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A proof of the refined Gan–Gross–Prasad conjecture
for non-endoscopic Yoshida lifts

ANDREW J. CORBETT

Abstract. We prove a precise formula relating the Bessel period of certain auto-
morphic forms on GSp4(AF ) to a central L-value. This is a special case of the refined
Gan–Gross–Prasad conjecture for the groups (SO5,SO2) as set out by Ichino–Ikeda [12]
and Liu [14]. This conjecture is deep and hard to prove in full generality; in this paper
we succeed in proving the conjecture for forms lifted, via automorphic induction, from
GL2(AE) where E is a quadratic extension of F . The case where E = F ×F has been
previously dealt with by Liu [14].
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1. Introduction

The aim of this paper is to prove a special case of a deep conjectural relation between
periods of automorphic forms and central values of L-functions. An early prototype of
such a result is due to Waldspurger [21], who computed toric integrals of automorphic
forms on GL2 to be an ‘Euler-product’ of local integrals scaled by a global constant of
certain L-values. Soon after, Gross–Prasad [8] made a series of fascinating conjectures
relating periods of SOn+1× SOn-forms along SOn (embedded diagonally) to central L-
values – the case n = 2 is implied by the work of Waldspurger. These conjectures were
extended to include all classical groups by Gan–Gross–Prasad [6].

In their original form, the Gross–Prasad conjectures omit a precise description of the
factorisation of the global automorphic period. However, a recent work of Liu [14],
extending that of Ichino–Ikeda [12], offers a refined conjecture by giving a precise con-
jectural formula for the Bessel period of a wide family of automorphic forms in terms of
the central values of certain L-functions. In its full generality, Liu’s conjecture appears
out of reach of our current methods, even for specific groups. Nevertheless, one can try
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2 ANDREW J. CORBETT

to prove special cases of it; Liu himself proved his conjecture in the case of endoscopic
automorphic forms on GSp4 [14], motivated by Prasad–Takloo-Bighash [15]. These en-
doscopic forms are classically known as Yoshida lifts and essentially correspond to lifts
from GL2 ×GL2.

In this paper we prove such a formula for the non-endoscopic Yoshida lifts: the au-
tomorphic forms on GSp4 lifted from the non-split orthogonal group GO4 (that is, the
underlying quadratic space defining GO4 has non-square discriminant). Making use of
exceptional isomorphisms, we see that such forms are obtained by automorphic induction
from GL2(E) where E is a quadratic extension of the base field F . (Liu’s result covers
the split case where E = F ×F .) For our proof we require both a much finer analysis of
the four-dimensional quadratic spaces governing GO4 (of non-square discriminant) and
a more detailed construction of the automorphic representations of this group than that
found in [14]. This analysis provides a notable diversion from Liu’s method, especially
in the final deduction of our explicit formula §7.

Before describing our results in more detail we also remark on a conjecture of Böcherer
[2] (see also [19]). In this work Böcherer formulates an equality between sums of Fourier
coefficients (indexed by ideal classes of a fixed quadratic field K) of Siegel modular forms
and certain L-values. The present paper considers the Bessel period of an automorphic
form on GSp4(A); if the form in question is the adèlisation of a Siegel modular form
then (by [4] for example) one computes the Bessel period to be precisely the Fourier
coefficients that Böcherer considered. Thus our result provides a proof of (a refinement
of) Böcherer’s conjecture for non-endoscopic Yoshida lifts.

1.1. The Bessel period. Let F be a (totally real) number field with adèle ring A = AF .
We consider the refined Gan–Gross–Prasad conjecture for the groups (SO5,SO2). In this
case we extend SO2 to the Bessel subgroup R = U ⋊ SO2, with R →֒ SO5, where U is a
certain unipotent subgroup of SO5. The conjecture describes the explicit form of a period
integral of automorphic forms on SO5 ×R along the (diagonally embedded) subgroup R.
Our approach to the problem makes use of the exceptional isomorphisms

SO5
∼= PGSp4 and SO2

∼= ResK/F K
×/F×

where K is a quadratic field extension of F .
More specifically, let χ be a unitary Hecke character of A×

K , simultaneously thought
of as a character of SO2(F )\SO2(A), and let π be an irreducible, cuspidal automorphic
representation of GSp4(A) in the space of cusp forms Vπ. Impose the central character
condition that π⊗χ|A× = 1. Additionally, make a (standard and inconsequential) choice
of automorphic character ψ of U so that ψ ⊠ χ is an automorphic character of R. We
then define the χ-Bessel period of ϕ ∈ Vπ to be the absolutely convergent integral

(1.1) P(ϕ,χ) =

∫

A×R(F )\R(A)
ϕ(g) (ψ ⊠ χ)(g) dg .

