
 Sani, A. H., & Nunez-Yanez, J. L. (2016). Energy proportional computing
with OpenCL on a FPGA-based overlay architecture. In Proceedings of the
2nd IEEE NORCAS Conference (NORCAS 2016). [7792905] Institute of
Electrical and Electronics Engineers Inc.. DOI:
10.1109/NORCHIP.2016.7792905

Peer reviewed version

Link to published version (if available):
10.1109/NORCHIP.2016.7792905

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7792905/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/83929432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NORCHIP.2016.7792905
http://research-information.bristol.ac.uk/en/publications/energy-proportional-computing-with-opencl-on-a-fpgabased-overlay-architecture(ce482a7b-2f1f-4e4e-838e-5121232ae86b).html
http://research-information.bristol.ac.uk/en/publications/energy-proportional-computing-with-opencl-on-a-fpgabased-overlay-architecture(ce482a7b-2f1f-4e4e-838e-5121232ae86b).html

Energy Proportional Computing with OpenCL on a FPGA-Based Overlay

Architecture

Awais Hussain Sani, Jose Luis Nunez-Yanez

Department of Electrical and Electronic Engineering, University of Bristol, UK.
Email: {a.sani, j.l.nunez-yanez}@bristol.ac.uk

Abstract— This paper proposes an architecture inspired by

ARM big.LITTLE that combines a hardened host with a
cluster of soft processors of different complexities,
performance and energy profiles. This coarse-grained
FPGA overlay architecture results in a hardware
accelerator that offers software like programmability, fast
compilation, improved design productivity and application
portability. A programming flow based on OpenCL is
introduced to allow application programmers to implement
parallel algorithms at higher level of abstractions. Current
OpenCL tools for FPGAs suffer from long compilation times
and limited compiler support. Minor changes to the
algorithm normally mean full implementation cycles that can
take several hours to complete. The proposed architecture
allows changes to the application at run-time with cross-
compilation done in the host during program execution. To
compensate for the loss of performance compared with
custom logic the FPGA cluster supports adaptive voltage

scaling that enables higher clock frequencies and better
adaptation to the program load. Experimental results
demonstrates 70% improvement in computational time and
80% reduction in energy consumption by computing
OpenCL kernel on different clusters and various operating
voltages and frequencies.

I. INTRODUCTION

With Moore’s Law approaching its limit, designers and
researchers are challenged to increase throughput and reduce
energy for the next generation of applications. FPGA
accelerators have shown promising advantages in a wide range
of applications thanks to increasing logic density and
embedded high performance DSP blocks. FPGA accelerators
outperform general purpose CPUs in terms of throughput,
latency and energy in many applications. However, the
expertise required to design hardware, low productivity and
long compilation times have generally prevented the
utilization of FPGA accelerators in general purpose
computing. Different High Level Synthesis (HLS) tools and
design languages have been developed to improve design
productivity and allow designers to focus on high level
functionality. However, designing high performance
accelerators still requires low-level implementation expertise
that is difficult to acquire for a software programmer.
Moreover, it is also difficult and time consuming to maintain
an application as an accelerator whose code changes over
time.
OpenCL has been designed to improve design productivity. It
offers the possibility of transforming FPGA devices into an
additional computing resource for software programmers

without knowledge of low-level hardware details. However,
“OpenCL to FPGA” does not offer a perfect solution to map
software into hardware. Performance portability of OpenCL
code from the CPU/GPU domain to FPGA is very limited and
the accelerator code must be optimized for particular
kernel(s). In addition, deployment of this code in the FPGA is
costly in terms of implementation time and the need to use
low level debugging techniques. To improve the design
productivity and make FPGA more accessible to application
developers, there is a growing need to propose new solutions
and tools to improve the development cycle. Overlay
architectures are a promising solution to use OpenCL on a
FPGA device that have received significant attention recently.
The contribution of this work can be summarised as follows:

• The design of an architecture overlay with hardened host
and a cluster of soft processors that can operate under
varying levels of voltage, frequency and logic complexity
to adapt performance and energy to the kernel workload
demand.

