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Abstract— This paper proposes an architecture inspired by 

ARM big.LITTLE that combines a hardened host with a 
cluster of soft processors of different complexities, 
performance and energy profiles.  This coarse-grained 
FPGA overlay architecture results in a hardware 
accelerator that offers software like programmability, fast 
compilation, improved design productivity and application 
portability. A programming flow based on OpenCL is 
introduced to allow application programmers to implement 
parallel algorithms at higher level of abstractions. Current 
OpenCL tools for FPGAs suffer from long compilation times 
and limited compiler support. Minor changes to the 
algorithm normally mean full implementation cycles that can 
take several hours to complete. The proposed architecture 
allows changes to the application at run-time with cross-
compilation done in the host during program execution. To 
compensate for the loss of performance compared with 
custom logic the FPGA cluster supports adaptive voltage 

scaling that enables higher clock frequencies and better 
adaptation to the program load. Experimental results 
demonstrates 70% improvement in computational time and 
80% reduction in energy consumption by computing 
OpenCL kernel on different clusters and various operating 
voltages and frequencies.   

I. INTRODUCTION 
 

With Moore’s Law approaching its limit, designers and 
researchers are challenged to increase throughput and reduce 
energy for the next generation of applications. FPGA 
accelerators have shown promising advantages in a wide range 
of applications thanks to increasing logic density and 
embedded high performance DSP blocks. FPGA accelerators 
outperform general purpose CPUs in terms of throughput, 
latency and energy in many applications. However, the 
expertise required to design hardware, low productivity and 
long compilation times have generally prevented the 
utilization of FPGA accelerators in general purpose 
computing. Different High Level Synthesis (HLS) tools and 
design languages have been developed to improve design 
productivity and allow designers to focus on high level 
functionality. However, designing high performance 
accelerators still requires low-level implementation expertise 
that is difficult to acquire for a software programmer. 
Moreover, it is also difficult and time consuming to maintain 
an application as an accelerator whose code changes over 
time. 
OpenCL has been designed to improve design productivity. It 
offers the possibility of transforming FPGA devices into an 
additional computing resource for software programmers 

without knowledge of low-level hardware details. However, 
“OpenCL to FPGA” does not offer a perfect solution to map 
software into hardware. Performance portability of OpenCL 
code from the CPU/GPU domain to FPGA is very limited and 
the accelerator code must be optimized for particular 
kernel(s). In addition, deployment of this code in the FPGA is 
costly in terms of implementation time and the need to use 
low level debugging techniques.  To improve the design 
productivity and make FPGA more accessible to application 
developers, there is a growing need to propose new solutions 
and tools to improve the development cycle. Overlay 
architectures are a promising solution to use OpenCL on a 
FPGA device that have received significant attention recently.  
The contribution of this work can be summarised as follows: 

• The design of an architecture overlay with hardened host 
and a cluster of soft processors that can operate under 
varying levels of voltage, frequency and logic complexity 
to adapt performance and energy to the kernel workload 
demand.  

• The construction of a source to source code generator that 
uses the LLVM Compiler infrastructure to generate 
optimized C code for the respective OpenCL kernel.   

• The partitioning and compilation of the C Code to a set of 
processors within a cluster in order to reduce the overall 
system energy consumption by adapting to the application 
throughput requirement.  

The rest of the paper is organized as follows: Section II 
presents work related to overlay architectures and source-to-
source compilers. Section III describes our overlay 
architecture consisting of clusters of soft processor and energy 
proportional system used to run OpenCL kernels. The flow of 
the tool used to generate source-to-source code from OpenCL 
to C and to generate binaries that run on soft processor is 
presented in Section IV. Section V describes the benchmarks 
used in this paper and presents the results obtained after 
mapping these benchmarks on our cluster of processor using 
the energy proportional computing system. Finally, we 
conclude our paper in Section VI with some directions to 
investigate the overlay architecture in the future. 

