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a b s t r a c t

The application of radar quantitative precipitation estimation (QPE) to hydrology and water quality mod-
els can be preferred to interpolated rainfall point measurements because of the wide coverage that radars
can provide, together with a good spatio-temporal resolutions. Nonetheless, it is often limited by the
proneness of radar QPE to a multitude of errors. Although radar errors have been widely studied and tech-
niques have been developed to correct most of them, residual errors are still intrinsic in radar QPE. An
estimation of uncertainty of radar QPE and an assessment of uncertainty propagation in modelling appli-
cations is important to quantify the relative importance of the uncertainty associated to radar rainfall
input in the overall modelling uncertainty. A suitable tool for this purpose is the generation of radar rain-
fall ensembles. An ensemble is the representation of the rainfall field and its uncertainty through a col-
lection of possible alternative rainfall fields, produced according to the observed errors, their spatial
characteristics, and their probability distribution. The errors are derived from a comparison between
radar QPE and ground point measurements. The novelty of the proposed ensemble generator is that it
is based on a geostatistical approach that assures a fast and robust generation of synthetic error fields,
based on the time-variant characteristics of errors. The method is developed to meet the requirement
of operational applications to large datasets. The method is applied to a case study in Northern
England, using the UK Met Office NIMROD radar composites at 1 km resolution and at 1 h accumulation
on an area of 180 km by 180 km.
The errors are estimated using a network of 199 tipping bucket rain gauges from the Environment

Agency. 183 of the rain gauges are used for the error modelling, while 16 are kept apart for validation.
The validation is done by comparing the radar rainfall ensemble with the values recorded by the valida-
tion rain gauges. The validated ensemble is then tested on a hydrological case study, to show the advan-
tage of probabilistic rainfall for uncertainty propagation. The ensemble spread only partially captures the
mismatch between the modelled and the observed flow. The residual uncertainty can be attributed to
other sources of uncertainty, in particular to model structural uncertainty, parameter identification
uncertainty, uncertainty in other inputs, and uncertainty in the observed flow.
� 2017 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Many hydrological, water quality, and integrated catchment
models use rainfall information as primary input. In several appli-
cations, weather radars are a precious source of rainfall data,
thanks to their distributed nature, the wide coverage, and the high
spatial and temporal resolution. Nevertheless, there are several
factors that could introduce errors. First of all, radar quantitative
precipitation estimation (QPE) relies on a conversion between
the measured reflectivity Z in mm6/m3 and the physical quantity,

the rainfall rate R in mm/h. The relationship is dependent on the
rainfall nature, in particular on the drop size distribution (DSD)
(Doviak, 1983; Marshall et al., 1947). The adopted Z-R relationships
are often calibrated against spatial and temporal average condi-
tions of liquid precipitation, but cannot be tailored to each specific
situation and usually fail to correctly estimate extremes or the
presence of hail or snow (Austin, 1987; Hasan et al., 2014; Seed
et al., 2007). Polarimetric radars can improve the retrieval of the
physical quantity R using other polarimetric parameters (Bringi
et al., 2011), but often the radar networks are not updated to oper-
ationally use polarimetric radars. Other sources of uncertainty are
due to the radar beam propagation that can be partially or totally
blocked by obstacles (Friedrich et al., 2007; Joss and Lee, 1995;
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Westrick et al., 1999), can be deviated by anomalous atmospheric
conditions (Moszkowicz et al., 1994; Rico-Ramirez and Cluckie,
2008; Steiner and Smith, 2002), can be attenuated due to heavy
precipitation (Atlas and Banks, 1951; Delrieu et al., 2000;
Meneghini, 1978; Uijlenhoet and Berne, 2008), and may be subject
to beam broadening with range, beam overshooting precipitation,
and earth curvature effects, that increase the radar beam height
and reduce the resolution at longer ranges (Ge et al., 2010;
Kitchen and Jackson, 1993). Ground clutter is another source of
error, producing disturbing echoes (Hubbert et al., 2009a,b; Islam
et al., 2012). The rainfall rate estimates are often subject to vari-
ability of the vertical reflectivity profile (VRP) and to phenomena
like the bright band effects, due to the higher reflectivity of the
layer in which snow melts into rain (Austin and Bernis, 1950;
Fabry and Zawadzki, 1995; Kirstetter et al., 2013; Qi et al., 2013;
Rico-Ramirez and Cluckie, 2007; Smith, 1986; Zhang and Qi,
2010). Errors are also introduced by the spatial and temporal sam-
pling, in the projection from polar to Cartesian coordinates, and in
the averaging operations necessary to obtain the final corrected
products (Anagnostou and Krajewski, 1999; Fabry et al., 1994).
The list of error sources is long and for an extensive review, the
reader is redirected to Villarini and Krajewski (2010) and McKee
and Binns (2015). Although many techniques exist to partially cor-
rect different types of errors, a residual uncertainty inevitably
affects radar QPE. In processed radar products the residual uncer-
tainty is due to a mixed combination of the residual uncorrected
errors and the processing errors and approximations. When radar
QPE is used for hydrological applications, the estimation of its
uncertainty and the assessment of uncertainty propagation in
hydrological models is essential (Berne and Krajewski, 2013;
Pappenberger and Beven, 2006; Schröter et al., 2011). An effective
method to model uncertainty in radar QPE for hydrological model
applications is the use of radar ensembles, which can easily be
applied to hydrological models to assess residual error propagation
in the model output (AghaKouchak et al., 2010a,b; Germann et al.,
2009; Villarini et al., 2009). This approach is based on estimating
the residual errors in radar QPE as a comparison with reference
ground measurements, like those provided by rain gauges, used
as an approximation of true rainfall. The observed radar QPE resid-
ual errors are then used to build an error model describing the sta-
tistical characteristics of the errors; knowing the statistical
characterisation of the radar QPE residual errors, a large number
of alternative possible realisations of the observed rainfall fields,
constituting an ensemble, are synthesised. The uncertainty propa-
gation through models can be estimated by observing the resulting
spread after feeding a model with multiple ensemble members.

Several methods for radar ensemble generation are proposed in
the literature, of which many are based on the computation of the
error covariance matrix (Dai et al., 2014; Germann et al., 2009;
Kirstetter et al., 2015; Villarini et al., 2009, 2014). The covariance
matrix approach is a powerful and well-tested method that uses
the covariance matrix decomposition to condition uncorrelated
random normal deviates, in order to simulate alternative error
components for the ensemble. A well-formulated example is the
REAL generator proposed by Germann et al. (2009). However, it
has some limitations when the number of rain gauges is large,
because the covariance matrix calculation becomes computation-
ally demanding and the decomposition unstable. In addition,
ensemble error components are generated only at ground mea-
surement points, needing subsequent interpolation that alters
the spatial structure and introduces significant smoothing prob-
lems. Finally, in the calculation of the covariance matrix the spatial
non-stationarity of the errors is captured assuming temporal sta-
tionarity. In other words, although the covariance approach repro-
duces the covariances between the errors at each rain gauge
location, it assumes temporal stationarity of errors. Radar errors

are non-stationary both in space and in time, but with a limited
number of observations it is necessary to consider one of the two
dimensions stationary in order to have enough observation points
to calculate statistics. This paper explores the possibility to model
radar errors that are non-stationary in time and stationary in
space. The variability in space observed at ground measurement
points is partially reproduced using conditional simulations for
the error component generation.

This work proposes an ensemble generation approach aiming at
reducing the computational load, improving stability, eliminating
the need for error component interpolation, and producing time-
variant residual error characterisation. This approach allows us to
better capture time-dependent characteristics of residual errors,
due for example to temporary conditions like the presence of
bright band, hail or attenuation. The spatial characterisation of
the residual errors is based on the use of variograms fitted with
parametric models, which have the advantage of using only a lim-
ited number of variogram parameters (i.e. range, sill, and nugget),
for full description of the residual errors and of being estimated
with shorter time series. In comparison with the covariance matrix
approach, the variogram approach constitutes a compromise, by
exchanging temporal stationarity of the residual errors with spatial
stationarity. In fact, although this method is able to reproduce the
variability in error statistics over time, it considers errors station-
ary in space in the study area. The generation of alternative error
components for the ensemble members is accomplished with con-
ditional simulations following the methodology by Delhomme
(1979). Error measurements are obtained using quality checked
rain gauge data as an approximation of true rainfall. In addition,
the problem of mean and variance inflation due to the adoption
of a Gaussian error model in the logarithmic domain is addressed
and a linear correction is introduced. As a case study, a large area
of 180 km by 180 km in the north of England is used. The ensem-
bles generated with the proposed method are validated on an inde-
pendent set of rain gauges and tested on three different basins of
different size using the Probability Distributed hydrological Model
(PDM).

2. Datasets and case study

The case study presented in this work is a large portion of
northern England, 180 km by 180 kmwide. It presents a diversified
orography, hillier in the north-west side, and flatter in the south-
east, and includes some rural areas as well as some urban ones.

The radar ensemble generator is tested using hourly radar com-
posites derived from the UK Met Office radar network, at 5-min
and 1-km resolutions (Met Office, 2003). The product distributed
by the UK Met Office has already been processed and corrected
for (Harrison et al., 2000):

� Hardware or transmission corruption and noise
� Ground clutter and anomalous propagation
� Blockages
� Attenuation
� VRP adjustment and bright band correction
� Conversion from Z to R
� Conversion from polar to Cartesian projection
� Composition of different radar data

Furthermore, the data are adjusted against rain gauges, using an
hourly mean-area adjustment-factor (Harrison et al., 2000). How-
ever, the original 5-min resolution radar data had some missing
time periods, and therefore the missing scans were interpolated
by advecting the rainfall radar field with a nowcasting model,
and the 5-min radar data were accumulated at hourly time steps.
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The study area is covered by three C-band radars (Hameldon Hill,
Ingham, and High Moorsley) as shown in Fig. 1. It must be consid-
ered though, that the radar in High Moorsley was installed in 2008,
therefore it did not contribute to the radar composites used for the
case study, between 2007 and 2008.