• The construction of a source to source code generator that
uses the LLVM Compiler infrastructure to generate
optimized C code for the respective OpenCL kernel.

• The partitioning and compilation of the C Code to a set of
processors within a cluster in order to reduce the overall
system energy consumption by adapting to the application
throughput requirement.

The rest of the paper is organized as follows: Section II
presents work related to overlay architectures and source-to-
source compilers. Section III describes our overlay
architecture consisting of clusters of soft processor and energy
proportional system used to run OpenCL kernels. The flow of
the tool used to generate source-to-source code from OpenCL
to C and to generate binaries that run on soft processor is
presented in Section IV. Section V describes the benchmarks
used in this paper and presents the results obtained after
mapping these benchmarks on our cluster of processor using
the energy proportional computing system. Finally, we
conclude our paper in Section VI with some directions to
investigate the overlay architecture in the future.

II. RELATED WORK

 To improve the design productivity and to reduce the
compilation times, overlay architectures provide an attractive
solution for computing kernels on FPGAs. Different types of
overlay architectures are developed in the literature such as
coarse-grained reconfigurable arrays (CGRAs), overlay based
on DSP Blocks Function Units (FUs) and those that used
programmable soft cores. CGRAs overlays are designed for

word level computation and on-the-fly customization. For this
purpose, a coarse-grained FPGA architecture coupled with an
array of general purpose processor has been designed in [1] to
obtain software-like programmability and application
portability with fast compilation times. An intermediate Fabric
(IF) consisting of Computational Units (CUs) has been
introduced in [2] to improve compilation time and application
portability. The compilation of application kernel is improved
with the addition of processing elements (PEs) and crossbar
(CB) in IF and through fast memory access and pipelined
overlay Functional Units (FUs) in [3]. Overlay architectures
have been managed at run-time for configuration and data
communication either through an operating system (Linux) [1]
or using a hypervisor. These architectures tend to use general
purpose PEs that enable application programmers to work at
higher levels of abstraction to increase design productivity.
However, these architectures have been designed without
serious consideration to the underlying FPGA architecture and
this results in performance and cost overheads for many
applications [4]. This will prevent the practical use of these
architectures in FPGA-based systems [3].
To improve throughput and reduce overhead, DSP based
overlay architectures using flexible interconnection network
have been designed in [5][6]. These architectures use highly
pipelined DSP blocks connected through flexible island-style
interconnection to map applications on the FPGA. To exploit
kernel level parallelism, multiple instances of the kernel are
mapped on the underlying overlay architecture. The mapping
tool flow consists of C to Data Flow Graph (DFG)
transformation, DSP aware mapping, Placement and Routing
of FU netlist using VPR (Versatile Place and Route) and
latency balancing. However, DSP overlays require low-level
FPGA knowledge to fine-tune the mapping in order to
improve throughput for different applications. Moreover,
designing fully flexible island-style interconnect results in a
significant area overhead. To reduce area overhead, linear
interconnect is used between pipelined DSP Blocks in DeCO
[7]. But still, fine-tuning of mapping tool based on compute
kernel is required to get high throughput on different FPGAs.
An overlay architecture based on soft processors called IPPro
for image processing applications is demonstrated in [8]. The
approach has used CAL dataflow language and respective
ORC synthesis flow to map application on IPPro to get higher
throughput. However, this results in an overlay restricted to
particular application that cannot be used for general purpose
computing.
One of the problem while porting OpenCL to a cluster of
coarse-grained processors is the unavailability of the compiler
that generates binaries for that processor starting with the
OpenCL code. An alternative is to use source-to-source
transformation to convert the OpenCL to C/C++ that can be
compiled with the standard processor flow. INSIEME [9] is a
source-to-source compiler for C/C++ designed to generate
parallel codes (OpenMP, MPI and OpenCL) for heterogeneous
multi-core architecture whereas POCL [10] [12] uses Clang
and LLVM to produce LLVM Intermediate Representation
after parsing OpenCL C kernels. In this work we also use this
approach to avoid having to write a compiler from scratch.