II. RELATED WORK 

 To improve the design productivity and to reduce the 
compilation times, overlay architectures provide an attractive 
solution for computing kernels on FPGAs. Different types of 
overlay architectures are developed in the literature such as 
coarse-grained reconfigurable arrays (CGRAs), overlay based 
on DSP Blocks Function Units (FUs) and those that used 
programmable soft cores. CGRAs overlays are designed for 



word level computation and on-the-fly customization. For this 
purpose, a coarse-grained FPGA architecture coupled with an 
array of general purpose processor has been designed in [1] to 
obtain software-like programmability and application 
portability with fast compilation times. An intermediate Fabric 
(IF) consisting of Computational Units (CUs) has been 
introduced in [2] to improve compilation time and application 
portability. The compilation of application kernel is improved 
with the addition of processing elements (PEs) and crossbar 
(CB) in IF and through fast memory access and pipelined 
overlay Functional Units (FUs) in [3]. Overlay architectures 
have been managed at run-time for configuration and data 
communication either through an operating system (Linux) [1] 
or using a hypervisor. These architectures tend to use general 
purpose PEs that enable application programmers to work at 
higher levels of abstraction to increase design productivity. 
However, these architectures have been designed without 
serious consideration to the underlying FPGA architecture and 
this results in performance and cost overheads for many 
applications [4]. This will prevent the practical use of these 
architectures in FPGA-based systems [3].  
To improve throughput and reduce overhead, DSP based 
overlay architectures using flexible interconnection network 
have been designed in [5][6]. These architectures use highly 
pipelined DSP blocks connected through flexible island-style 
interconnection to map applications on the FPGA. To exploit 
kernel level parallelism, multiple instances of the kernel are 
mapped on the underlying overlay architecture. The mapping 
tool flow consists of C to Data Flow Graph (DFG) 
transformation, DSP aware mapping, Placement and Routing 
of FU netlist using VPR (Versatile Place and Route) and 
latency balancing. However, DSP overlays require low-level 
FPGA knowledge to fine-tune the mapping in order to 
improve throughput for different applications. Moreover, 
designing fully flexible island-style interconnect results in a 
significant area overhead. To reduce area overhead, linear 
interconnect is used between pipelined DSP Blocks in DeCO 
[7]. But still, fine-tuning of mapping tool based on compute 
kernel is required to get high throughput on different FPGAs. 
An overlay architecture based on soft processors called IPPro 
for image processing applications is demonstrated in [8]. The 
approach has used CAL dataflow language and respective 
ORC synthesis flow to map application on IPPro to get higher 
throughput. However, this results in an overlay restricted to 
particular application that cannot be used for general purpose 
computing.   
One of the problem while porting OpenCL to a cluster of 
coarse-grained processors is the unavailability of the compiler 
that generates binaries for that processor starting with the 
OpenCL code. An alternative is to use source-to-source 
transformation to convert the OpenCL to C/C++ that can be 
compiled with the standard processor flow. INSIEME [9] is a 
source-to-source compiler for C/C++ designed to generate 
parallel codes (OpenMP, MPI and OpenCL) for heterogeneous 
multi-core architecture whereas POCL [10] [12] uses Clang 
and LLVM to produce LLVM Intermediate Representation 
after parsing OpenCL C kernels. In this work we also use this 
approach to avoid having to write a compiler from scratch. 

III. HARDWARE ARCHITECTURE 

Our processor-based acceleration cluster is based on a general 
purpose FPGA-efficient soft processor that supports a 
standard Instruction set Architecture (ISA), software tools and 
libraries. The MicroBlaze is selected since it is optimized for 
implementation in Xilinx FPGAs which are the focus of this 
work. It is modern, reconfigurable and supports a wide set of 
applications and has a stable compiler infrastructure consisting 
of assembler, debugger, simulators and libraries. It supports 
different embedded operating systems, interface IPs and can 
work as a standalone accelerator. 
ARM big.LITTLE technology has been designed to satisfy the 
two conflicting requirements of a design: energy-efficient 
computing and powerful processing. It assigns task to 
processor cores of different complexity depending on 
workload demands to reduce energy-consumption. To carry on 
this concept, an overlay architecture consisting of clusters of 
MicroBlaze (MB) with different logic complexity and energy 
proportional system has been designed as shown in Fig. 1. 
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Fig. 1. Overlay Architecture 