This integral defines an element of HomR(A)(π ⊗ (ψ ⊠ χ),C). The unrefined conjecture
claims that there exists some vector ϕ∗ in (the Vogan L-packet of) π such that

P(ϕ∗, χ) 6= 0 ⇐⇒ L(1/2, π ⊠ χ) 6= 0

where P(ϕ∗, χ) may be defined for more general elements ϕ∗ of the Vogan L-packet in
a similar way to (1.1). It is this unrefined dependence which we make explicit.
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To discuss the local side, assume the factorisations π = ⊗vπv ; χ = ⊗vχv ; ψ = ⊗vψv
and suppose that ϕ = ⊗vϕv. Associated to this data, we follow Liu in defining

α♮(ϕv , χv) ∈ HomR(Fv)(πv ⊗ (ψv ⊠ χv),C)

at each place v to be an integral over local matrix coefficients (see §6). Roughly speaking
– up to a normalisation constant (see (6.1)) – the integral defining α♮(ϕv , χv) is equal to∫

F×
v \R(Fv)

Bπv(πv(gv)ϕv, ϕ̄v) (χv ⊠ ψv)(gv) dgv

where Bπv is a local unitary pairing for πv. The foundation on which Liu is able to
generalise the refined conjecture is the regularisation of these integrals. They are shown
to converge absolutely and a natural normalisation is found such that α♮(ϕv , χv) = 1
for almost all places v [14, Theorem 2.1 & 2.2]. We may thus make sense of the infinite
product

∏
v α

♮(ϕv, χv). The refined Gan–Gross–Prasad conjecture then asks for the
constant of proportionality between this product of local factors and the square of the
absolute value of the Bessel period.

1.2. Lifted representations. The representations of SO5(A) ∼= PGSp4(A) are pre-
cisely those representations of GSp4(A) with trivial central character. We consider a
class of representations of PGSp4(A) which are lifted from representations of the group
GO4(A), when GO4 is non-split, via the theta correspondence for (GO4,GSp4) – we call
such lifted representations the non-endoscopic Yoshida lifts. The domain of this lift com-
prises of the representations of GO4(A) (of trivial central character); these are uniquely
determined by representations of D×(AE) for a canonical choice of quadratic extension
E/F and quaternion algebra D over F . Thus, via Jacquet–Langlands transfer, one may
view a non-endoscopic Yoshida lift π as being of the form π = AI(π′): the automorphic
induction, to GSp4(A), of a representation π′ of GL2(AE).

1.3. Main result. We refer the reader to Theorem 7.5 for a more precise statement of
our result. To simplify notation here assume the following decompositions for both the
Petersson inner product Bπ on π and the Tamagawa measure dg on A

×\R(A):
(1.2) Bπ =

∏

v

Bπv , dg =
∏

v

dgv

where Bπv and dgv are the local factors used to define α♮(ϕv , χv).

Theorem. Let π = AI(π′) be a non-endoscopic Yoshida lift to PGSp4(A), as per §1.2,
where π′ is an irreducible, cuspidal automorphic representation of GL2(AE) with trivial
central character. Let K be a quadratic field extension of F such that SO2

∼= K×/F×.
Let χ be a unitary Hecke character of A×

K with χ|A× = 1, then χ is simultaneously an
automorphic character of SO2(A). Denote by χK/F the quadratic character associated to

K by class field theory. Assume the choices of (1.2) and that the local integrals α♮(ϕv , χv)
are properly normalised (as in Definition 7.1). Then for a cusp form ϕ = ⊗vϕv in the
space associated to π we have

|P(ϕ,χ)|2 =
1

4

ζF (2) ζF (4)L(1/2, π ⊠ χ)

L(1, π,Ad)L(1, χK/F )

∏

v

α♮(ϕv , χv) .
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1.4. Remarks. The case where E = F ×F is dealt with by Liu [14, §4]. Liu’s theorem
determines the Bessel period attached to an automorphic form on GSp4 which is a
lift from GL2 ×GL2. These lifts are precisely the endoscopic representations of GSp4.
Moreover, Qui has proved a formula for |P(ϕ,χ)|2 when π is in the nontempered cuspidal
spectrum of SO5 (see [16]). This is achieved by considering the so-called Saito–Kurukawa
and Soudry lifts.