III. HARDWARE ARCHITECTURE

Our processor-based acceleration cluster is based on a general
purpose FPGA-efficient soft processor that supports a
standard Instruction set Architecture (ISA), software tools and
libraries. The MicroBlaze is selected since it is optimized for
implementation in Xilinx FPGAs which are the focus of this
work. It is modern, reconfigurable and supports a wide set of
applications and has a stable compiler infrastructure consisting
of assembler, debugger, simulators and libraries. It supports
different embedded operating systems, interface IPs and can
work as a standalone accelerator.
ARM big.LITTLE technology has been designed to satisfy the
two conflicting requirements of a design: energy-efficient
computing and powerful processing. It assigns task to
processor cores of different complexity depending on
workload demands to reduce energy-consumption. To carry on
this concept, an overlay architecture consisting of clusters of
MicroBlaze (MB) with different logic complexity and energy
proportional system has been designed as shown in Fig. 1.

HOST

CPU

Memory

controller
UART

Main memory

Frequency and

phase control

Cluster 0

Little

Frequency and

phase control

Cluster 1

Frequency and

phase control

Cluster 2

Local

memory

Little
Local

memory

Little
Local

memory

Medium
Local

memory

Medium
Local

memory

Medium
Local

memory

Big
Local

memory

Big
Local

memory

Big
Local

memory

Little
Local

memory

Medium
Local

memory

Big
Local

memory

Row 2

Little Cluster Medium Cluster Big Cluster

Interrupt

controller
DMA

AXI interconnect

Row 1

Row 0

Row 2

Fig. 1. Overlay Architecture

The clusters are called Little Cluster, Medium Cluster and Big
Cluster with regard to the computation capabilities of the
processors used in each cluster. Little cluster consists of 4 MB
processors configured with 3-stage pipeline and no support for
hardware multiplier and Floating-Point Unit (FPU). Medium
cluster contains 4 MB processors designed with 5-stage
pipeline, hardware support for multiplier and no support for
FPU. Big cluster has 4 MB processors each configured with 5-
stage pipeline and hardware support for both multiplier and
FPU. Computational capabilities and hardware utilization of
each processor in a cluster are summarized in Table 1.

Table 1: Hardware utilization of each processor

Cluster 5-stage

pipeline

Hardware multiplier/divider/

comparator/shifter

Hardware

FPU

Hardware complexity

Registers LUTs DSPs BRAMs

Little NO NO NO 361 646 0 8

Medium YES YES NO 1098 1375 3 8

Big YES YES YES 1870 2600 5 8

The energy proportional system consists of in-situ detectors
and additional hardware and software to support adaptive
voltage and frequency scaling (AVFS). The in-situ detectors
[11] are used to protect critical paths in order to reliably
operate the design across a range of frequencies and voltages

whereas AVFS is used together with system characterization
to influence the voltage and frequency on the fly in closed-
loop configuration.
The in-situ detectors have been introduced in the design netlist
using the post place & route timing information of the system.
The core of the flow is the Elongate tool [11] that transforms
the original design netlist into a new netlist with identical
functionality and additional power management IP and in-situ
detectors. Fig. 2 shows the overall flow that can be
decomposed into three distinct phases indicated with numbers
1, 2 and 3 in Fig. 2. During the first phase, the original netlist
goes through a full implementation run to obtain post
place&route timing data in the form of a text file. In the
second stage the Elongate tool takes as input the obtained
timing data, the original netlist and Elongate component
library that describes the power management core and in-situ
detectors and produces the new power adaptive netlist. The
third stage consists of a final implementation run of the power
adaptive netlist to obtain the device bitstream ready to be
downloaded in the device. This third stage is done using the
incremental place&route available in the Vivado flow to
minimize changes to the implementation caused by the
addition of the in-situ detectors and additional logic. The
incremental flow enables the reutilization of approximately
98% of the available place&route information.