The area is also covered by a network of 229 tipping bucket rain
gauges from the Environment Agency (EA) with a 0.2 mm resolu-
tion. The rain gauge data are provided by the EA at 15-min time
steps and then accumulated to one hour. A quality check is per-
formed on the available stations and only 199 of these rain gauges
are considered, excluding the ones presenting anomalies (e.g.
duplication of time series, prolonged dry spells not agreeing with
neighbouring rain gauges, missing data for considerable portions
of the time series or for the entire time series, frequent inconsis-
tency of measurements with neighbouring rain gauges and corre-
sponding radar data). The 199 rain gauges are split in two
datasets. A subset of 16 rain gauges are separated for validation,
with a random selection conditioned to maintain a distance of at
least 30 km between the gauges. The remaining 183 are used to
model the radar errors. Both datasets are presented in Fig. 1.

The generated ensembles are tested using a hydrological model.
Inside the 180 km by 180 km considered area, three hydrological
basins of different sizes and shapes are selected: the upper part
of the Ribble River (446 km2), the upper part of the Lune
(194 km2) and the Rawthey (219 km2). A Probability Distributed
Model (PDM) (Moore, 2007) is set up to simulate the rainfall-
runoff processes in each basin. The PDM is a lumped rainfall-
runoff model, characterised by 14 parameters. As model input,
basin area, temperature, and evapotranspiration are used, besides
precipitation. The hourly temperature is taken from the UK Met
Office Integrated Data Archive System (MIDAS) directly (Met
Office, 2012). The evapotranspiration is calculated through the
Penman-Monteith equation (Allen et al., 1998; Monteith, 1965)
using hourly climatic variables (Total solar radiation, Net Solar
Radiation, Wet Temperature, Dry Temperature, Wind Speed, Wind
Direction, Rainfall, Pressure) from the MIDAS database (Met Office,
2012). Both temperature and evapotranspiration are averaged on
the study area and considered constant in space. The flow data

for the three basins, used for the comparison, are provided by
the UK Centre for Ecology and Hydrology (CEH) through the
National River Flow Archive (NRFA, http://nrfa.ceh.ac.uk/).

For the case study, a one-year radar rainfall ensemble is gener-
ated, from the 1st October 2007 at 00:00 to the 30th September
2008 at 23:00. The hydrological model calibration is performed
on two years, from 1st October 2008 00:00 to 30th September
2010 23:00, in order to have the same seasonal reference; for the
calibration, rain gauge data are used from the EA dataset. Fig. 1
shows the study area with the three catchments, the rain gauges,
and the radar coverage area.

3. Methods

3.1. Error model

Radar residual errors can be modelled in different ways. Usu-
ally, it is recognised that radar residual errors have a bias compo-
nent and a random component (Ciach et al., 2007). The random
component is often modelled as multiplicative (Ciach et al.,
2007; Dai et al., 2014; Villarini and Krajewski, 2009), but some-
times also an additive form is used (Kirstetter et al., 2010).

The model adopted in this work is additive in the logarithmic
domain, thus it is multiplicative in the original domain:

10 logðPÞ ¼ 10 logðRÞ þ d ð1Þ
where P is the true rainfall, R is the radar QPE, d is the residual error
that is subsequently modelled to contain a bias correction as well,
and the log operation refers to a logarithm with base 10. The model
is consistent with previous research, in particular with the model
adopted in the REAL method (Germann et al., 2009). The advantage
of such a form is that the residual errors have an almost Gaussian
probability distribution (Fig. 2), which is characterised only by the
mean lðdÞ, the standard deviation rðdÞ, and the spatial covariance.
In the phase of error estimation, the true rainfall P is approximated
with rain gauge measurements PG, and the residual errors d are
defined as follows:

Fig. 1. The figure shows the study area, the radar grid extent, the radar positions, the rain gauges used for modelling, the rain gauges used for validation, and the three study
catchments. The validation rain gauges are numbered accordingly to the results in Figs. 6 and 7.
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d ¼ 10logðPGÞ � 10logðRÞ ð2Þ

lðdÞ ¼ Efdg ð3Þ

rðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efðd� lðdÞÞ2g

q
ð4Þ

where E{} is mathematical expectation, approximated with the
mean error.

Fig. 2 also reports the values of Skewness, Kurtosis (Joanes and
Gill, 1998), and approximation of negentropy (Hyvärinen and Oja,
2000), as indicators of Gaussianity. All of the indicators should tend
to zero for a Gaussian distribution.

The residual errors must also be defined in terms of correlation
characteristics. Although the temporal autocorrelation of errors
may not be always negligible at hourly time steps (Kirstetter
et al., 2010), previously published work showed that in the pre-
sented study area it is not significant (see Fig. 7 in Rico-Ramirez
et al., 2015), therefore the attention in this work is focused on
the spatial correlation structure. Often, the spatial correlation char-
acteristics are depicted with a variance-covariance matrix C,
describing the covariance between each pair dðxiÞ and dðxjÞ
(Germann et al., 2009):

CðdðxiÞ; dðxjÞÞ ¼ EfðdðxiÞ � liÞðdðxjÞ � ljÞg
i; j ¼ 1; . . . ;N ð5Þ
where the expected value is in practice calculated on time series.
Parameters li and lj, short notation for lðdðxiÞÞ and lðdðxjÞÞ, are
the mean of the residual error values dðxiÞ and dðxjÞ, also calculated
from the time series. The variance-covariance matrix may become
unstable when the number of measuring points (N) is large. In fact,
it must be positive-definite, which an empirical variance-covariance
matrix might not be. Moreover, its inversion is computationally
demanding for large N and may lead to numerical instabilities when
the matrix is near-singular. It is also not suitable for time-variant
calculation of error characteristics, because it calculates the
expected values on time series, assuming stationarity of the charac-
teristics in time (Le Ravalec et al., 2000). In reality radar errors are
neither stationary in time nor space, because they are dependent on
the rainfall rate and on temporary conditions like attenuation or
bright band phenomena, variability of the Z-R relationship due,
for example, to convective storms, drizzle, snow, or hail, and so on.

This work instead represents the spatial correlation characteris-
tics of the residual errors through variograms. Variograms describe

the variance as a function of the separation distance (d) (Cressie,
1993):

cðdÞ ¼ 1
2
EfðdðxÞ � dðxþ dÞÞ2g ð6Þ

An empirical variogram is calculated from the observations,
binning the observation point distances in regular intervals (in
the present case we use 1 km bins). It requires an assumption of
spatial intrinsic stationarity of the field (Cressie, 1993). Empirical
variograms are then fit with theoretical variogram functions. In
the examined case, an exponential function is chosen, which
describes the spatial characteristics of the residual errors through
three parameters, the range parameter r, the sill s (absolute sill),
and the nugget c0. The exponential form has been selected because
it fits well different variograms, empirically more flexibly than the
Gaussian or the spherical shape that were tested as well for this
case. The fitting is performed with a weighted least square method

that uses a weight in the form No=d
2, where No is the number of

available observations per distance bin and d is the distance
(Cressie, 1985; Zhang and Eijkeren, 1995). The exponential model
used is:

ĉðdÞ ¼ c0 þ ðs� c0Þ 1� exp �3d
r

� �� �
ð7Þ

Variograms have the advantage of being fast to calculate and
easy to store. This allows for the calculation of time-variant resid-
ual error characteristics, i.e. at each one hour time step the errors
are characterised by calculating a variogram for that time step. Ide-
ally, the shorter the considered time, the better temporary phe-
nomena influencing the error characteristics can be captured. At
the same time, both radar and rain gauge time series are charac-
terised by a large number of zeros or missing values, and often a
sufficiently large number of observation points for variogram cal-
culation is not available at one hour time steps. Therefore, for each
time step, the errors observed at precedent time steps are consid-
ered too to calculate a pooled variogram. In this work, windows of
3, 6, 9, and 12 h are tested progressively to meet the stability con-
ditions (defined later in this section) with the smallest possible
time window; if the stability conditions are not met even using a
12-h window, average conditions are considered, and a pooled var-
iogram is calculated using all available data, by pairing measure-
ments coincident in time for multiple time steps. This means
that the time window considered for variogram calculation varies

Fig. 2. Empirical probability distributions of radar errors using three different error models. Skewness, kurtosis, and approximation of negentropy are three indicators of a
dataset Gaussianity. All of them tend to zero for a Gaussian distribution.
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from time step to time step. The mean and the standard deviation
are calculated in the same time window and are specific for each
time step. In the upper part of Fig. 3 the variogram obtained from
the average conditions (general variogram) is shown together with
three other examples of variograms calculated at specific time
steps.

In order to understand which dimension has the most variabil-
ity, the coefficient of variation is calculated for both mean and
standard deviation. As reported in Table 1, the absolute value of
the coefficient of variation calculated over time is slightly higher
for the mean, and clearly higher for the standard deviation. This
means that assuming stationarity over space introduces a lower
error than assuming stationarity over time.

Furthermore, the error components are generated in a condi-
tional way, as will be explained in Section 3.2, so that the observed
errors are reproduced and that all other simulated error points are
conditioned on the observed ones. Although the mean and variance
adjustment presented in Section 3.3 partially alters the reproduc-

tion of the observed errors, the geo-statistical approach still con-
tributes to reproduce the spatial variability of errors.

