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Abstract The Madelung equations map the non-relativistic time-dependent
Schrödinger equation into hydrodynamic equations of a virtual fluid. While the
von Neumann entropy remains constant, we demonstrate that an increase of the
Shannon entropy, associated with this Madelung fluid, is proportional to the expec-
tation value of its velocity divergence. Hence, the Shannon entropy may grow (or
decrease) due to an expansion (or compression) of the Madelung fluid. These effects
result from the interference between solutions of the Schrödinger equation. Growth
of the Shannon entropy due to expansion is common in diffusive processes. How-
ever, in the latter the process is irreversible while the processes in the Madelung
fluid are always reversible. The relations between interference, compressibility and
variation of the Shannon entropy are then examined in several simple examples.
Furthermore, we demonstrate that for classical diffusive processes, the “force” ac-
celerating diffusion has the form of the positive gradient of the quantum Bohm
potential. Expressing then the diffusion coefficient in terms of the Planck constant
reveals the lower bound given by the Heisenberg uncertainty principle in terms of
the product between the gas mean free path and the Brownian momentum.
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1 Introduction

The Madelung equations [1] transform the non-relativistic time-dependent
Schrödinger equation into hydrodynamical equations of an Eulerian fluid [2–5].
The aim of this study is to explore the entropy properties of the Madelung fluid
and compare these with the ones of classical Eulerian fluids.

The hydrodynamical transformation is obtained when considering the Schrödinger
equation,

ih̄
∂Ψ

∂t
= ĤΨ =

(
p̂2

2m
+ U

)
Ψ =

(
− h̄2

2m
∇2 + U

)
Ψ, (1)

for a continuous wave function Ψ(r, t) =
√
ρ(r, t)eiS(r,t)/h̄ (so that ρ = Ψ∗Ψ) of

a particle with mass m, in the presence of an external potential U(r, t). Using
the de Broglie guiding equation, ua = ∇S̃ (where the tilde superscripts represent
hereinafter quantities per unit mass m), the real part of (1) becomes the continuity
equation

∂ρ

∂t
= −∇ · (ρua), (2)

where the imaginary part of the Schrödinger equation becomes the Eulerian fluid
momentum equation,

Da
Dt

ua = −∇Q̃(ρ)−∇Ũ . (3)

Here, DaDt ≡
∂
∂t+ua ·∇, is the material (advective) time derivative of a fluid element

along its trajectory and Q̃ = − h̄2

2m2

∇2√ρ√
ρ is the Bohm potential per unit mass [6]

(for further relations between the Madelung formulation and the de Broglie-Bohm
interpretation of quantum mechanics we refer the reader to [4,6–8]).

In Ref. [5], it was suggested that the conservation of the domain integrated
energy in (1) implies that the Madelung fluid is adiabatic. The fluid conserves the
sum of the domain integrated kinetic, potential and internal energy, where the
latter is given by the Fisher information. The domain averaged adiabaticity is in
agreement with the conservation of the von Neumann entropy. The von Neumann
entropy, i.e., the trace EntV N = −kB Tr[ρ̂ ln ρ̂], where kB is the Boltzmann
constant and ρ̂ the density matrix of a closed system with a general (possibly time
dependent) Hamiltonian, cannot (by virtue of unitary time evolution) change with
time. One may, nevertheless, devise other illuminating entropy functionals (e.g.,
the “diagonal entropy” of [9]) that, even for closed systems, transparently adhere to
standard thermodynamic relations (including the second law of thermodynamics).
In the current work, our focus is on quantities associated with the Madelung fluid.
Domain averaged adiabaticity of the Madelung fluid does not imply that entropy
is materially conserved by a “fluid parcel”. This viable non-conservation differs, for
instance, from the thermodynamic entropy of mono-atomic ideas gasses, EntT =
kB ln (T 3/2/ρ), which is materially conserved in adiabatic processes, DaDtEntT = 0
[10].

We find that the classical Madelung fluid dynamics motivates the introduction
of its associated “Shannon entropy” (EntS) [11]. For the standard density ρ(r, t) ≡
Ψ∗Ψ in real space we set

EntS ≡ −kB
∫
ρ ln ρdr ≡ kB

∫
sdr. (4)
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This Shannon entropy captures, for instance, the change in classical thermody-
namic entropy during Joule free expansion of an ideal gas into a vacuum, and can
be regarded as the configurational Boltzmann entropy of the Madelung fluid (as
discussed in the Appendix). EntS may vary in time, in contrast to EntV N , which
remains unchanged under unitary time evolution.

The remainder of this work is organized as follows. In Section 2, we examine the
Shannon entropy production in the Madelung fluid via expansion by considering
examples of both reversible and irreversible processes. In Section 3, we show that
for classical diffusion the positive value of the Bohm potential gradient acts as an
effective force. This implies that the Bohm potential represents diffusive processes
in the Madelung fluid, as discussed in Section 4. Summary and conclusions appear
in Section 5.