MAP

PLACE

&

ROUTE

BITGEN

.v

.vhd

netlist

.NCD

netlist

.BIT

bitstream

.TWR

Timing

Elongate

User

 constraints

.v

.vhd

netlist

.VHD .V

source

NTC

component

library

SYN

HLS
High Level

Synthesis

OpenCL, C++

source

1

1

1
1 1 1

1

2

3

3

3

3

Fig. 2. Implementation Flow of Energy Proportional System

The overall architecture is shown in Fig. 3 that shows 1) the
PL voltage domain with the region dedicated to the user IP
and the DFS (dynamic frequency scaler) part of the AVFS
system 2) the PS voltage domain with the Cortex A9
processors, I2C controller, memory controller and additional
peripherals. We have used the ZYNQ-based ZC702
Evaluation Board running UBUNTU Linux OS. The DVS
(Dynamic Voltage Scaling) unit originally presented in [11]
has been removed since the voltage scaling is done by the
ARM directly using the I2C controller shown to the right of
the figure. The DFS (Dynamic Frequency Scaler) shows the
addition of a PLL whose clock input is connected to the clock
output of the MMCM (Mixed Mode Clock Manager). The
adaptation control state machine controls the MMCM to
generate multiple clock frequencies and resets the PLL to
allow it to relock at the different clock frequencies. The
control state machine generates up to 535 different frequencies
between the ranges of 20 MHz and 400 MHz with fine
increments. It constantly monitors the status of the user IP
block and decides to increment or decrement frequencies

depending on this status. The adaptation control logic also
monitors device parameters such as temperature to verify that
it remains below allowed maximum. The user IP block is the
clusters of coarse-grained processors in charge of performing
the useful computation that has been embedded with the logic
and memory detectors. The detectors which are shown as EFF
in the figure communicate through the EFF control with the
adaptation control logic.

Application

Processing Unit

(Cortex A9 MP)

CLK

adaptation

control

AXI Interconnect

UART

ZYNQ boundary

Memory

devices

(LPDDR2, DDR3,

DDR2) Memory

Controller

MMCM

(Mixed

Mode

Clock

Manager)

I/O

periph

erals I2C/PMBUS

In-situ

detector

status

PS voltage

domain

PL voltage

domain

Adaptive

Clk (clk1)

DFS

I2
C

c
o
n

tr
o

ll
e

r

PLL

(phase

control)

LEDS (locked, EFF firing)

EFF

EFF

EFF

EFF

EFF

E
F

F
 c

o
n
tr

o
l

XADC

(temperature

monitor)

Phase

Clk (clk2)

User IP block

Fig. 3. Overview of the system Design

Fig. 4 shows the detailed description of big cluster with in-situ
detectors embedded into the design. The other clusters follow
the same design methodology as described in this section. The
processors access instructions and data from BlockRAM
memories and the critical paths go from the processor logic to
the BlockRAM as verified in the timing analysis reports. The
detectors are inserted protecting the data and address lines to
the BlockRAMs and communicate with the EFF (embedded
flip-flop) control visible in Fig. 3. Data and binaries are copied
to the BRAM by the ARM host processor through the host
AXI directly writing the BlockRAMs or using the hardened
PL330 DMA present in the PS side. Once the data and binary
copying completes the host processor activates the Microblaze
by removing the reset signal. The Microblaze processors
proceed to execute the code stored in the BlockRAMs and
issue an interrupt to the host once the processing completes.
A UART is also available so the processors can report on
execution progress. Each processor can execute a different
binary or the same binary with different data sets.