 

The clusters are called Little Cluster, Medium Cluster and Big 
Cluster with regard to the computation capabilities of the 
processors used in each cluster. Little cluster consists of 4 MB 
processors configured with 3-stage pipeline and no support for 
hardware multiplier and Floating-Point Unit (FPU). Medium 
cluster contains 4 MB processors designed with 5-stage 
pipeline, hardware support for multiplier and no support for 
FPU. Big cluster has 4 MB processors each configured with 5-
stage pipeline and hardware support for both multiplier and 
FPU.  Computational capabilities and hardware utilization of 
each processor in a cluster are summarized in Table 1. 
 

Table 1: Hardware utilization of each processor 

Cluster 5-stage

pipeline

Hardware multiplier/divider/

comparator/shifter

Hardware

FPU

Hardware complexity

Registers LUTs DSPs BRAMs

Little NO NO NO 361 646 0 8

Medium YES YES NO 1098 1375 3 8

Big YES YES YES 1870 2600 5 8
 

The energy proportional system consists of in-situ detectors 
and additional hardware and software to support adaptive 
voltage and frequency scaling (AVFS). The in-situ detectors 
[11] are used to protect critical paths in order to reliably 
operate the design across a range of frequencies and voltages 



whereas AVFS is used together with system characterization 
to influence the voltage and frequency on the fly in closed-
loop configuration. 
The in-situ detectors have been introduced in the design netlist 
using the post place & route timing information of the system. 
The core of the flow is the Elongate tool [11] that transforms 
the original design netlist into a new netlist with identical 
functionality and additional power management IP and in-situ 
detectors. Fig. 2 shows the overall flow that can be 
decomposed into three distinct phases indicated with numbers 
1, 2 and 3 in Fig. 2. During the first phase, the original netlist 
goes through a full implementation run to obtain post 
place&route timing data in the form of a text file. In the 
second stage the Elongate tool takes as input the obtained 
timing data, the original netlist and Elongate component 
library that describes the power management core and in-situ 
detectors and produces the new power adaptive netlist. The 
third stage consists of a final implementation run of the power 
adaptive netlist to obtain the device bitstream ready to be 
downloaded in the device. This third stage is done using the 
incremental place&route available in the Vivado flow to 
minimize changes to the implementation caused by the 
addition of the in-situ detectors and additional logic. The 
incremental flow enables the reutilization of approximately 
98% of the available place&route information.  
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Fig. 2. Implementation Flow of Energy Proportional System 

 

The overall architecture is shown in Fig. 3 that shows 1) the 
PL voltage domain with the region dedicated to the user IP 
and the DFS (dynamic frequency scaler) part of the AVFS 
system 2) the PS voltage domain with the Cortex A9 
processors, I2C controller, memory controller and additional 
peripherals. We have used the ZYNQ-based ZC702 
Evaluation Board running UBUNTU Linux OS.  The DVS 
(Dynamic Voltage Scaling) unit originally presented in [11] 
has been removed since the voltage scaling is done by the 
ARM directly using the I2C controller shown to the right of 
the figure. The DFS (Dynamic Frequency Scaler) shows the 
addition of a PLL whose clock input is connected to the clock 
output of the MMCM (Mixed Mode Clock Manager). The 
adaptation control state machine controls the MMCM to 
generate multiple clock frequencies and resets the PLL to 
allow it to relock at the different clock frequencies. The 
control state machine generates up to 535 different frequencies 
between the ranges of 20 MHz and 400 MHz with fine 
increments. It constantly monitors the status of the user IP 
block and decides to increment or decrement frequencies 

depending on this status. The adaptation control logic also 
monitors device parameters such as temperature to verify that 
it remains below allowed maximum. The user IP block is the 
clusters of coarse-grained processors in charge of performing 
the useful computation that has been embedded with the logic 
and memory detectors. The detectors which are shown as EFF 
in the figure communicate through the EFF control with the 
adaptation control logic.  
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Fig. 3. Overview of the system Design 
 

