The results were obtained from 10 times 5-fold cross-
validation, totalling 50 executions. Within each execution
we used 3-fold internal cross-validation with 2 folds for
learning the model and 1 for fitting the calibration map.
Thus, three calibrated classifiers were generated during
each execution, the outputs of these three were averaged
to provide predictions on the test fold. The same method-
ology was used in the paper proposing the logistic calibra-
tion (Platt, 2000). All experiments were written in Python
and the code is publicly available2. The detailed tables of
results are available in the Supplementary material.

For Naive Bayes (NB), we used the implementation pro-
vided by Scikit-learn (Pedregosa et al., 2011). For boost-
ing we used 200 decision stumps as weak learners and
implemented two different versions of the standard Ad-
aboost algorithm. The first is the original Adaboost with
probabilities extracted in the standard way as in (Fried-
man et al., 2000), we refer to it as Ada-O. The second is
the one implemented in Scikit-learn’s based on Adaboost
method SAMME (Zhu et al., 2009), we refer to it as Ada-
S. These versions turn out to be quite different, as Ada-O
tends to push the probabilities to the extremes similarly to
NB, whereas Ada-S pulls them towards 0.5. Therefore, we
expect beta calibration to outperform logistic calibration on
Ada-O and NB, while being comparably good on Ada-S.

For statistical comparisons between the calibration meth-
ods we followed (Demšar, 2006) and conducted the Fried-
man test based on the average ranks across the data sets
to verify whether the differences between algorithms were
statistically significant. In case of significance at 5% con-
fidence level we proceeded to a post-hoc analysis based on
Nemenyi statistics producing critical difference diagrams
identifying pairwise significant differences.

We first compared the full 3-parameter beta calibration
with logistic and isotonic calibration methods, as well as
with the uncalibrated probabilities, across all 3x2 settings
(NB, Ada-S, Ada-O; LL, BS). The critical difference dia-
grams are shown in Figure 4 for LL and in Figure 5 for BS.
As expected, beta calibration was significantly better than
logistic calibration on NB and Ada-O, both for LL and BS.
Furthermore, on LL beta calibration was even significantly
better than isotonic calibration, while being on par under

2https://betacal.github.io

https://betacal.github.io
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Figure 4: Critical difference diagrams for log-loss with Naive
Bayes, Ada-O and Ada-S as base classifiers, Friedman test p-
values are 6.9e−17, 1.0e−12 and 4.7e−15, respectively.
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Figure 5: Critical difference diagrams for Brier score with Naive
Bayes, Ada-O and Ada-S as base classifiers, Friedman test p-
values are 1.0e−14, 3.7e−06 and 5.8e−13, respectively.

BS. With Ada-S the probabilities tend to be pulled towards
0.5 and the logistic fits reasonably well, here beta calibra-
tion performed comparably to logistic calibration (beta cal-
ibration was non-significantly better). To summarise, no
other method was ever significantly better than beta cali-
bration, and beta calibration was significantly better than
all other methods for NB and Ada-O according to LL. Full
results on Ada-O for LL are shown in Table 2.

We then continued to compare the variants of beta calibra-
tion, leaving the non-parametric isotonic out of the picture.
The critical difference diagrams for this analysis are shown
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Figure 6: Critical difference diagrams for log-loss on parametric
methods with Naive Bayes, Ada-O and Ada-S classifiers, Fried-
man test p-value are 1.2e−20, 1.6e−15 and 2.8e−17.
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Figure 7: Critical difference diagrams for Brier score on para-
metric methods with Naive Bayes, Ada-O and Ada-S classifiers,
Friedman test p-values are 2.4e−18, 1.4e−06 and 1.6e−13.

in Figure 6 for LL and in Figure 7 for BS. Among the three
variants the 3-parameter version was either the best or tied
with the best (i.e., not significantly worse than the best)
for all settings (NB, Ada-O, Ada-S and LL, BS). Hence
the experiments show that the full 3-parameter version of
beta calibration is a versatile parametric calibration method
which is preferable to logistic regression, especially if the
model has pushed the scores towards the extremes.
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Table 2: Log-loss results with Ada-O classifier. Best results
are marked in bold and subscripts indicate the ranks (before
rounding to 3 decimal digits).