MB

processor

B
R

A
M

C
o
n

tr
o

ll
e
r

BRAM

B
R

A
M

C
o
n
t
ro

ll
e

r

AXI (host,

UART,

interrupt

generation)

D
e
te

c
to

rs

Clk1

AXI peripheral

AXI

instructions

and data

MB

processor

B
R

A
M

C
o
n

tr
o

ll
e

r

BRAM

B
R

A
M

C
o
n
t
ro

ll
e

r

AXI (host,

UART,

 interrupt

generation)

D
e
te

c
to

rs

AXI peripheral

AXI

instructions

and data

MB

processor

B
R

A
M

C
o
n

tr
o

ll
e

r

BRAM

B
R

A
M

C
o
n

tr
o
ll
e

r AXI

(host,UART,

interrupt

generation)

D
e
te

c
to

r
s

AXI peripheral

AXI

instructions

and data

MB

processor

B
R

A
M

C
o
n

tr
o

ll
e

r

BRAM

B
R

A
M

C
o
n
t
ro

ll
e

r

AXI (host,

UART, interrupt

generation)

D
e
te

c
to

rs

AXI peripheral

AXI

instructions

and data

Clk2 status

status

status

Clk2

Clk2

Clk2 status

Reset

Fig. 4. Microblaze multi-core hardware

IV. TOOL FLOW

The OpenCL program consists of the kernel program and host
program. The kernel program defines the single instance of the
algorithm that is executed in the index space of the device
whereas host program manages and configures the execution
of this kernel. In this work, a source to source code translator
has been proposed that used Clang frameworks to generate C
code for respective OpenCL kernel. The granularity is
maintained at the work-group level where multiple work-
groups are dispatched to a processor in the cluster. The C code
corresponding to each processor is then compiled using MB
cross-compiler installed on host processor and loaded for
running OpenCL kernel on cluster processors. The host
program has been used to support application testing and
energy proportional computing on different clusters. The
complete Execution flow along with different steps required to
generate host and kernel executables are shown in Fig. 5.

OpenCL

Kernels

Clang

Driver

AST

Traversal

Clang

FrameWork

Cluster

Information

C Code

Binaries

Host

Processor

AST

MicroBlaze

Cross Compiler

Matcher

Code

Partitioning

O
p

e
n

C
L

to
 C

 T
ra

n
sl

a
ti

o
n

Loading Binaries

to Cluster

Kernel Execution Flow

Host

Program

AVFS API

Library
Host

Compiler

Host

Executable

Host Execution Flow

Cluster

Binaries

Fig. 5. Host and Kernel Execution Flow

The generation of kernel executable for cluster processors can
be divided into two steps: 1) source-to-source translation from
OpenCL to C enclosed in dotted lines 2) generation of binaries
for each processor in the cluster using MB cross-compiler.
Different approaches have been used for source-to-source
translation in which one language has been converted into
another language at the same abstraction level. One of the
most common approach is to generate intermediate
representation of the source language, perform suitable
transformations and optimizations and output the code for
target language. Clang is the collection of compiler frontend
API libraries used for parsing, lexing and code analysis. For
source-to-source transformation, Clang preprocess the source
code by parsing it into Abstract Syntax Tree (AST). The
Clang AST Matcher library allows the program to match the
nodes or subtree within this AST that follows a specific
predicate using different AST traversal techniques. A callback
function is registered with each AST matcher and will be
called when an AST node matches with its respective AST
matcher. This callback function makes it possible for the
program to change the source code or/and generate code in
target language.
Fig. 6 explains the whole process of transformation from
OpenCL to C as performed in this work with a simple

example. Fig. 6.a shows the OpenCL kernel program for a
vector addition. After parsing this program into AST, the
Clang traverse this tree for matching the nodes for which AST
matcher and callback functions are registered for translating
OpenCL into C. After performing the necessary
transformations, the output C code is shown in Fig. 6.b. The
code is further partitioned at the work-group level by using the
cluster information. Fig. 6.c depicts the code after partitioning
that runs on first processor of the cluster.