The approach adopted here uses only one, omnidirectional var-
iogram for each time step, assuming isotropy of residual errors.
This hypothesis is not necessarily true and methods to include ani-
sotropy in the variogram calculation exist and could be considered.
However, considering the limited time window used for the resid-
ual error characteristics estimation in this time-variant applica-
tion, it would be difficult to have enough measuring points to
reliably estimate anisotropy as well.

Fig. 3. The general average variogram (a) is compared with three example variograms observed at different time steps (b, c, and d). Examples of simulated error components
in the log domain (e, f, g, and h) are produced using respectively the variograms a, b, c, and d.

Table 1
Coefficient of variation (unitless) for the mean and the variance, calculated over space
and over time.

CV over space CV over time

lðdÞ 8.272 �8.689
rðdÞ 0.090 0.336
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As mentioned before, rainfall data are characterised by a large
number of zeros or missing values that may impede the calculation
of the variograms. When this occurs, backup values for mean,
standard deviation and variogram sill, range, and nugget are used,
calculated on all available data (in this case four years, from 2007
to 2010). In such a situation, the time-variant characteristics of the
errors are not captured and the variogram represents the average
conditions. However, this does not usually represent a problem,
because it happens predominantly in conditions of no rain, very
light and sparse rain, or at the beginning of a rainfall event, when
not enough data are recorded yet. Although in these cases the error
fields may not be accurately reproduced, the presence of zeros
and the use of a multiplicative error model allow to produce
realistic rainfall fields close to zero as measured. When significant
rain events occur, there are soon enough observation points to
calculate representative statistics and variograms. In order to
establish when a variogram is properly fit, the following rules were
set up:

1. There are at least 100 observation pairs to calculate it. Although
a rule of thumb is to have at least 30 points per bin (Journel and
Huijbregts, 1978), this is not realistic in the presented time-
variant variogram fitting and would result in rejecting many
variograms that could still provide useful information on the
error characteristics. We are not aware of any previous study
on the optimal number of observation pairs in a time-variant
variogram calculation case, and therefore the number is
selected as a compromise between the need for accepting as
many variograms as possible, and the stability of the accepted
variograms. Therefore, we found that at least 100 observations
are sufficient to calculate the specific variogram, and also the
mean and standard deviation of the observed errors.

2. The nugget is smaller than the sill (to avoid variograms with
inconsistent physical explanation). Having a nugget larger than
the sill rarely happens (in the case study around 3% of rejected
variograms was rejected because of this rule). Nevertheless,
when errors are affected by high levels of noise and not many
points are available, the fit could result in a non-realistic vari-
ogram with the nugget larger than the sill.

If these conditions are not met in any of the tested time win-
dows, the variogram parameters, the error mean lðdÞ, and the
error standard deviation rðdÞ for the time window considered
are substituted with the average ones.

Once the mean, standard deviation, and variogram parameters
are established for each time step in which the radar ensembles
have to be generated a given number of alternative error fields
with the measured characteristics are then produced for each time
step. The error components are then added to the original radar
field (in the log domain), one by one, to generate the ensemble
members.

3.2. Error component and ensemble generation

In order to generate error components with the desired mean,
variance and variogram characteristics, conditional simulations
are used. The method presented by Delhomme (1979) is selected,
due to its calculation speed and its numerical stability, which make
it suitable for unsupervised applications to long time series. The
method is based on the following steps:

(a) For each time step t, an arbitrary number K of non-
conditional simulations ~dNC;iðt; xÞ are generated, where
i ¼ 1; . . . ;K . The method used here is the sequential simula-
tion implemented in the gstat R package (Pebesma, 2004).

(b) The observed errors at time t are interpolated with kriging,
obtaining the interpolated fields dkðt; xÞ.

(c) The values of the non-conditional simulations ~dNC;iðt; xÞ at
observation locations are kriged to obtain the fields
dkNC;i ðt; xÞ.

(d) The conditional simulations ~diðt; xÞ are obtained as follows:

~diðt; xÞ ¼ dkðt; xÞ � ~dNC;iðt; xÞ þ dkNC;i ðt; xÞ ð8Þ
Due to the logarithmic formulation, errors cannot be calculated

when the rain gauges do not record rainfall. If no rain gauge
records rainfall, unconditional simulations are used.

Important features of the generated fields are that they are
Gaussian (in the logarithmic domain), are characterised using the
observed variogram, and are conditioned on the observed errors.
In addition, compared with the fields generated through the REAL
method or other methods using the covariance matrix conditioning
for spatial correlation modelling, the generated fields are already
gridded fields and do not require any interpolation that tends to
smooth the spatial features of the error components. In fact, the
interpolation uses the kriging mean, i.e. the most probable value
for each pixel. Instead, in the methodology applied here, at each
pixel is assigned a different possible realisation for each ensemble
member, in agreement with the conditional distribution. In this
application K ¼ 100 error components are generated for each time
step, to produce 100 ensemble members. The number is a compro-
mise between the statistical representativeness of the sample and
the feasibility of producing them for one-year long hourly time ser-
ies (Rico-Ramirez et al., 2015).

Following the error model, the ith simulated error field ~diðt; xÞ
can be used to produce the ith simulated QPE ~Piðt; xÞ for each time
step t:

10 logð~Piðt; xÞÞ ¼ 10 logðRðt; xÞÞ þ ~diðt; xÞ ð9Þ
Since the logarithm of the radar field Rðt; xÞ cannot be calculated

when a pixel is zero, pixels that do not record rainfall are not used
and the zero values are re-introduced in the ensemble members in
a second moment, after the adjustment presented in Section 3.3.

3.3. Variance and mean adjustment

The structure of the model is such that the new error members
are Gaussian in the logarithmic domain, but the back-
transformation to the final field ~P gives a different weight to posi-
tive and negative deviations, shifting the overall mean toward
higher values and increasing the variance. The bias introduced by
a logarithmic back-transformation (Erdin et al., 2012) is not dis-
cussed by Germann et al. (2009), when the same error model is
applied to the REAL ensemble generator. In addition, the new sim-
ulated error components are added to the radar field, which
already contains errors, inflating the overall variance (Pegram
et al., 2011). In order to have rainfall fields consistent with the
observed approximation of true rainfall from the rain gauges, the
mean and the variance need to be re-adjusted. In this work a linear
adjustment is used at each time step t to re-adjust mean and vari-
ance of the generated ensemble members, without modifying the
spatial characteristics so carefully reproduced:

~Pnew;i ¼ rG

r~Porig

ð~Porig;i �m~Porig
Þ þmG ð10Þ

where ~Pnew;i is the new ith ensemble member after correction,
~Porig;i is the original ith ensemble member, r~Porig

is the standard devi-

ation of all original ensemble members across all the rain gauge
measuring locations, m~Porig

is the average of all the original ensem-
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ble members at the rain gauge measuring locations, rG is the stan-
dard deviation of the rain gauge measurements, mG is the mean of
the rain gauge measurements.

It must be noted that the adjustment is not forcing each ensem-
ble member to reproduce the mean of the rain gauge values.
Instead, the adjustment forces the overall ensemble mean to tend
to the true value, represented by the rain gauge measurements.
This is justified by the definition of ensemble as a representation
of the rainfall uncertainty due to the radar, therefore it should con-
vey how much from the true value the radar data can deviate,
where the true value is represented by the ensemble mean and
the deviations by the single ensemble members. Similarly, the
adjustment does not force the ensemble standard deviation at each
point, but it corrects the spatial standard deviation of each ensem-
ble member, in order to re-adjust the exponential stretch and avoid
unrealistically high intensity values. The adopted solution is an
approximation, but it is effective in obtaining possible realistic
alternative rainfall fields.

3.4. Rain gauge validation

Validation is performed comparing the ensemble to the
observed values by an independent network of rain gauges.
Although the true rainfall is not known, rain gauges are used in this
work as an approximation of it. Therefore a comparison between
the set of 16 gauges kept out of the modelling dataset and the val-
ues of the ensembles in the rain gauge measuring locations can
provide an assessment of the ensemble quality. The idea is to show
that the ensemble encompasses the observations at observed
points. However, the comparison should be done bearing in mind
that the presented model includes some unavoidable approxima-
tions, that there is a significant difference in areal representative-
ness, being the ensembles at 1 km resolution and the rain gauges
point measurements, and that rain gauge measurements contain
uncertainty as well.

The rain gauges have a resolution of 0.2 mm. In order to make
the comparison fair, ensemble member pixels below 0.2 mm are
approximated to either 0.2 mm when the value is above 0.1 mm,
or to 0 mm when the value is below 0.1 mm.

The validation is performed with three indicators:

1. The mean ensemble bias is calculated and compared to the
mean radar bias.

2. Rank histograms (Hamill, 2001) are used to prove that the
ensemble has a correct distribution.

3. A Goodness-Of-Fit estimator (GOF) is defined to check how
often the ensemble captures the observed rainfall.

3.5. Hydrological application

The aim of expressing radar rainfall uncertainty through ensem-
bles is to assess the uncertainty propagation in models. For this
reason, the application of the generated ensemble to a hydrological
model is an interesting test to assess the advantages in using an
ensemble (Dai et al., 2015). Besides the rainfall uncertainty, the
output of a hydrological model is affected by additional sources
of uncertainty, like model structure, parameter uncertainty, other
input uncertainty, lumping of parameters and inputs, or model
numerical approximations. In addition, the measured flow also
has an associated uncertainty. It is expected, therefore, that the
radar rainfall uncertainty represented by the ensemble spread only
partially explains the discrepancy between the modelled flow and
the observed flow, showing the relative importance of radar rain-
fall uncertainty in the overall model uncertainty.