Fig. 4 shows the detailed description of big cluster with in-situ 
detectors embedded into the design. The other clusters follow 
the same design methodology as described in this section. The 
processors access instructions and data from BlockRAM 
memories and the critical paths go from the processor logic to 
the BlockRAM as verified in the timing analysis reports. The 
detectors are inserted protecting the data and address lines to 
the BlockRAMs and communicate with the EFF (embedded 
flip-flop) control visible in Fig. 3. Data and binaries are copied 
to the BRAM by the ARM host processor through the host 
AXI directly writing the BlockRAMs or using the hardened 
PL330 DMA present in the PS side.  Once the data and binary 
copying completes the host processor activates the Microblaze 
by removing the reset signal. The Microblaze processors 
proceed to execute the code stored in the BlockRAMs and 
issue an interrupt to the host once the processing completes.  
A UART is also available so the processors can report on 
execution progress. Each processor can execute a different 
binary or the same binary with different data sets.  
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Fig. 4. Microblaze multi-core hardware 



IV. TOOL FLOW 

The OpenCL program consists of the kernel program and host 
program. The kernel program defines the single instance of the 
algorithm that is executed in the index space of the device 
whereas host program manages and configures the execution 
of this kernel. In this work, a source to source code translator 
has been proposed that used Clang frameworks to generate C 
code for respective OpenCL kernel. The granularity is 
maintained at the work-group level where multiple work-
groups are dispatched to a processor in the cluster. The C code 
corresponding to each processor is then compiled using MB 
cross-compiler installed on host processor and loaded for 
running OpenCL kernel on cluster processors. The host 
program has been used to support application testing and 
energy proportional computing on different clusters. The 
complete Execution flow along with different steps required to 
generate host and kernel executables are shown in Fig. 5.  
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Fig. 5. Host and Kernel Execution Flow 

 

The generation of kernel executable for cluster processors can 
be divided into two steps: 1) source-to-source translation from 
OpenCL to C enclosed in dotted lines 2) generation of binaries 
for each processor in the cluster using MB cross-compiler. 
Different approaches have been used for source-to-source 
translation in which one language has been converted into 
another language at the same abstraction level. One of the 
most common approach is to generate intermediate 
representation of the source language, perform suitable 
transformations and optimizations and output the code for 
target language. Clang is the collection of compiler frontend 
API libraries used for parsing, lexing and code analysis. For 
source-to-source transformation, Clang preprocess the source 
code by parsing it into Abstract Syntax Tree (AST). The 
Clang AST Matcher library allows the program to match the 
nodes or subtree within this AST that follows a specific 
predicate using different AST traversal techniques. A callback 
function is registered with each AST matcher and will be 
called when an AST node matches with its respective AST 
matcher. This callback function makes it possible for the 
program to change the source code or/and generate code in 
target language.  
Fig. 6 explains the whole process of transformation from 
OpenCL to C as performed in this work with a simple 

example. Fig. 6.a shows the OpenCL kernel program for a 
vector addition. After parsing this program into AST, the 
Clang traverse this tree for matching the nodes for which AST 
matcher and callback functions are registered for translating 
OpenCL into C. After performing the necessary 
transformations, the output C code is shown in Fig. 6.b. The 
code is further partitioned at the work-group level by using the 
cluster information. Fig. 6.c depicts the code after partitioning 
that runs on first processor of the cluster.     