__kernel void vec_add(__global const int *a, __global const int *b, __global int *c, int numElements){

int gid = get_global_id(0);

c[gid] = a[gid] + b[gid];

}

void vec_add(const int *a, const int *b, int *c, int numElements){

int index_space;

for(index_space = 0 ; index_space < numElements ; index_space++) {

int gid = index_space;

c[gid] = a[gid] + b[gid];

}

}

void vec_add(const int *a, const int *b, int *c, int numElements){

int index_space;

for(index_space = 0 ; index_space < (numElements/4) - 1 ; index_space++) {

int gid = index_space;

c[gid] = a[gid] + b[gid];

}

}

(a)

(b)

(c)

Fig. 6. OpenCL-to-C Transformation for MB cluster

The time required by source to source compiler to transform
different OpenCL kernels into C is shown in Table 2.

Table 2: Execution Time: source to source compiler

Kernel Vector Addition Vector Multiplication Matrix Multiplication Image Convolution

Time in secs 0.3 0.3 0.5 0.7

The cross-compiler is used to build a binary on one platform
called host platform that will be run on another platform called
target platform. In our case, the host platform is the ARM
processor and the target platform is MicroBlaze Processor. To
completely execute the Kernel Execution Flow from OpenCL
to MB binaries on host platform, both Clang Framework and
MB cross-compiler are installed on the ARM Processor. MB
cross-compiler is a little ending GNU compiler toolchain that
is used to generate MB binaries for AXI based Interconnect
system. Compiler also uses flags for activating different
processor features and generating instructions that are
executed by hardware components present in the processors of
different clusters such as hardware multiplier, divider,
Floating Point Unit (FPU) and barrel shifter.
The Host Execution Flow is used to load the generated MB
binaries onto the processors of a cluster identified by user and
to test the execution of OpenCL kernel on it. It is also used to
clock gate the processors of the cluster not involved in the
computation of the kernel so that the actual performance and
energy consumption values can be computed for a particular
cluster. The host also executes the software daemon that
monitors the status of the in-situ detector and writes control
instructions to the DFS (frequency control) and I2C (voltage
control) units using the AVFS API library. For these
experiments, the daemon records the temperature, frequency,
operating voltage, FPGA power and detector status. Running
the host and the kernel execution flow on the same platform
enables the execution of the OpenCL kernel directly on
different clusters under control of the energy proportional
system to investigate the energy and performance tradeoffs of
the different benchmarks.

V. EXPERIMENTAL RESULTS

To compare the performance and energy consumption of
different clusters within the architecture, four OpenCL
benchmarks are executed under varying level of frequencies
and voltages. These benchmarks are vector addition, vector
multiplication, matrix multiplication and image convolution.
The energy proportional system is designed to search for an
optimal frequency for a given voltage value. In the test
system, the valid range of voltages extends from 0.7 to 1V.
The experiment starts by loading data and binaries for a
particular benchmark to the BRAMs of a cluster specified by
the user. To configure the voltage and frequency of the
system, the daemon first configures the voltage regulator for a
particular voltage and then activates the DFS unit to searches
for the highest possible frequency for that voltage. Once DFS
unit detects this point using in-situ detectors and reports to the
host, the daemon configures the voltage regulator with a
different voltage from the range of valid voltages and restarts
the process. It is important to note that the benchmarks are
running on the selected clusters in parallel continuously to
emulate the real world implementation of benchmarks on that
cluster for range of frequencies and voltages.
Fig. 7 shows the maximum clock frequencies detected by
daemon for a nominal voltage of 1.0 to a low voltage of 0.7V
for different clusters using matrix multiplication as a
benchmark. The figure depicts that there is a linear
relationship between frequency and voltage and more
importantly the detector fires for these clusters in the range
from 165 MHz to 175 MHz that is much higher than the worst
case frequency of 100 MHz reported by tools after timing
analysis. This difference encourages the exploration of the
performance and power margins that could be exploited
depending on the kernel work load.