For this application, three basins have been selected, the upper
Lune, the upper Ribble, and the Rawthey, as presented in Section 2

and Fig. 1, and for each a PDMmodel was set up. The PDM has been
developed by the UK Centre for Ecology and Hydrology (CEH) and
it is used operationally by the Environment Agency in the National
Flood Forecasting System. It is a very flexible lumped rainfall-
runoff model, easily applicable to different catchments, and does
not require a detailed description of the catchment characteristics
(Moore, 2007). The choice of a simple lumped model avoids the
introduction of excessive additional uncertainty due to a large
set of parameters and input data. Nevertheless, this approach
requires the averaging of each ensemble member over the catch-
ment areas. In order to observe the averaging effect on the target
area, the three chosen basins are selected to have different size.
PDM requires 14 parameters, of which one, the exponent for the
groundwater storage momentum equation, can be assumed fixed
according to Smith (1977). Therefore 13 parameters need calibra-
tion. The PDM offers three possibilities for the recharge function:
standard, demand-based and based on a splitting coefficient. Here
the standard solution is adopted (Moore, 2007). The three PDM
models are calibrated with the Environment Agency rain gauge
data, from 1st October 2008 00:00 to 30th September 2010
23:00 (two years). For the calibration optimisation, both a Monte
Carlo (MC) approach (Metropolis and Ulam, 1949) with 10,000
samples from the parameter space, where all the parameters are
given a uniform distribution in plausible intervals, and a shuffled
complex evolution method, developed at The University of Arizona
(SCE-UA) (Duan et al., 1992, 1994) were tested. The SCE-UA out-
performed the MC, in terms of Nash Sutcliffe Efficiency (NSE) coef-
ficient, in terms of result stability, and in terms of speed, therefore
it was selected for calibration (also according to van Griensven and
Meixner (2007)). In particular, although the NSE improves by only
0.01–0.03 [–] using the SCE-UA, the algorithm takes around one
third of the time necessary to complete compared to the MC cali-
bration and always converges on the same parameter estimate,
while the MC returns a different estimate each time.

4. Results

4.1. Error components

Error components are generated with conditional simulations
for each time step. Table 2 shows howmany times the general var-
iogramwas used, as opposed to variograms calculated in time win-
dows of 3, 6, 9 or 12 h, according to the methodology described in
Section 3.1. The numbers show that more than half of the times,
the variogram cannot be calculated. This figure is consistent with
the fact that, according to the rain gauge measurements, 22.4% of
the hours during the study period are completely dry and that in
54.9% of the times an average rainfall lower than 0.02 mm/h is
recorded. Another important outcome is that the 3-h window is
sufficient to calculate a variogram in around 65% of cases and that
increasing the time window helps only in a limited number of
cases.

Fig. 3 shows four different examples of error components (e, f, g,
and h) generated using, respectively, the general variogram (a), i.e.
the one calculated with all available time series, and variograms
specific for three different time steps (b, c, and d). The use of speci-
fic variograms has an evident effect on the error components. As
can be observed, the range, which is large in (c), medium in (a)
and (b), and low in (c), controls the granularity of the spatial vari-
ation, while the nugget (present in a and c, but not in b and d) con-
trols the speckle. The use of an exponential variogram function
allows us to achieve a fit without supervision in most of the cases
when sufficient observations are available. This model can some-
times derive range and sill parameters unrealistically high if the
empirical variogram lays on a straight line like in (c), because the
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physical range is out of the observation distances and the trend is
extrapolated. Nevertheless, similar situations do not affect the
error component generation because the variogram model still
reproduces the observed characteristics in the observed and mod-
elled domain.

4.2. Ensembles

Fig. 4 compares a radar rainfall field, a kriging interpolated rain
gauge rainfall field, an ensemble member before mean and vari-
ance adjustment, and after adjustment. All maps refer to the same
time step (01-12-2008 10:00). The rain gauge position and values
are superimposed. The ensemble member before adjustment
shows anomalously high values (e.g. in the top left corner in
Fig. 4c). The re-adjustment corrects the bias of the whole ensem-
ble, without forcing each member to have the rain gauge specific
mean and variance.

A sample of resulting ensemble members, after adjustment, is
presented in Fig. 5. As can be observed, the ensemble members
are more speckled than the corresponding rainfall field. This is as
expected, because ensemble members have the spatial variability
observed through rain gauge – radar comparison. If the differences
present a high spatial variability at short distances, corresponding
to a short range and/or to a nugget effect in the corresponding var-
iogram, this effect appears in the ensemble, but not in the radar

image, that has a smoother behaviour. Although we do not have
a sufficient instrumentation density to observe the short scale vari-
ability of rainfall, the granularity can be a sign of high spatial vari-
ability of errors, as observed by the available data. The average of
all the ensemble members will tend to a bias correction of the
radar. For this reason, also the intermittency (rain-no rain) features
may be slightly different than the ones in the radar image, and
remarkably better than the non-corrected version, where the expo-
nential stretch results in larger areas of no rain.

4.3. Rain gauge validation

The validation method is based on the comparison between the
ensemble and measurements from an independent set of 16 tip-
ping bucket rain gauges that were kept out from the modelling
phase. The rainfall rate values of the ensemble members are com-
pared with the rain gauge measurements at rain gauge positions
for the 16 gauges in the validation set. As an example, the compar-
ison between the ensemble spread and the rainfall rate measured
by the rain gauges is reported in Fig. 6 for an example event in
September 2008.

The variability expressed by the ensemble captures a large part
of the differences between the radar and rain gauge measure-
ments. Rainfall intensity peaks in particular can have a large vari-
ability, as compared to deterministic predictions, due to the

Table 2
Percentage of adoption of the general conditions or specific time windows in the variogram, mean and standard deviation calculation.

General variogram 3-h window 6-h window 9-h window 12-h window

Total 52.1% 31.0% 8.0% 5.0% 3.9%
Relative – 64.8% 16.9% 10.3% 8.0%

Fig. 4. Radar rainfall, rain gauge interpolation, and example ensemble members before and after correction at time 2008-01-01 10:00. Rain gauge measurements and
positions are superimposed.
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multiplicative nature of errors. For peaks, the ensemble spread is
wider, because the errors are proportional to the rain rate. The
ensemble is therefore able to predict the observed values where
it would have been underestimated (e.g. rain gauge 2) or overesti-
mated (e.g. rain gauge 12) by the deterministic values.

Looking at the discrepancies between the ensemble and the
measured values, it must be considered that the ensemble only
represents radar sources of uncertainty and does not include the
uncertainty due to the rain gauge measurements or to the differ-
ence in areal representativeness. This is particularly evident where
the discrepancies are often explainable by typical rain gauge
errors: the tipping bucket rain gauges have a non-continuous
behaviour, showing steps in the values or tipping delays (e.g. rain
gauge 8), especially for low rainfall rates.

Besides external uncertainty factors, some mismatch is
unavoidable with the presented method, because of the error char-
acterisation and the geostatistical modelling, which are based on a
limited number of observations, compared to the simulation
points, and some unavoidable approximations and assumptions.

To obtain a quantitative measure of the match between the
radar ensemble and the rain gauge measurements, we use three
estimators:

(1) The mean bias of the ensemble mean is compared to the
mean bias of the radar. The results are reported in Table 3.

(2) Rank histograms are produced for the 16 rain gauges. A rank
histogram shows how often the observation falls in each of
the ensemble quantiles.

(3) A goodness of fit estimator (GOF) is calculated as follow:

GOF ¼ 1� q1 þ q100

ntot
ð11Þ

where ntot is the total number of time steps, q1 is the number of
time steps in which the observation falls in the first percentile
and q100 is the number of time steps in which the observation falls
in the last percentile.

Table 3 reports the bias between the mean of the ensemble and
the rain gauge measurements, compared to the bias between the
radar rainfall estimates and the rain gauge values. The bias is sen-
sibly reduced using the ensemble mean.

The rank histograms are reported in Fig. 7 for all the 16 valida-
tion rain gauges. Some rank histograms are mostly flat, which is a
sign of correct ensemble distribution. In some others, the last bar of
the histogram is higher, showing that the ensemble tends to
underestimate the rainfall rate as recorded by the corresponding

Fig. 5. Nine ensemble members from the same date and time of Fig. 4 (2008-01-01 10:00) are compared.
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Fig. 6. The radar rainfall ensemble is compared to the rain gauge measurements, and to the radar measurements, for an example event in September 2008.

Table 3
Mean ensemble bias as opposed to mean radar bias for the 16 validation rain gauges [mm/h].

Rain gauge Ensemble bias Radar bias Rain gauge Ensemble bias Radar bias

1 �0.022 �0.172 9 0.013 �0.102
2 �0.015 �0.151 10 0.070 �0.141
3 0.002 �0.107 11 0.017 �0.222
4 �0.015 �0.130 12 0.019 �0.102
5 0.010 �0.166 13 <0.001 �0.073
6 �0.101 �0.248 14 <0.001 �0.086
7 �0.005 �0.152 15 �0.071 �0.153
8 �0.026 �0.104 16 0.018 �0.080
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rain gauges in some situations. Nevertheless, the value of the last
bar is never doubled compared to the other bars, which means
that, with eleven bins, one out of eleven measurement points is
incorrectly underestimated. In most of the histograms, the value
is even lower. This mismatch is in line with the mismatch observed
in Fig. 6 and can be due to rain gauge errors, to differences in areal
representativeness, or to model approximations.

Table 4 shows the goodness of fit estimator values for the 16
rain gauges, which represent how often the ensemble covers the
observed rain rate.