dataset uncalibrated beta isotonic logistic

abalone 0.6122 0.6121 0.6264 0.6143
autos 0.4274 0.2831 0.4163 0.2872
balance 0.0494 0.0371 0.0413 0.0382
car 0.1142 0.1091 0.1224 0.1193
clevela 0.4963 0.4171 0.5234 0.4292
credit- 0.3603 0.3412 0.4444 0.3381
dermato 0.0364 0.0191 0.0353 0.0212
diabete 0.5063 0.4841 0.5254 0.4952
ecoli 0.3264 0.1451 0.2243 0.1592
flare 0.4041 0.4042 0.4214 0.4083
german 0.5113 0.5062 0.5384 0.5061
glass 0.6964 0.4892 0.5603 0.4851
heart-s 0.5704 0.4271 0.5573 0.4432
hepatit 0.8054 0.3921 0.4313 0.4112
horse 0.6424 0.4131 0.5243 0.4182
ionosph 0.3814 0.2031 0.2963 0.2272
iris 0.1274 0.0002 0.0001 0.0003
landsat 0.0412 0.0401 0.0433 0.0534
letter 0.0373 0.0352 0.0351 0.0444
libras- 0.5894 0.1001 0.1843 0.1122
lung-ca 0.1934 0.1391 0.1893 0.1392
mfeat-k 0.0624 0.0271 0.0483 0.0322
mfeat-m 0.0404 0.0141 0.0263 0.0142
mfeat-z 0.0954 0.0321 0.0633 0.0392
mushroo 0.0004 0.0003 0.0002 0.0001
optdigi 0.0352 0.0331 0.0444 0.0403
page-bl 0.0932 0.0891 0.0983 0.1094
pendigi 0.0172 0.0171 0.0234 0.0213
scene-c 0.3844 0.3641 0.3762 0.3783
segment 0.0203 0.0101 0.0234 0.0132
shuttle 0.0002 0.0001 0.0014 0.0003
sonar 0.9414 0.4041 0.4863 0.4402
spambas 0.1622 0.1621 0.1734 0.1673
tic-tac 0.3794 0.3331 0.3403 0.3392
vehicle 0.0772 0.0681 0.1314 0.0773
vowel 0.0762 0.0711 0.0944 0.0853
wavefor 0.2532 0.2521 0.2643 0.2714
wdbc 0.2564 0.0891 0.1413 0.1072
wpbc 1.0164 0.5002 0.4961 0.5033
yeast 0.5102 0.5091 0.5434 0.5143
zoo 0.1324 0.0133 0.0131 0.0132

rank 3.20 1.27 3.12 2.41

Beta[a=b] calibration has comparable running time to
logistic calibration and the 3-parameter version can be
slightly slower. However, both calibration methods are usu-
ally orders of magnitude faster than learning of the classi-
fier itself. Therefore, the overall time for learning a clas-
sifier and calibrating it is not increased considerably when
moving from logistic calibration to beta calibration.

5 CONCLUDING REMARKS

We introduced a rich and flexible family of calibration
maps that includes both sigmoids and inverse sigmoids, as

well as a host of other maps including the identity map. We
derived the method from first principles making one simple
parametric assumption: that the per-class scores of the clas-
sifier each follow a beta distribution. This is particularly
suitable for classifiers that score on a bounded scale, for
which the Gaussian assumption underlying logistic calibra-
tion is incoherent. The two beta distributions can be quite
different in shape, giving the family much more flexibility
than the logistic family, which has to assume homoscedas-
ticity to keep the calibration map monotonic. This added
flexibility is also visible in the fact that the beta calibra-
tion maps have three parameters (one for location, two for
shape) as opposed to the logistic maps which have only two
(one for location and one shape parameter fixing the slope
at the midpoint). If the full flexibility is not required we
can force the two shape parameters of the beta calibration
family to be the same, which gives symmetric curves but
still includes inverse sigmoids as well as sigmoids.

Our second contribution is that we connect beta calibration
back to logistic calibration, by formulating it as a logis-
tic regression problem over features constructed from the
classifier’s score s. In particular, the two-parameter version
of beta calibration can be fitted by performing univariate
logistic regression over the feature ln(s/(1− s)), and the
full three-parameter version can be fitted by means of bi-
variate logistic regression with features lns and− ln(1−s).
The two-parameter version of beta calibration with a and c
where a = b has been considered before as a linear-in-log-
odds (LLO) calibration method (Lichtenstein et al., 1977;
Turner et al., 2014) but without a justification.

We performed extensive experiments on 41 binary datasets,
with Naive Bayes and Adaboost as base classifiers and
evaluating both log-loss and Brier score. The experiments
show that all versions of beta calibration outperform logis-
tic calibration. We have also observed that beta calibra-
tion is a good alternative to isotonic calibration on smaller
datasets, where isotonic calibration might overfit.

There are several avenues for future work. As beta calibra-
tion is directly minimising log-loss it is perhaps no surprise
that it outperforms isotonic calibration for log-loss, but this
situation is reversed (although not significantly) for Brier
score, and we plan to get a better understanding of this.
It would also be interesting to formulate minimising Brier
score as an alternative optimisation task.
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