__kernel void vec_add(__global const int *a, __global const int *b, __global int *c, int numElements){

int gid = get_global_id(0);

c[gid] = a[gid] + b[gid];

}

void vec_add(const int *a, const int *b, int *c, int numElements){

int index_space;

for(index_space = 0 ; index_space < numElements ; index_space++) {

int gid = index_space;

c[gid] = a[gid] + b[gid];

}

}

void vec_add(const int *a, const int *b, int *c, int numElements){

int index_space;

for(index_space = 0 ; index_space < (numElements/4) - 1 ; index_space++) {

int gid = index_space;

c[gid] = a[gid] + b[gid];

}

}

(a)

(b)

(c)
 

Fig. 6. OpenCL-to-C Transformation for MB cluster 
 

The time required by source to source compiler to transform 
different OpenCL kernels into C is shown in Table 2. 
 

Table 2: Execution Time: source to source compiler 
 

Kernel Vector Addition Vector Multiplication Matrix Multiplication Image Convolution

Time in secs 0.3 0.3 0.5 0.7
 

The cross-compiler is used to build a binary on one platform 
called host platform that will be run on another platform called 
target platform. In our case, the host platform is the ARM 
processor and the target platform is MicroBlaze Processor. To 
completely execute the Kernel Execution Flow from OpenCL 
to MB binaries on host platform, both Clang Framework and 
MB cross-compiler are installed on the ARM Processor. MB 
cross-compiler is a little ending GNU compiler toolchain that 
is used to generate MB binaries for AXI based Interconnect 
system. Compiler also uses flags for activating different 
processor features and generating instructions that are 
executed by hardware components present in the processors of 
different clusters such as hardware multiplier, divider, 
Floating Point Unit (FPU) and barrel shifter.  
The Host Execution Flow is used to load the generated MB 
binaries onto the processors of a cluster identified by user and 
to test the execution of OpenCL kernel on it. It is also used to 
clock gate the processors of the cluster not involved in the 
computation of the kernel so that the actual performance and 
energy consumption values can be computed for a particular 
cluster. The host also executes the software daemon that 
monitors the status of the in-situ detector and writes control 
instructions to the DFS (frequency control) and I2C (voltage 
control) units using the AVFS API library. For these 
experiments, the daemon records the temperature, frequency, 
operating voltage, FPGA power and detector status. Running 
the host and the kernel execution flow on the same platform 
enables the execution of the OpenCL kernel directly on 
different clusters under control of the energy proportional 
system to investigate the energy and performance tradeoffs of 
the different benchmarks. 



V. EXPERIMENTAL RESULTS 

To compare the performance and energy consumption of 
different clusters within the architecture, four OpenCL 
benchmarks are executed under varying level of frequencies 
and voltages. These benchmarks are vector addition, vector 
multiplication, matrix multiplication and image convolution. 
The energy proportional system is designed to search for an 
optimal frequency for a given voltage value. In the test 
system, the valid range of voltages extends from 0.7 to 1V. 
The experiment starts by loading data and binaries for a 
particular benchmark to the BRAMs of a cluster specified by 
the user. To configure the voltage and frequency of the 
system, the daemon first configures the voltage regulator for a 
particular voltage and then activates the DFS unit to searches 
for the highest possible frequency for that voltage. Once DFS 
unit detects this point using in-situ detectors and reports to the 
host, the daemon configures the voltage regulator with a 
different voltage from the range of valid voltages and restarts 
the process. It is important to note that the benchmarks are 
running on the selected clusters in parallel continuously to 
emulate the real world implementation of benchmarks on that 
cluster for range of frequencies and voltages.  
Fig. 7 shows the maximum clock frequencies detected by 
daemon for a nominal voltage of 1.0 to a low voltage of 0.7V 
for different clusters using matrix multiplication as a 
benchmark. The figure depicts that there is a linear 
relationship between frequency and voltage and more 
importantly the detector fires for these clusters in the range 
from 165 MHz to 175 MHz that is much higher than the worst 
case frequency of 100 MHz reported by tools after timing 
analysis. This difference encourages the exploration of the 
performance and power margins that could be exploited 
depending on the kernel work load.  
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Fig. 7. Voltage and Frequency analysis for different clusters 