Considering the mentioned residual sources of uncertainty, the
agreement of the ensemble with the rain gauges is positive.

Fig. 7. Rank histograms are reported for the ensemble at validation rain gauge locations. The rank histograms show in which quantile of the ensemble the observation falls. A
well balanced ensemble has a flat rank histogram.

Table 4
Goodness of fit statistic for the 16 validation rain gauges, as explained in Eq. (11).

Rain gauge GOF [–] Rain gauge GOF [–]

1 0.894 9 0.917
2 0.897 10 0.891
3 0.906 11 0.876
4 0.913 12 0.910
5 0.898 13 0.930
6 0.859 14 0.902
7 0.851 15 0.893
8 0.900 16 0.935
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4.4. Hydrological applications

The application of the generated radar rainfall ensembles to
hydrologic models is used here to explain the advantage in using
an ensemble as probabilistic input rather than a deterministic rain-
fall information. The radar ensembles are used with three PDM
hydrological models calibrated for three basins in the study area,
the upper Lune, the upper Ribble, and the Rawthey, as shown in
Fig. 1. The generated ensemble covers the whole 180 km by
180 km area shown in Fig. 1 as a red square, and a time span of
one year, from 1st October 2007 00:00 to 30th September 2008
23:00. An ensemble of 100 one-year time series on each basin is
extracted averaging the distributed rainfall of each ensemble
member ~Piðt; xÞ over the basin area. Each time series is used as a
rainfall input for the PDM model. The model therefore returns an
ensemble of predicted flows for each basin that are compared with
the observed flow.

4.4.1. Calibration
The PDM models are calibrated with two years of rain gauge

data (1st October 2008 00:00 to 30th September 2010 23:00).
The calibration is done on 13 parameters. The optimisation is per-
formed using the SCE-UA algorithm. The Nash Sutcliffe Efficiency
(NSE) coefficients for the calibration are reported in Table 5. The
obtained sets of parameters are reported in Table 6, with a brief
description (Moore, 2007).

4.4.2. Results
The comparison between the ensemble and the observed flow

for an example period in February 2008 is reported for each basin
in Fig. 8.

To obtain a quantitative measure of the match between the out-
put flow ensemble and the observed flows, the goodness of fit esti-
mator as described in Eq. (11) is calculated for the flow as well and
reported in Table 7.

It must be considered that in hydrological applications of radar
rainfall, beyond the uncertainty in the radar measurements repre-
sented by the ensemble, there are numerous additional sources of
uncertainty. Firstly, a model is an approximation of real processes
and will never be able to perfectly reproduce reality, especially in
the case of simple models like the PDM. In addition, the PDM
requires other inputs, such as evapotranspiration, which have their

Table 5
NSE coefficients for the calibration of the three hydrological PDM models.

Lune Ribble Rawthey

SCE-UA 0.92 0.89 0.92

Fig. 8. The flow ensembles obtained using the rainfall ensemble as input for the PDM models of the three study catchments are compared to the actual measurement and to
the radar prediction for the three study catchment during an example event in February 2008.

Table 6
Parameters obtained through the calibration of the three catchment PDM models with the SCE-UA.

Lune Ribble Rawthey

f c Rainfall factor [ ] 1.08 0.94 1.08
cmin Min store capacity [mm] 34.9 32.7 34.4
cmax Max store capacity [mm] 104.7 50.0 50.0
b Exponent of Pareto distribution for store capacity [ ] 1.37 1.35 0.83
be Exponent in actual evaporation function [ ] 4.99 1.02 1.87
k1 Time constant first linear reservoir [h] 2.47 2.37 2.09
k2 Time constant second reservoir [h] 1.46 11.16 1.46
kb Baseflow time constant [h mmm�1] 5.0 37. 9 5.0
kg Groundwater recharge time constant [h mmbg�1] 89,400 194,800 237,100
St Soil tension storage capacity [mm] 21.4 26. 7 17.1
bg Exponent of recharge function [ ] 3.04 4.16 3.71
qc Constant flow returns/abstraction [m3 s�1] 1.59 4.20 3.16
td Time delay [h] 1.29 0.69 1.06

402 F. Cecinati et al. / Journal of Hydrology 548 (2017) 391–405



own associated uncertainties due to the data collection and to the
averaging on the study area. The calibration results in high NSE
scores, but still includes an uncertainty in the estimation of the
necessary 13 parameters for the PDM, which may be variable over
time. Finally, the observed flow used as reference has an associated
uncertainty too.

Considering this, the quantitative goodness of fit reported in
Table 7 is consequently considerably lower than the goodness of
fit for the rain gauge validation.

The goodness of fit estimators are highest for the Ribble, which
is the largest basin, and lowest for the Lune, which is the smallest.

The use of a radar rainfall ensemble can be used as a diagnostic
tool. Since the ensemble proved to be well calibrated in the valida-
tion phase in Section 4.3, while the results of the flowGOF in Table 7
are poor, it is clear that the rainfall uncertainty is not the dominant
source of uncertainty in the presented model. Despite the good cal-
ibration results, the uncertainty due to the other inputs, to the
model structure, to the parameter identification, or to other errors
or approximations are still determinant in the case study.

The ensemble can be used to identify in which cases the mis-
match between the radar measurement and the observation is
due to rainfall uncertainty, like in the panel of Fig. 8 relative to
the Lune catchment, where the ensemble clearly improves the
radar measurement and captures the observed flow, or when the
mismatch is due to other modelling problems, like in the panel rel-
ative to Ribble, were themismatch is not captured by the ensemble.

5. Considerations and conclusions

This work presents an innovative method to generate radar QPE
ensembles. Compared to other methods based on the use of the
residual error covariance matrix, the presented method introduces
some advantages. Firstly, the use of variograms allows for a faster
and more flexible calculation of spatial correlation of errors, at
the point that a time-variant error characterisation is possible;
the time-variant application allows us to capture temporary phe-
nomena that may affect the nature of errors, generating ensembles
that are specific for the simulated time step. The ability to calculate
a time-variant variogram shows consistency with the characteris-
tics of the precipitation in time: the necessity of using a backup gen-
eral variogram occurs during dry periods or for very low rain rates,
when only a limited number of rain gauges are recording rainfall.
During significant rain events the applied method is able to calcu-
late a specific variogram, using a 3-h window in almost 65% of cases
and increasing thewindow to 6, 9, or 12 h only in the residual cases.
The development of a fast and robust automatic method to charac-
terise errors is done to allow possible operational and real-time
application. For this reason the variogram modelling is done using
only backward time windows, rather than centred ones.

The adoption of a logarithmic multiplicative error model allows
for Gaussian modelling of the errors that makes the error charac-
terisation and the alternative error field generation easier. As a
drawback, it introduces some bias in the back-transformation
which is here adjusted with a simple linear model. It could be
interesting to derive alternative methods to obtain Gaussian errors
with a stable back-transformation. Another significant advantage
of the presented method is that using conditional simulations
allows us to generate spatially-correlated Gaussian realisations of
the random fields. Therefore, no interpolation of the simulated

error components is needed. The use of interpolation has a
smoothing effect due to the use of the kriging mean, rather than
the full probabilistic kriging outcome. This can partially cover the
problem of mean and variance inflation, but also modifies the spa-
tial characteristics of the errors. The errors are generated with con-
ditional simulations, where sufficient error observations were
available, drawing correlated realisation for the conditional distri-
bution of the whole grid. Conditioning the simulation to the obser-
vations allows us to partially reproduce the spatial variability of
the error statistical properties that is neglected using an omni-
directional variogram.

In this application, the problem of mean and variance inflation
due to the use of a logarithmic model is addressed with a linear re-
adjustment that corrects the absolute values of the ensemble
members without affecting their spatial characteristics. Using the
overall mean and standard deviation of the ensemble for adjust-
ment, the adjusting method forces the whole ensemble to have
the observed statistical characteristics, but does not coerce the sin-
gle ensemble members.

The generated ensemble represented in Figs. 4 and 5 show a
correct rainfall distribution, preserving the intermittency and the
overall mean and variance observed by the rain gauges. The valida-
tion showed an improvement in the bias and a correct ensemble
distribution in the rank variograms reported in Fig. 7.

The residual mismatch in the validation and the higher bars at
the positive extreme of some of the rank variograms can be
explained with other sources of uncertainty, due for example to
the rain gauge errors, to the different areal representativeness of
ensemble and rain gauges, and to the geostatistical approximations
and assumptions unavoidable in the model.

The hydrological application is an important test, because the
use of ensembles is particularly important in model application:
the nature of radar QPE ensembles makes them very suitable to
Monte Carlo-based rainfall input uncertainty propagation assess-
ment. The use of ensembles as compared to deterministic predic-
tion of the flow can improve the understanding of the relative
rainfall uncertainty and partially captures the variability of the dis-
crepancy between modelled and observed flows. The radar QPE
uncertainty, modelled through the ensemble, is only one source
of uncertainty. Other sources of uncertainty, like the simplified
model structure, numerical approximations, parameter estimation
errors, or uncertainty in the other inputs and in the measured flow,
contribute to the overall discrepancy between simulated and
observed flow. The PDM hydrological model, has a simple lumped
structure, therefore many approximations and simplifications are
made. The use of a more complex model could reduce the struc-
tural uncertainty, but would require more parameters and more
inputs with associated uncertainty and would make the calibration
more difficult. The use of radar rainfall ensembles can explain
which part of the discrepancy between the modelled flow and
the observed one is due to rainfall uncertainty, and which part is
due to other uncertainty sources.