0

20

40

60

80

100

120

140

160

180

200

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

M
A

X
 F

R
E

Q
U

E
N

C
Y

(M
H

Z
)

VOLTAGE(V)

VOLTAG VS FREQUENCY

LITTLE MEDIUM BIG

Fig. 7. Voltage and Frequency analysis for different clusters

Different experiments have been performed to explore the
possible power and performance gains for different cluster by
computing to the limit and detecting the optimal power,
execution time and energy consumption levels for various
OpenCL benchmarks. For these experiments, vector addition,
vector multiplication and image convolution benchmarks are
executed using integer data type whereas matrix

multiplications is run using floating point data type to measure
the efficiency of various clusters. Fig. 8. shows the total
power, total execution time and energy consumption values by
computing selected OpenCL benchmarks at nominal voltage
of 1.0V and minimum operating voltage of 0.7V on the
different clusters. The data type used in a particular
benchmark is also mentioned in Fig. 8 within small brackets.
From a power consumption perspective, as depicted in Fig.
8.a, it is clear that the Little cluster is more power efficient
than the rest of the clusters and there is significant power
reductions possible by operating different clusters at 0.70V as
compared to operating them at nominal voltage of 1V. It is
also clear that cluster with more computational capabilities
consume more power as compared to the rest of the clusters
mainly due to its higher logical complexity.
However, execution time analysis illustrates that Medium
cluster takes less time to run the vector multiplication and
image convolution benchmarks than the rest of the clusters as
shown in Fig. 8.b. This is mainly due to the presence of
hardware multiplier that accelerates the multiplication process
for these benchmark. In addition, Big Cluster executes matrix
multiplication much faster as compared to the other clusters
due to the presence of FPU that speeds up the processing of
floating point data present in the benchmark. Moreover, in
case of the vector addition benchmark, execution time is
almost the same for each cluster. It is also clear that execution
time can be improved by almost 70% by operating clusters at
1V as compared to operating them at 0.70V.
From previous analysis, it is evident that reducing the
operating voltage/frequency increases the execution time of
the benchmark and could result in detrimental overall energy
effect since energy is the product of power and execution
time. Therefore, care must be taken while selecting operating
voltage/frequency and the cluster that results in minimum
energy consumption given a throughput requirement of the
benchmark. In our analysis of energy utilization, a significant
reduction in energy consumption is witnessed by running the
vector multiplication and image convolution benchmarks on
Medium cluster mainly due to the acceleration of multiply
function and by executing the matrix multiplication on Big
Cluster because of the presence of FPU. However, little
cluster is more energy efficient for running the vector addition
benchmark since it consumes less power than the rest of the
clusters as illustrated in Fig. 8.c. It is also clear that energy
consumption is almost 80% lesser at lower voltage of 0.7V as
compared to the nominal voltage of 1V.
The experiments show that the energy proportional system and
clusters of different computational capabilities enable the
creation of adaptable system. This system allows OpenCL
kernel to be run at lower energy consumption levels or at
higher performance level or on specific cluster depending on
operating conditions and workload size requirements.

VI. CONCLUSION

In this paper, an overlay architecture consisting of clusters of
soft processor each having different logical and computational
complexity along with an energy proportional system based on

0

100

200

300

400

500

Little Medium Big Little Medium Big Little Medium Big Little Medium Big

P
o
w
e
r(
m
W
)

Voltage Vs Power

0.7V

1.0V

Vector Multiplication
(Integer Data)

Matrix Multiplication
(Floating Point Data)

Image Convolution
(Integer Data)

Vector Addition
(Integer Data)

(a)

0

500

1000

1500

2000

LittleMedium Big LittleMedium Big LittleMedium Big LittleMedium Big

T
im

e
(m

S
e
c)

Voltage Vs Time

0.7V

1.0V

Vector Multiplication
(Integer Data)