Following these two works, this paper uses the functorial lift from GL2(E) to give a
wide class of nonendoscopic, tempered, cuspidal automorphic representations of PGSp4
that conform to the refined Gan–Gross–Prasad conjecture. Further works on attempting
to prove such a formula in general have been approached by using tools such as relative
trace formulae (see [5] for example).

The assumption that F is a totally real number field is needed only to permit the
application of a result of [7] on the Petersson inner product of a theta lift; they, in turn,
only require this assumption to use the Siegel–Weil formula in their calculation.

Finally we would like to highlight the occurrence of the constant 1/4 in our formula, to
be compared with the constant 1/8 appearing in [14]. This falls in line with the general
conjecture of Liu [14] in that it relates precisely to the (conjectural) Arthur parameters of
π and χ (as first pointed out by Ichino–Ikeda [12, §2] and then by Gan–Ichino [7, Remark
1.2]). Specifically, the constant should be 1

|Sπ||Sχ| where Sπ (resp. Sχ) is the centraliser

of the image of the Arthur parameter of π (resp. χ); note that in our case we trivially
have |Sχ| = 2. The discrepancy of 1/2 between our result and that of [14] is supported
by the observation that

|Sπ| =
{

4 if E = F × F,

2 if E = F (
√
e ) for some e 6∈ (F×)2.

It is interesting to see this factor arise naturally due to the structure of the representa-
tions of GO4(A): in [14] the Bessel period boils down to twice the period considered by
Waldspurger [21] in contrast to the single occurrence that we observe in our computation.

This paper is set out as follows: after some preliminary definitions regarding the Bessel
period (§2) we review the theta correspondence for (GO4,GSp4) (§3) and discuss the
representation theory of GO4 (§4), explaining the lift we use and its domain. We then
analyse the global (§5) and local (§6) periods before uniting these quantities (§7) via a
theorem of Waldspurger and proving the result at hand.

Acknowledgements. The author would like to offer sincere thanks to both Yifeng Liu,
for his helpful comments and discussions, and Abhishek Saha, for his valuable guidance.
Thanks are also due to Katharine Thornton for her many insightful suggestions.

2. Preliminary Discussion

2.1. Some conventions. We work over a fixed number field F which we assume to be
totally real. Put O for the ring of integers of F and A for the ring of F -adèles. Given
an extension L ⊃ F let AL = A⊗F L.

If G is a linear algebraic group defined over F and R is an F -algebra write G(R)
for the R-points of G. At a place v of F simplify the notation G(Fv) to Gv . Given a
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function f on G, denote left and right translation by elements g ∈ G by

L(g)f(x) = f(g−1x) and R(g)f(x) = f(xg) .

If S is a finite set of places of F then introduce the following notation: FS =
∏
v∈S Fv

and AS =
∏′
v 6∈S Fv . Note the compatibility of the products G(FS) =

∏
v∈S G(Fv) and

G(AS) =
∏′
v 6∈S G(Fv) meaning that we can formally identify G(A) = G(FS)G(A

S).

2.1.1. Measures. For an algebraic group G we fix a Haar measure on G(A) by taking
the Tamagawa measure dg (as originally defined in [22]). Let dgv be a specified choice
of local Haar measures on Gv for each v such that

∏
v dgv is a well defined measure on

G(A). By the uniqueness of Haar measures there exists a constant of proportionality
C ∈ C such that dg = C

∏
v dgv . We call such a C Haar measure constant, as in [12].

2.1.2. Automorphic representations and pairings. The space of automorphic (resp. cusp)
forms on G(A) shall be denoted A(G) (resp. A0(G)). For an irreducible, cuspidal
automorphic representation π of G(A) we denote by Vπ the realisation of π in A0(G)
and put ωπ for its central character. One has π ∼= ⊗vπv (and Vπ ∼= ⊗′

vVπv) where at
each place v of F , πv is an irreducible, admissible, unitary representation of Gv on Vπv .
Let π̄ denote the conjugate representation of π realised on the space

Vπ̄ =
{
f̄ : f ∈ Vπ

}
.