In terms of possible improvements of the work, it could be inter-
esting to address the problem of spatial stationarity of the errors
already in the geostatistical modelling. In this work, in fact, the
temporal variability of the error characteristics is represented in
trade of an assumption of spatial stationarity of the radar residual
errors. Although error temporal variability is shown to be more sig-
nificant than the spatial one in terms of error mean and standard
deviation, spatial stationarity is not a realistic assumption, because
radar residual errors characteristics are actually varying in space,
for example proportionally to the rainfall rate, increasing with the
distance from the radars, or with the presence of reliefs and obsta-
cles. The problem of error characteristic spatial variability could be
partially addressed firstly introducing anisotropy in the variogram
approach. Changing more drastically the methodology, it could be

Table 7
Goodness of fit statistic for the flow in the three study catchments, as in Eq. (11).

Ribble Lune Rawthey

GOF [–] 0.35 0.17 0.27
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possible to developmethods able to integrate external factors in the
error spatial characterisation and in the simulation, like the dis-
tance from the radar, elevation information, and so on. Another
interesting approach that could be applied is the modelling of the
‘‘dry drift”, i.e. the fact that average areal rainfall intensity varies
with the distance to the surrounding dry areas (Schleiss et al.,
2014). The use of conditional simulations helps in reproducing
the observed errors, and therefore their spatial characterisation.

The presented case study is a wide area where around 200 rain
gauges are available. A sufficient number of rain gauges is necessary
for the application of the method, as well as a sufficient density, in
order to reliably measure the radar error characteristics during
rainfall events. The ensemble generator is therefore designed for
sufficiently large and well instrumented areas, and cannot be used
for particularly small study areas, or data-scarce environments.

Another important issue that is debated in the literature is the
opportunity to use rain gauges as an approximation of true rainfall,
given that groundmeasurements are subject to uncertainty as well,
and that they are representative of points, while radar estimations
are areal (Bringi et al., 2011; Ciach and Krajewski, 1999; Kitchen
and Blackall, 1992; Peleg et al., 2013). This approximation is still
considered better than the radar error estimation made with other
methodologies, for example analysing and modelling each source
of error independently. Nevertheless, it could be interesting to inte-
grate an estimation of rain gauge uncertainty in the radar error
models.

Finally, this work addressed the modelling of the residual errors
of radar QPE, but does not improve the deterministic precipitation
estimates. Methods to merge radar data and rain gauges could
potentially improve the radar QPE. A possible future development
could be to adapt the presented methodology to merged products,
keeping in mind that the error estimation and modelling needs to
be approached differently, because in this case rain gauges cannot
be used as reference anymore.

Acknowledgements

This work has been completed as part of the Marie Curie Initial
Training Network QUICS. This project has received funding from
the European Union’s Seventh Framework Programme for research,
technological development and demonstration under Grant agree-
ment No 607000. M.A. Rico-Ramirez also acknowledges the sup-
port of the Engineering and Physical Sciences Research Council
(EPSRC) via Grant EP/I012222/1. The authors would like to thank
the UK Met Office (meteorological data sets requested at: Met
Office 2003, 2012), the Environment Agency (rain gauge data sets
requested at http://environment-agency.gov.uk/), and the Centre
for Ecology and Hydrology & the National River Flow Archive (river
flow data sets requested at http://nrfa.ceh.ac.uk/) for providing the
various data sets to develop this study. We would like to thank Dr
N. Nanding and Dr Jia Liu who assisted in the hydrological model
set up, and H. Badger for the python code support. We would like
to thank the anonymous reviewers for their helpful and construc-
tive comments that helped to improve this manuscript.

References

AghaKouchak, A., Bárdossy, A., Habib, E., 2010a. Copula-based uncertainty
modelling: Application to multisensor precipitation estimates. Hydrol.
Process. 24, 2111–2124. http://dx.doi.org/10.1002/hyp.7632.

AghaKouchak, A., Habib, E., Bárdossy, A., 2010b. Modeling radar rainfall estimation
uncertainties: random error model. J. Hydrol. Eng. 15, 265–274. http://dx.doi.
org/10.1061/(ASCE)HE.1943-5584.0000185.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-
Guidelines for computing crop water requirements – FAO Irrigation and
drainage paper 56.

Anagnostou, E., Krajewski, W.F., 1999. Uncertainty quantification of mean-areal
radar-rainfall estimates. J. Atmos. Ocean. Technol., 206–215

Atlas, D., Banks, H.C., 1951. The interpretation of microwave reflections from
rainfall. J. Meteorol. 8, 271–282. http://dx.doi.org/10.1175/1520-0469(1951)
008<0271:tiomrf>2.0.co;2.

Austin, P.M., 1987. Relation between measured radar reflectivity and surface
rainfall. Mon. Weather Rev. 115, 1053–1070. http://dx.doi.org/10.1175/1520-
0493(1987) 115<1053:RBMRRA>2.0.CO;2.

Austin, P.M., Bernis, A.C., 1950. A quantitative study of the ‘‘bright band” in radar
precipitation echoes. J. Meteorol. 7, 145–151. http://dx.doi.org/10.1175/1520-
0469(1950) 007<0145:AQSOTB>2.0.CO;2.

Berne, A., Krajewski, W.F., 2013. Radar for hydrology: unfulfilled promise or
unrecognized potential? Adv. Water Resour. 51, 357–366. http://dx.doi.org/
10.1016/j.advwatres.2012.05.005.

Bringi, V.N., Rico-Ramirez, M., Thurai, M., 2011. Rainfall estimation with an
operational polarimetric C-Band radar in the united kingdom: comparison
with a gauge network and error analysis. J. Hydrometeorol. 12, 935–954. http://
dx.doi.org/10.1175/JHM-D-10-05013.1.

Ciach, G.J., Krajewski, W.F., 1999. On the estimation of radar rainfall error variance.
Adv. Water Resour. 22, 585–595. http://dx.doi.org/10.1016/S0309-1708(98)
00043-8.

Ciach, G.J., Krajewski, W.F., Villarini, G., 2007. Product-error-driven uncertainty
model for probabilistic quantitative precipitation estimation with NEXRAD data.
J. Hydrometeorol. 8, 1325–1347. http://dx.doi.org/10.1175/2007JHM814.1.

Cressie, N., 1985. Fitting variogram models by weighted least squares. J. Int. Assoc.
Math. Geol. 17, 563–586. http://dx.doi.org/10.1007/BF01032109.

Cressie, N.A.C., 1993. Statistics for Spatial Data.
Dai, Q., Han, D., Rico-Ramirez, M., Srivastava, P.K., 2014. Multivariate distributed

ensemble generator: a new scheme for ensemble radar precipitation estimation
over temperate maritime climate. J. Hydrol. 511, 17–27. http://dx.doi.org/
10.1016/j.jhydrol.2014.01.016.

Dai, Q., Han, D., Zhuo, L., Huang, J., Islam, T., Srivastava, P.K., 2015. Impact of
complexity of radar rainfall uncertainty model on flow simulation. Atmos. Res.
161–162, 93–101. http://dx.doi.org/10.1016/j.atmosres.2015.04.002.

Delhomme, J.P., 1979. Spatial variability and uncertainty in groundwater flow
parameters – a geostatistical approach. Water Resour. Res. 15, 269–280.

Delrieu, G., Andrieu, H., Creutin, J.D., 2000. Quantification of path-integrated
attenuation for X- and C-Band weather radar systems operating in
mediterranean heavy rainfall. J. Appl. Meteorol. 39, 840–850. http://dx.doi.
org/10.1175/1520-0450(2000) 039<0840:QOPIAF>2.0.CO;2.

Doviak, R.J., 1983. A survey of radar rain measurement techniques. J. Clim. Appl.
Meteorol. http://dx.doi.org/10.1175/1520-0450(1983) 022<0832:ASORRM>2.0.
CO;2.

Duan, Q., Sorooshian, S., Gupta, H.V., Gupta, V., 1992. Effective and efficient global
optimization for conceptual rainfall-runoff models. Water Resour. Res. 28,
1015–1031. http://dx.doi.org/10.1029/91WR02985.

Duan, Q., Sorooshian, S., Gupta, V.K., 1994. Optimal use of the SCE-UA global
optimization method for calibrating watershed models. J. Hydrol. 158, 265–284.
http://dx.doi.org/10.1016/0022-1694(94)90057-4.

Erdin, R., Frei, C., Künsch, H.R., 2012. Data transformation and uncertainty in
geostatistical combination of radar and rain gauges. J. Hydrometeorol. 13,
1332–1346. http://dx.doi.org/10.1175/JHM-D-11-096.1.

Fabry, F., Zawadzki, I., 1995. Long-term radar observations of the melting layer of
precipitation and their interpretation. J. Atmos. Sci. 52, 838–851. http://dx.doi.
org/10.1175/1520-0469(1995) 052<0838:LTROOT>2.0.CO;2.

Fabry, F., Bellon, A., Duncan, M.R., Austin, G.L., 1994. High resolution rainfall measure-
ments by radar for very small basins: the sampling problem reexamined. J. Hydrol.
161, 415–428. http://dx.doi.org/10.1016/0022-1694(94)90138-4.

Friedrich, K., Germann, U., Gourley, J.J., Tabary, P., 2007. Effects or radar beam
shielding on rainfall estimation for the polarimetric C-band radar. J. Atmos.
Ocean. Technol. 24, 1839–1859. http://dx.doi.org/10.1175/JTECH2085.1.

Ge, G., Gao, J., Brewster, K., Xue, M., 2010. Impacts of beam broadening and earth
curvature on storm-scale 3D variational data assimilation of radial velocity with
two doppler radars. J. Atmos. Ocean. Technol. 27, 617–636. http://dx.doi.org/
10.1175/2009jtecha1359.1.