2 The Shannon Entropy production and compressibility effects

Within the definition of (4), the continuity equation (2) yields

∂s

∂t
+∇ · (sua) = ρ∇ · ua, (5)

and if all fluxes vanish at the domain boundaries, we immediately obtain that

∂

∂t
EntS = kB

∫
ρ∇ · uadV = kB 〈∇ · ua〉 = kB

〈
∇2S̃

〉
. (6)

Hence, the total entropy production is equal to the expectation value of the di-
vergence, i.e., the Shannon entropy grows through expansion of the fluid and may
decay through compression. For the Madelung fluid to be compressible, the quan-
tum action S must have a “source” in the sense that it has to satisfy some Poisson
equation in the form of ∇2S 6= 0. From the wave function perspective, compress-
ibility results from superposition. For a single plane wave solution of the form
Ψ =

√
ρei(k·r−ωt) =

√
ρeiS/h̄, ua = ∇S̃ = h̄

mk. Thus, the advective velocity is
simply proportional to the wavenumber k and ∇ · ua = 0. However, when two
plane waves or more interfere, ∇ · ua 6= 0 in general.

In the next two simple examples we show how a superposition of plane waves
triggers entropy growth. We will furthermore see how compressibility may lead to
a reversible process. In the two cases we consider, the dynamics of a 1D Gaussian
density solution that has been derived by [12],

ρ(x, t) =
1

σ(t)
√

2π
e
− x2

2σ2(t) . (7)

Substituting (7) in the continuity equation (2) yields

ua(x, t) = x
∂ lnσ

∂t
=⇒ ∇ · ua =

∂ lnσ

∂t
. (8)

(i) First we consider the case of a free particle. Substituting (7) and (8) in the
1D version of (3) for Ũ = 0 yields

σ
∂2σ

∂t2
=

(
h̄

2mσ

)2

=⇒ σ2 = σ2
0 +

(
h̄t

2mσ0

)2

. (9)
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The Shannon entropy

EntS = kB ln (σ
√

2πe) = EntS0 +
kB
2

ln

[
1 +

(
h̄t

2mσ2
0

)2
]
. (10)

Thus,
1

kB

∂EntS
∂t

= ∇ · ua =
∂ lnσ

∂t
=

t(
2mσ2

0

h̄

)2
+ t2

> 0. (11)

These results illustrate how the superposition of plane waves in the Gaussian wave
packet of Eq. (7) influences the compressibility of the Madelung fluid and how it
gives rise to an increase of entropy. For a free particle, a 1D plane wave solution of

(1) has the form of Ψ = A(k)eik[x−( h̄
2m

)kt], hence the dynamic Gaussian solution of

(7) is a continuous superposition of plane waves whose amplitude A(k) ∝ e−(σ0k)2

,
as can be verified from the Fourier transform of the square root of (7) at time t = 0.

(ii) As a second example we consider (7) in the presence of the harmonic
potential U = m

2 (ω0x)2 to obtain from (3):

σ
∂2σ

∂t2
= ω2

0(σ2
0 − σ2), σ2

0 =
h̄

2mω0
, (12)

which can be solved numerically. The well known stationary ground state solution

(e.g. [13]) in which σ = σ0, is a special case of (12) where ρ0 = 1
σ0

√
2π
e
− x2

2σ2
0 , and

the Shannon entropy is constant.

EntS0 = −kB
∫
ρ0 ln ρ0dx = kB ln (σ0

√
2πe). (13)

As pointed out by [5], and is evident from (8), the only possible solution for the
velocity in this case is ua = 0, hence the Madelung fluid is obviously incompressible
in the ground state. Consider, however, a small deviation from the ground state:

σ = σ0 + ε(t), where |ε|/σ0 << 1. Eq. (12) then yields ∂2ε
∂t2 = −2ω2

0ε + O(ε2), so

that ε(t) = ε0 cos(
√

2ω0t) for O(ε). Hence,

EntS = EntS0 + kB(
ε

σ0
),

1

kB

∂EntS
∂t

= ∇ · ua =
1

σ0

∂ε

∂t
= −
√

2ω0

σ0
sin(
√

2ω0t) ,

(14)
implying a reversible sinusoidal variation of the Shannon entropy.