 
Different experiments have been performed to explore the 
possible power and performance gains for different cluster by 
computing to the limit and detecting the optimal power, 
execution time and energy consumption levels for various 
OpenCL benchmarks. For these experiments, vector addition, 
vector multiplication and image convolution benchmarks are 
executed using integer data type whereas matrix 

multiplications is run using floating point data type to measure 
the efficiency of various clusters.  Fig. 8. shows the total 
power, total execution time and energy consumption values by 
computing selected OpenCL benchmarks at nominal voltage 
of 1.0V and minimum operating voltage of 0.7V on the 
different clusters. The data type used in a particular 
benchmark is also mentioned in Fig. 8 within small brackets. 
From a power consumption perspective, as depicted in Fig. 
8.a, it is clear that the Little cluster is more power efficient 
than the rest of the clusters and there is significant power 
reductions possible by operating different clusters at 0.70V as 
compared to operating them at nominal voltage of 1V. It is 
also clear that cluster with more computational capabilities 
consume more power as compared to the rest of the clusters 
mainly due to its higher logical complexity.  
However, execution time analysis illustrates that Medium 
cluster takes less time to run the vector multiplication and 
image convolution benchmarks than the rest of the clusters as 
shown in Fig. 8.b. This is mainly due to the presence of 
hardware multiplier that accelerates the multiplication process 
for these benchmark. In addition, Big Cluster executes matrix 
multiplication much faster as compared to the other clusters 
due to the presence of FPU that speeds up the processing of 
floating point data present in the benchmark. Moreover, in 
case of the vector addition benchmark, execution time is 
almost the same for each cluster. It is also clear that execution 
time can be improved by almost 70% by operating clusters at 
1V as compared to operating them at 0.70V.  
From previous analysis, it is evident that reducing the 
operating voltage/frequency increases the execution time of 
the benchmark and could result in detrimental overall energy 
effect since energy is the product of power and execution 
time. Therefore, care must be taken while selecting operating 
voltage/frequency and the cluster that results in minimum 
energy consumption given a throughput requirement of the 
benchmark. In our analysis of energy utilization, a significant 
reduction in energy consumption is witnessed by running the 
vector multiplication and image convolution benchmarks on 
Medium cluster mainly due to the acceleration of multiply 
function and by executing the matrix multiplication on Big 
Cluster because of the presence of FPU. However, little 
cluster is more energy efficient for running the vector addition 
benchmark since it consumes less power than the rest of the 
clusters as illustrated in Fig. 8.c. It is also clear that energy 
consumption is almost 80% lesser at lower voltage of 0.7V as 
compared to the nominal voltage of 1V.  
The experiments show that the energy proportional system and 
clusters of different computational capabilities enable the 
creation of adaptable system. This system allows OpenCL 
kernel to be run at lower energy consumption levels or at 
higher performance level or on specific cluster depending on 
operating conditions and workload size requirements.  

VI. CONCLUSION 

In this paper, an overlay architecture consisting of clusters of 
soft processor each having different logical and computational 
complexity along with an energy proportional system based on 
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Fig. 8. (a) Power (b) Time (c) Energy analysis for different Benchmarks on various Clusters 
 

 

frequency and voltage scaling has been designed. A source to 
source compiler has been proposed to run OpenCL kernel 
directly as a software on our architecture. Initial experimental 
result shows that our architecture provides the ability of 
selecting the operating voltage/frequency and a cluster for a 
particular benchmark in accordance with its kernel workload, 
performance and energy consumption requirements. Future 
work involves exploring more complex benchmarks and 
developing a scheduling algorithm that will enable the daemon 
running on the host processor to automatically assign points of 
voltage and frequency to the overlay architecture according to 
performance and energy consumption requirements of the 
benchmarks.  
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