Germann, U., Berenguer, M., Sempere-Torres, D., Zappa, M., 2009. REAL – ensemble
radar precipitation estimation for hydrology in mountainous region. Q. J. R.
Meteorol. Soc 135, 445–456. http://dx.doi.org/10.1002/qj.375.

Hamill, T.M., 2001. Interpretation of rank histograms for verifying ensemble
forecasts. Mon. Weather Rev. 129, 550–560. http://dx.doi.org/10.1175/1520-
0493(2001) 129<0550:IORHFV>2.0.CO;2.

Harrison, D.L., Driscoll, S.J., Kitchen, M., 2000. Improving precipitation estimates
from weather radar using quality control and correction techniques. Meteorol.
Appl. 7, 135–144. http://dx.doi.org/10.1017/S1350482700001468.

Hasan, M.M., Sharma, A., Johnson, F., Mariethoz, G., Seed, A., 2014. Correcting bias in
radar Z-R relationships due to uncertainty in point rain gauge networks. J.
Hydrol. 519, 1668–1676. http://dx.doi.org/10.1016/j.jhydrol.2014.09.060.

Hubbert, J.C., Dixon, M., Ellis, S.M., 2009. Weather radar ground clutter. Part II: real-
time identification and filtering. J. Atmos. Ocean. Technol. 26, 1181–1197.
http://dx.doi.org/10.1175/2009JTECHA1160.1.

Hubbert, J.C., Dixon, M., Ellis, S.M., Meymaris, G., 2009. Weather radar ground
clutter. Part I: identification, modeling, and simulation. J. Atmos. Ocean.
Technol. 26, 1165–1180. http://dx.doi.org/10.1175/2009JTECHA1159.1.

Hyvärinen, A., Oja, E., 2000. Independent component analysis: algorithms and
applications. Neural Networks 13, 411–430.

Islam, T., Rico-Ramirez, M.a., Han, D., Srivastava, P.K., 2012. Artificial intelligence
techniques for clutter identification with polarimetric radar signatures. Atmos.
Res. 109–110, 95–113. http://dx.doi.org/10.1016/j.atmosres.2012.02.007.

404 F. Cecinati et al. / Journal of Hydrology 548 (2017) 391–405

http://environment-agency.gov.uk/
http://nrfa.ceh.ac.uk/
http://dx.doi.org/10.1002/hyp.7632
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000185
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000185
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0020
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0020
http://dx.doi.org/10.1175/1520-0469(1951)008&lt;0271:tiomrf&gt;2.0.co;2
http://dx.doi.org/10.1175/1520-0469(1951)008&lt;0271:tiomrf&gt;2.0.co;2
http://dx.doi.org/10.1175/1520-0493(1987)115&lt;1053:RBMRRA&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1987)115&lt;1053:RBMRRA&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1950)007&lt;0145:AQSOTB&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1950)007&lt;0145:AQSOTB&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.advwatres.2012.05.005
http://dx.doi.org/10.1016/j.advwatres.2012.05.005
http://dx.doi.org/10.1175/JHM-D-10-05013.1
http://dx.doi.org/10.1175/JHM-D-10-05013.1
http://dx.doi.org/10.1016/S0309-1708(98)00043-8
http://dx.doi.org/10.1016/S0309-1708(98)00043-8
http://dx.doi.org/10.1175/2007JHM814.1
http://dx.doi.org/10.1007/BF01032109
http://dx.doi.org/10.1016/j.jhydrol.2014.01.016
http://dx.doi.org/10.1016/j.jhydrol.2014.01.016
http://dx.doi.org/10.1016/j.atmosres.2015.04.002
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0080
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0080
http://dx.doi.org/10.1175/1520-0450(2000)039&lt;0840:QOPIAF&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2000)039&lt;0840:QOPIAF&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022&lt;0832:ASORRM&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1983)022&lt;0832:ASORRM&gt;2.0.CO;2
http://dx.doi.org/10.1029/91WR02985
http://dx.doi.org/10.1016/0022-1694(94)90057-4
http://dx.doi.org/10.1175/JHM-D-11-096.1
http://dx.doi.org/10.1175/1520-0469(1995)052&lt;0838:LTROOT&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1995)052&lt;0838:LTROOT&gt;2.0.CO;2
http://dx.doi.org/10.1016/0022-1694(94)90138-4
http://dx.doi.org/10.1175/JTECH2085.1
http://dx.doi.org/10.1175/2009jtecha1359.1
http://dx.doi.org/10.1175/2009jtecha1359.1
http://dx.doi.org/10.1002/qj.375
http://dx.doi.org/10.1175/1520-0493(2001)129&lt;0550:IORHFV&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129&lt;0550:IORHFV&gt;2.0.CO;2
http://dx.doi.org/10.1017/S1350482700001468
http://dx.doi.org/10.1016/j.jhydrol.2014.09.060
http://dx.doi.org/10.1175/2009JTECHA1160.1
http://dx.doi.org/10.1175/2009JTECHA1159.1
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0160
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0160
http://dx.doi.org/10.1016/j.atmosres.2012.02.007


Joanes, D.N., Gill, C.A., 1998. Comparing measures of sample skewness and kurtosis.
J. R. Stat. Soc. Ser. D (The Stat.) 47, 183–189. http://dx.doi.org/10.1111/1467-
9884.00122.

Joss, J., Lee, R., 1995. The application of radar-gauge comparisons to operational
precipitation profile corrections. J. Appl. Meteorol. 34, 2612–2630. http://dx.doi.
org/10.1175/1520-0450(1995) 034<2612:TAORCT>2.0.CO;2.

Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics. Academic Press, London.
Kirstetter, P.-E., Delrieu, G., Boudevillain, B., Obled, C., 2010. Toward an error model

for radar quantitative precipitation estimation in the Cévennes-Vivarais region,
France. J. Hydrol. 394, 28–41. http://dx.doi.org/10.1016/j.jhydrol.2010.01.009.

Kirstetter, P.E., Andrieu, H., Boudevillain, B., Delrieu, G., 2013. A physically based
identification of vertical profiles of reflectivity from volume scan radar data. J.
Appl. Meteorol. Climatol. 52, 1645–1663. http://dx.doi.org/10.1175/JAMC-D-
12-0228.1.

Kirstetter, P.-E., Gourley, J.J., Hong, Y., Zhang, J., Moazamigoodarzi, S., Langston, C.,
Arthur, A., 2015. Probabilistic precipitation rate estimates with ground-based
radar networks 1–56.

Kitchen, M., Blackall, R.M., 1992. Representativeness errors in comparisons between
radar and gauge measurements of rainfall. J. Hydrol. 134, 13–33. http://dx.doi.
org/10.1016/0022-1694(92)90026-R.

Kitchen, M., Jackson, P.M., 1993. Weather radar performance at long range –
simulated and observed. J. Appl. Meteorol. 32, 975–985.

Le Ravalec, M., Noetinger, B., Hu, L.Y., 2000. The FFT moving average (FFT-MA)
generator: an efficient numerical method for generating and conditioning
Gaussian simulations. Math. Geol. 32, 701–723. http://dx.doi.org/10.1023/
A:1007542406333.

Marshall, J.S., Langille, R.C., Palmer, W.M.K., 1947. Measurement of rainfall by radar.
J. Meteorol. 4, 186–192. http://dx.doi.org/10.1175/1520-0469(1947) 004<0186:
MORBR>2.0.CO;2.

McKee, J.L., Binns, A.D., 2015. A review of gauge–radar merging methods for
quantitative precipitation estimation in hydrology. Can. Water Resour. J./Rev.
Can. des ressources hydriques 1784, 1–18. http://dx.doi.org/10.1080/
07011784.2015.1064786.

Meneghini, R., 1978. Rain-rate estimates for an attenuating radar. Radio Sci. 13,
459–470.

Met Office, 2003. 1 km Resolution UK Composite Rainfall Data from the Met Office
Nimrod System [WWW Document]. NCAS British Atmos. Data Cent. URL
http://catalogue.ceda.ac.uk/uuid/27dd6ffba67f667a18c62de5c3456350.

Met Office, 2012. Met Office Integrated Data Archive System (MIDAS) Land and
Marine Surface Stations Data (1853-current) [WWW Document]. NCAS Br.
Atmos. Data Cent. URL . http://catalogue.ceda.ac.uk/uuid/
220a65615218d5c9cc9e4785a3234bd0.

Metropolis, N., Ulam, S., 1949. The Monte Carlo Method. J. Am. Stat. Assoc. http://dx.
doi.org/10.1080/01621459.1949.10483310.

Monteith, J.L., 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–234.
Moore, R.J., 2007. The PDM rainfall-runoff model. Hydrol. Earth Syst. Sci. Discuss.

11, 483–499.
Moszkowicz, S., Ciach, G.J., Krajewski, W.F., 1994. Statistical detection of anomalous

propagation in radar reflectivity patterns. J. Atmos. Ocean. Technol. 11, 1026–
1034. http://dx.doi.org/10.1175/1520-0426(1994) 011<1026:SDOAPI>2.0.CO;2.

Pappenberger, F., Beven, K.J., 2006. Ignorance is bliss: or seven reasons not to use
uncertainty analysis. Water Resour. Res. 42, 1–8. http://dx.doi.org/10.1029/
2005WR004820.

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Comput.
Geosci. 30, 683–691. http://dx.doi.org/10.1016/j.cageo.2004.03.012.

Pegram, G., Llort, X., Sempere-Torres, D., 2011. Radar rainfall: separating signal and
noise fields to generate meaningful ensembles. Atmos. Res. 100, 226–236.
http://dx.doi.org/10.1016/j.atmosres.2010.11.018.