For completeness we note that the action S̃, associated with the density func-
tion of (7), can be found explicitly (up to some constant) using ua = x ∂∂t lnσ =
∂
∂x S̃ so that S̃ = x2

2
∂ lnσ
∂t + f(t). The time-dependent function f(t), must satisfy

the Hamilton-Jacobi equation (or the time-dependent Bernoulli equation in the
fluid dynamics language [5]), which is the imaginary part of (1) from which (3) is
derived. For the 1D version this equation becomes

∂S̃

∂t
+

1

2

(
∂S̃

∂x

)2

+ Q̃+ Ũ = 0, (15)

yielding f(t) = −( h̄
2m )2

∫ t
t0
dt
σ2 .
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3 The role of the Bohm potential in classical diffusion

We wish to contrast the temporal evolution of the Madelung fluid’s entropy with
irreversible processes occurring in classical diffusion. Towards this end, we consider
the standard case where the diffusive velocity ud satisfies Fick’s first law:

ud = −D∇ ln ρ. (16)

Here, ud is also referred to as the osmotic velocity [14] with D the diffusion coef-
ficient (assumed constant for simplicity).

Changes in density result then from diffusive fluxes (rather than advective
fluxes in the hydrodynamic continuity equation of (2)) as stated by Fick’s second
law:

∂ρ

∂t
= −∇ · (ρud) = D∇2ρ . (17)

Equation (5) still holds when ua is replaced by ud, but its domain integration
yields now:

∂

∂t
(EntS)D = kB

∫
ρ∇ · uddV = kB 〈∇ · ud〉 = kBD

〈
(∇ ln ρ)2

〉
≥ 0, (18)

where Fi =
∫ (∇ρ)2

ρ dV =
〈
(∇ ln ρ)2

〉
is the Fisher information and (EntS)D repre-

sents the Shannon entropy undergoing a diffusion process. Hence, this well known
relation (e.g. [11], for other information theory contexts) suggests that entropy
increases in diffusive processes through expansion, as in the hydrodynamic case,
but in contrast with the latter, the entropy increases irreversibly with time as long
as density gradients exist (in agreement with the second law of thermodynamics).

Equation (17) can be transformed into a momentum like equation when defin-
ing a “material diffusive derivative” as Dd

Dt ≡
∂
∂t +ud ·∇. Then it is straightforward

to show that (17) can be translated to

Dd
Dt

ud = ∇Q̃d, (19)

where Q̃d = −2D2∇2√ρ√
ρ may be denoted as a diffusive Bohm potential. Hence, the

positive gradient (as opposed to the negative sign in (3)) of the diffusive Bohm
potential acts as a “force” to accelerate the diffusion. This appearance of the
quantum Bohm potential in a classical process is intriguing.

The role of the gradient of the Bohm potential as a diffusive force becomes
more transparent when returning to the dynamic 1D Gaussian example. The well
known solution to the 1D version of (17) (e.g., [15]) is given by

ρ(x, t) =
1

σ(t)
√

2π
e
− x2

2σ2(t) , σ2 = 2Dt, ud(x, t) = −D∂ ln ρ

∂x
= x

∂ lnσ

∂t
=

x

2t
.

(20)
Hence

1

kB

∂

∂t
(EntS)D = ∇ · ud =

1

2t
, (21)

(note that for large t both (11) and (21) experience asymptotic entropy growth
which is proportional to t−1). Since ud = dx

dt = x/(2t) a fluid element located at
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x0 at time t0 will be drifted at time t to x =
(
x0√
t0

)√
t (random walk). Therefore,

ud = x/(2t) =
(

x0

2
√
t0

)
/
√
t, and the acceleration of the fluid element is

d

dt
ud = −

(
x0

√
t√

t0

)
1

4t2
= − x

4t2
, (22)

where d
dtud ≡

Dd
Dtud ≡

∂ud
∂t + ud

∂ud
∂x . Thus, in this example the diffusion rate is

being decelerated by the gradient of the diffusive Bohm potential

Dd
Dt

ud =
∂Q̃d
∂x

= −2D2 ∂

∂x

( x
σ2

)2
= − x

4t2
. (23)

4 Representation of diffusion in the Madelung fluid

The authors of [5,8,14,16] defined the complex velocity derived from the momen-
tum operator −ih̄∇Ψ , as

v = [−i h̄
m
∇ lnΨ ] = vr + ivi, (24)

so that vr = ua = ∇S̃ is the advective velocity and vi = − h̄
2m∇(ln ρ). One may

interpret vi = ud, as in (16), suggesting the relation between the Planck constant
and the diffusion coefficient to be h̄

2 = mD, so that Qd becomes identical to the
quantum Bohm potential. For the simplest case of the Einstein relations in an
ideal gas, mD = (l · p̄)/3, where |l| is the molecular mean free path and |p̄| is
the magnitude averaged thermal (random walk) molecular momentum in-between
collisions. Isotropy results in the relation h̄

2 = lxpx, and indeed lx and px are the
basic scales obtained from statistical mechanics for deriving the kinetic theory of
gases. In other words, one cannot resolve the ideal gas dynamics within length
scales smaller than lx or for momenta smaller than px. As pointed out by [17,
18], it is intriguing that these two fundamental scales form the canonical variables
which set the exact limiting case of the Heisenberg uncertainty principle.