Matrix Multiplication
(Floating Point Data)

Image Convolution
(Integer Data)

Vector Addition
(Integer Data)

(b)

0

50

100

150

200

Little Medium Big Little Medium Big Little Medium Big Little Medium Big

E
n
e
rg
y
(m

J)

Voltage Vs Energy

0.7V

1.0V

Vector Multiplication
(Integer Data)

Matrix Multiplication
(Floating Point Data)

Image Convolution
(Integer Data)

Vector Addition
(Integer Data)

(c)

Fig. 8. (a) Power (b) Time (c) Energy analysis for different Benchmarks on various Clusters

frequency and voltage scaling has been designed. A source to
source compiler has been proposed to run OpenCL kernel
directly as a software on our architecture. Initial experimental
result shows that our architecture provides the ability of
selecting the operating voltage/frequency and a cluster for a
particular benchmark in accordance with its kernel workload,
performance and energy consumption requirements. Future
work involves exploring more complex benchmarks and
developing a scheduling algorithm that will enable the daemon
running on the host processor to automatically assign points of
voltage and frequency to the overlay architecture according to
performance and energy consumption requirements of the
benchmarks.

ACKNOWLEDGEMENT
This work is supported by the UK EPSRC under grants
ENPOWER (EP/L00321X/1) and ENEAC (EP/N002539/1)
grants.

REFERENCES
[1] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and

dynamically composable architecture of CGRA,” IEEE Symposium on FPGAs

for Custom Computing Machines (FCCM), 2014.

[2] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for

circuit portability and fast placement and routing,” Hardware/Software

Codesign and System Synthesis (CODES+ ISSS), 2010, pp. 13–22.
[3] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T.Nowatzki

and K. Sankaralingam, “Design, integration and implementation of the

DySER hardware accelerator into OpenSPARC,” International Symposium on

High Performance Computer Architecture (HPCA), 2012.
[4] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell, “Adapting the

DySER architecture with DSP blocks as an Overlay for the Xilinx Zynq,”

International Symposium on Highly Efficient Accelerators and

Reconfigurable Technologies (HEART), 2015.
[5] A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient Overlay

architecture based on DSP blocks,” IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM), 2015.

[6] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented

FPGA overlays using DSP blocks,” Proceedings of the Design, Automation

and Test in Europe Conference (DATE), 2016, pp. 1628–1633.

[7] Abhishek Kumar Jain, Xiangwei Li, Pranjul Singhai, Douglas L.

Maskell and Suhaib A. Fahm, “DeCO: A DSP Block Based FPGA

Accelerator Overlay With Low Overhead Interconnect”, International

Symposium on Field-Programmable Custom Computing Machines, 2016.

[8] F. M. Siddiqui, M. Russell, B. Bardak, R. Woods, and K. Rafferty,

“IPPro: FPGA based Image Processing Processor,” IEEE Workshop on Signal

Processing Systems (SiPS), Oct 2014.

[9] H. Jordan, P. Thoman, J. Durillo, S. Pellegrini, P. Gschwandtner, T.

Fahringer, H. Moritsch. “A Multi-Objective Auto-Tuning Framework for

Parallel Codes”, Interntional Conference for High Performance Computing,

Networking, Storage and Analysis (SC 2012), Nov. 2012,

[10] Pekka Jääskeläinen et al., “pocl: A performance-portable OpenCL
implementation” International Journal of Parallel Programming Page. 1–34

(2014)

[11] Nunez-Yanez, J.L., "Adaptive Voltage Scaling with In-Situ Detectors in
Commercial FPGAs," Computers, IEEE Transactions on , vol.64, no.1,

pp.45,53, Jan. 1 2015

[12] Mohammad Hosseinabady, Jose Luis Nunez-Yanez., “Optimised

OpenCL workgroup synthesis for hybrid ARM-FPGA devices,” FPL 2015.