Peleg, N., Ben-Asher, M., Morin, E., 2013. Radar subpixel-scale rainfall variability
and uncertainty: lessons learned from observations of a dense rain-gauge
network. Hydrol. Earth Syst. Sci. 17, 2195–2208. http://dx.doi.org/10.5194/
hess-17-2195-2013.

Qi, Y., Zhang, J., Zhang, P., Cao, Q., 2013. VPR correction of bright band effects in
radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos. 118,
3627–3633. http://dx.doi.org/10.1002/jgrd.503642013.

Rico-Ramirez, M.A., Cluckie, I.D., 2008. Classification of ground clutter and
anomalous propagation using dual-polarization weather radar. IEEE Trans.
Geosci. Remote Sens. 46, 1892–1904.

Rico-Ramirez, M.a., Cluckie, I.D., 2007. Bright-band detection from radar vertical
reflectivity profiles. Int. J. Remote Sens. 28, 4013–4025. http://dx.doi.org/
10.1080/01431160601047797.

Rico-Ramirez, M.a., Liguori, S., Schellart, a.N.a., 2015. Quantifying radar-rainfall
uncertainties in urban drainage flowmodelling. J. Hydrol. 528, 17–28. http://dx.
doi.org/10.1016/j.jhydrol.2015.05.057.

Schleiss, M., Chamoun, S., Berne, A., 2014. Nonstationarity in intermittent rainfall:
the ‘‘dry drift”. J. Hydrometeorol. 15, 1189–1204. http://dx.doi.org/10.1175/
JHM-D-13-095.1.

Schröter, K., Llort, X., Velasco-Forero, C., Ostrowski, M., Sempere-Torres, D., 2011.
Implications of radar rainfall estimates uncertainty on distributed hydrological
model predictions. Atmos. Res. 100, 237–245. http://dx.doi.org/10.1016/j.
atmosres.2010.08.014.

Seed, A.W., Nicol, J.C., Austin, G.L., Stow, C.D., Bradley, S.G., 2007. The impact of
radar and raingauge sampling errors when calibrating a weather radar.
Meteorol. Appl. 3, 43–52. http://dx.doi.org/10.1002/met.5060030105.

Smith, J.M., 1977. Mathematical Modelling and Digital Simulation for Engineers and
Scientists. John Wiley & Sons Inc, New York, NY, USA.

Smith, C.J., 1986. The reduction of errors caused by bright bands in quantitative
rainfall measurements made using radar. J. Atmos. Ocean. Technol. 3, 129–141.
http://dx.doi.org/10.1175/1520-0426(1986) 003<0129:TROECB>2.0.CO;2.

Steiner, M., Smith, J.a., 2002. Use of three-dimensional reflectivity structure for
automated detection and removal of nonprecipitating echoes in radar data. J.
Atmos. Ocean. Technol. 19, 673–686. http://dx.doi.org/10.1175/1520-0426
(2002) 019<0673:UOTDRS>2.0.CO;2.

Uijlenhoet, R., Berne, A., 2008. Stochastic simulation experiment to assess radar
rainfall retrieval uncertainties associated with attenuation and its correction.
Hydrol. Earth Syst. Sci. 12, 587–601. http://dx.doi.org/10.5194/hess-12-587-
2008.

van Griensven, A., Meixner, T., 2007. A global and efficient multi-objective auto-
calibration and uncertainty estimation method for water quality catchment
models. J. Hydroinf. 9, 277. http://dx.doi.org/10.2166/hydro.2007.104.

Villarini, G., Krajewski, W.F., 2009. Empirically based modelling of radar-rainfall
uncertainties for a C-band radar at different time-scales. Q. J. R. Meteorol. Soc.
1438, 1424–1438. http://dx.doi.org/10.1002/qj.

Villarini, G., Krajewski, W.F., 2010. Review of the different sources of uncertainty in
single polarization radar-based estimates of rainfall. Surv. Geophys. 31, 107–
129. http://dx.doi.org/10.1007/s10712-009-9079-x.

Villarini, G., Krajewski, W.F., Ciach, G.J., Zimmerman, D.L., 2009. Product-error-
driven generator of probable rainfall conditioned on WSR-88D precipitation
estimates. Water Resour. Res. 45, 1–11. http://dx.doi.org/10.1029/
2008WR006946.

Villarini, G., Seo, B.C., Serinaldi, F., Krajewski, W.F., 2014. Spatial and temporal
modeling of radar rainfall uncertainties. Atmos. Res. 135–136, 91–101. http://
dx.doi.org/10.1016/j.atmosres.2013.09.007.

Westrick, K.J., Mass, C.F., Colle, B.a., 1999. The Limitations of the WSR-88D Radar
Network for Quantitative Precipitation Measurement over the Coastal Western
United States. Bull. Am. Meteorol. Soc. 80, 2289–2298. http://dx.doi.org/
10.1175/1520-0477(1999) 080<2289:TLOTWR>2.0.CO;2.

Zhang, X.F., Eijkeren, J.C.H.V.A.N., 1995. On the weighted least-squares method for
fitting a semivariogram model. Comput. Geosci. 21, 605–608.

Zhang, J., Qi, Y., 2010. A real-time algorithm for the correction of brightband effects
in radar-derived QPE. J. Hydrometeorol. 11, 1157–1171. http://dx.doi.org/
10.1175/2010JHM1201.1.

F. Cecinati et al. / Journal of Hydrology 548 (2017) 391–405 405

http://dx.doi.org/10.1111/1467-9884.00122
http://dx.doi.org/10.1111/1467-9884.00122
http://dx.doi.org/10.1175/1520-0450(1995)034&lt;2612:TAORCT&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1995)034&lt;2612:TAORCT&gt;2.0.CO;2
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0180
http://dx.doi.org/10.1016/j.jhydrol.2010.01.009
http://dx.doi.org/10.1175/JAMC-D-12-0228.1
http://dx.doi.org/10.1175/JAMC-D-12-0228.1
http://dx.doi.org/10.1016/0022-1694(92)90026-R
http://dx.doi.org/10.1016/0022-1694(92)90026-R
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0205
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0205
http://dx.doi.org/10.1023/A:1007542406333
http://dx.doi.org/10.1023/A:1007542406333
http://dx.doi.org/10.1175/1520-0469(1947)004&lt;0186:MORBR&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1947)004&lt;0186:MORBR&gt;2.0.CO;2
http://dx.doi.org/10.1080/07011784.2015.1064786
http://dx.doi.org/10.1080/07011784.2015.1064786
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0225
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0225
http://catalogue.ceda.ac.uk/uuid/27dd6ffba67f667a18c62de5c3456350
http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1080/01621459.1949.10483310
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0245
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0250
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0250
http://dx.doi.org/10.1175/1520-0426(1994)011&lt;1026:SDOAPI&gt;2.0.CO;2
http://dx.doi.org/10.1029/2005WR004820
http://dx.doi.org/10.1029/2005WR004820
http://dx.doi.org/10.1016/j.cageo.2004.03.012
http://dx.doi.org/10.1016/j.atmosres.2010.11.018
http://dx.doi.org/10.5194/hess-17-2195-2013
http://dx.doi.org/10.5194/hess-17-2195-2013
http://dx.doi.org/10.1002/jgrd.503642013
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0285
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0285
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0285
http://dx.doi.org/10.1080/01431160601047797
http://dx.doi.org/10.1080/01431160601047797
http://dx.doi.org/10.1016/j.jhydrol.2015.05.057
http://dx.doi.org/10.1016/j.jhydrol.2015.05.057
http://dx.doi.org/10.1175/JHM-D-13-095.1
http://dx.doi.org/10.1175/JHM-D-13-095.1
http://dx.doi.org/10.1016/j.atmosres.2010.08.014
http://dx.doi.org/10.1016/j.atmosres.2010.08.014
http://dx.doi.org/10.1002/met.5060030105
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0315
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0315
http://dx.doi.org/10.1175/1520-0426(1986)003&lt;0129:TROECB&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019&lt;0673:UOTDRS&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019&lt;0673:UOTDRS&gt;2.0.CO;2
http://dx.doi.org/10.5194/hess-12-587-2008
http://dx.doi.org/10.5194/hess-12-587-2008
http://dx.doi.org/10.2166/hydro.2007.104
http://dx.doi.org/10.1002/qj
http://dx.doi.org/10.1007/s10712-009-9079-x
http://dx.doi.org/10.1029/2008WR006946
http://dx.doi.org/10.1029/2008WR006946
http://dx.doi.org/10.1016/j.atmosres.2013.09.007
http://dx.doi.org/10.1016/j.atmosres.2013.09.007
http://dx.doi.org/10.1175/1520-0477(1999)080&lt;2289:TLOTWR&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1999)080&lt;2289:TLOTWR&gt;2.0.CO;2
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0365
http://refhub.elsevier.com/S0022-1694(17)30132-4/h0365
http://dx.doi.org/10.1175/2010JHM1201.1
http://dx.doi.org/10.1175/2010JHM1201.1

	Representing radar rainfall uncertainty with ensembles based�on a time-variant geostatistical error modelling approach
	1 Introduction
	2 Datasets and case study
	3 Methods
	3.1 Error model
	3.2 Error component and ensemble generation
	3.3 Variance and mean adjustment
	3.4 Rain gauge validation
	3.5 Hydrological application

	4 Results
	4.1 Error components
	4.2 Ensembles
	4.3 Rain gauge validation
	4.4 Hydrological applications
	4.4.1 Calibration
	4.4.2 Results


	5 Considerations and conclusions
	Acknowledgements
	References