Finally, incorporating (2) with (16) we obtain the Fokker-Planck equation

∂ρ

∂t
+∇ · [ρ(ua − ud)] =

(
h̄

2m

)
∇2ρ, (25)

which corresponds to the entropy equation

∂s

∂t
+∇ · [(s− ρ)ua] =

(
h̄

2m

)−1

ρua · ud, (26)

yielding

∂

∂t
EntS =

(
h̄

2m

)−1

kB 〈ua · ud〉 , (27)

thus stating that positive entropy production in the Madelung fluid occurs when
the advective and the diffusive velocities are positively correlated within the fluid
domain.
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5 Summary and Discussion

The Madelung formulation suggests relations between classical hydrodynamic and
thermodynamic with quantum mechanics. In Ref. [5], two of us highlighted the
role of compressibility in the Madelung fluid, where in the current work we ex-
amine further the Shannon entropy production within the Madelung formulation
and find that it is proportional to the expectation value of ∇ · ua. Thus, the ex-
pansion of the fluid is equivalent to an entropy increase. Furthermore, we note
that interference between plane waves leads to an increase of entropy, but it also
renders the Madelung fluid compressible, allowing it to expand. Putting all of the
pieces together, we find that a simple link exists between the interference of wave
functions, compressibility of the Madelung fluid, and Shannon entropy production.

The Madelung fluid expansion suggests an analogy with diffusive processes
such as a free Joule expansion. Ref. [5] related the imaginary part of the quantum
velocity to the thermal fluctuations of the Madelung fluid. Following the current
analysis, this imaginary part can indeed be interpreted, as a diffusive drift (or
osmotic) velocity, since its flux is propositional to the minus sign of the density
gradient (as in Fick’s first law). Furthermore, this analogy suggests that the dif-
fusion coefficient is h̄/2m, and for the simplest model of diffusion in ideal gas,
the relation between the diffusion coefficient, the mean free path, and Brownian
momentum provides the lower bound of the Heisenberg uncertainty relation.

The entropy production can be expressed as well in terms of the correlation’s
expectation value between the advective and diffusive velocities. Moreover, for
classical diffusive processes, it was shown that the gradient of the Bohm potential
acts as a force to accelerate the diffusion. This appearance of the quantum poten-
tial in a classical process may shed light on its role in the Schrödinger equation. It
is important to remember however, that in the quantum case the diffusion equa-
tion, governed by Fick’s second law, cannot be extracted from the Schrödinger
equation, i.e., ∂ρ∂t 6= (h̄/2m)∇2ρ, but rather ∂ρ

∂t = −∇· (ρua). Therefore, processes
associated with density variation, such as entropy growth, are due to expansion by
the hydrodynamical advective velocity and not by diffusive irreversible processes.
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Appendix

Assuming that the phase space density function, ρph(r,p, t), in equilibrium can be
separated into coordinate and momentum parts, ρph(r,p, t) ≡ ρ(r, t)χ(p, t), then
the Boltzmann entropy becomes

EntB = −kB
∫ ∫

ρph ln ρphdrdp = EntS − kB
∫
χ lnχdp. (28)

Under the de Broglie-Bohm interpretation, the particle’s momentum is p = ∇S(r, t),
so that χ = δ(p−∇S). As seen from the two terms on the right-hand side of Eq.
(28), the Boltzmann entropy is the sum of (i) the entropy EntS associated with
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the spatial probability distribution (ρ) and (ii) a (formally divergent) entropy as-
sociated with the momentum probability distribution χ,

EntB = EntS − kB ln δ(0). (29)

The divergent contribution in the RHS of Eq. (29) results from the (unbounded)
singular Dirac’s delta distribution for the momentum. In a discrete rendition of χ
(i.e., making it a Kronecker delta), this Dirac delta distribution will be replaced by
a value of unity when the condition p = ∇S is satisfied, i.e., there is no entropic
uncertainty associated with the momentum. Consequently, such a discrete proba-
bilistic rendition will lead to no difference between EntB and EntS . Thus, within
the continuum framework that we work in, the singular term in Eq. (29) is an out-
growth of the fact that within the Bohmian interpretation (which indeed differs
from the Madelung one [4,7]) the variance of the continuum momentum distribu-
tion vanishes, equivalent to an assumption of zero temperature of the Madelung
fluid. If, however, one interprets the de Broglie guiding equation (p = ∇S) only as
a mean (hydrodynamic) motion, then the Madelung fluid has a non zero tempera-
ture that is proportional to the Fisher information [5], and the Boltzmann entropy
in (28) will, generally, not be singular.
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