There is a canonical bilinear pairing Bπ : Vπ ⊗ Vπ̄ → C given by the Petersson inner
product

Bπ(f, f̃) =
∫

ZG(A)G(F )\G(A)
f(g)f̃(g)dg

where ZG is the maximal split torus in the centre of G and dg is the Tamagawa measure
on (ZG\G)(A) as always. In particular, since Vπ is a complex Hilbert space and π is
unitary, one can show that π̄ is isomorphic to π∨, the contragredient representation of
π realised on the space of smooth vectors in the dual space V∨

π of Vπ. Moreover, any
pairing on a unitary Hilbert space representation is unique up to a scalar factor. Both of
these facts are corollaries to the Riesz representation theorem. Throughout, any local,
irreducible, admissible representation of Gv is always considered to be unitary.

2.1.3. L-functions. Given a representation r of the Langlands dual group and an au-
tomorphic representation π of G we have the Langlands L-function L(s, π, r). When
r is the standard representation of the dual group, which we assume is a subgroup of
GLn(C), we write L(s, π) for L(s, π, r). The notation π1⊠π2 denotes the (external tensor
product) representation of the direct product G1 ×G2, where πi are representations of
the groups Gi for i = 1, 2, respectively.

The most interesting L-function for us is given as follows. Let π be an automorphic
representation of PGSp4(A)

∼= SO5 and let χ be a character of SO2(F )\SO2(A) cor-
responding to a Hecke character of A×

K as in the introduction. Then we consider the
SO5 × SO2 L-function L(s, π ⊠ χ). However, other authors interpret this L-function as:

• the GSp4 ×GL2 L-function L(s, π ⊠ AI(χ)), where AI(χ) is the automorphic
induction of χ from A

×
K to GL2(A), or,
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• the GSp4(K) L-function L(s,BC(π) ⊗ χ), where BC(π) is the base change of π
from GSp4(AF ) to GSp4(AK).

Each of these representations arises due to a functorial transfer from the original rep-
resentation π ⊠ χ. The characteristic property of such a transfer implies that these
L-functions are indeed all equal.

Other notation includes: ζF , the Dedekind zeta function for a number field F , and
χK/F which always denotes the quadratic character of K× given by class field the-

ory. Note that for any Hecke character χ of A
×
K , the adjoint L-function is trivially

L(s, χ,Ad) = L(s, χK/F ).

2.1.4. Quadratic spaces. Let (V, q) be a quadratic space over F of even dimension 2m
(we always assume such a V is non-degenerate). The quadratic form q corresponds to
a symmetric matrix Sq ∈ Msym

2m (F ) such that q(v) = vt Sqv for v ∈ V . One defines the
discriminant of V to be discV = (−1)m detSq and the associated discriminant algebra
as

(2.1) KV =

{
F (

√
discV ) if discV 6∈ (F×)2

F × F if discV ∈ (F×)2 .

We intend to study the orthogonal similitude group of V :

GO(V ) = { g ∈ GL(V ) : q(gv) = λ(g)q(v) ∀ v ∈ V }
=

{
g ∈ GL2m(F ) : gt Sqg = λ(g)Sq

}

where λ : GO(V ) → F× is the similitude character. One observes that (det g)2 = λ(g)2m,
so there is a natural sign character on GO(V ):

sgn : g 7−→ det g/λ(g)m ∈ µ2

where µ2 = µ2(F ). We define the connected component of GO(V ) to be the normal
subgroup GSO(V ) = ker(sgn) which sits in the exact sequence

1 −→ GSO(V ) −→ GO(V )
sgn−→ µ2 −→ 1 .

Similarly, if one defines the classical orthogonal group O(V ) = ker(λ), then the special
orthogonal group SO(V ) is found in the exact sequence

1 −→ SO(V ) −→ O(V )
det−→ µ2 −→ 1

where det = sgn here. When dimV = 4 we see later in §4.1 that the sign character is
surjective and we exhibit a natural choice of representatives for GO(V )/GSO(V ). In
essence, there is a unique element ι ∈ GO(V ) with

(2.2) λ(ι) = 1 ; ι2 = 1 ; det ι = −1 .

We are then able to fix a splitting such that µ2 is identified with the subgroup of GO(V )
generated by ι. In particular we arrive at the decomposition GO(V ) = GSO(V )⋊ µ2.
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Remark 2.1. For an F -algebra A, the above comments apply more generally to the exact
sequence

1 −→ GSO(V )(A) −→ GO(V )(A)
sgn−→ µ2(A) −→ 1

where the A points of GSO(V ) coincide with the kernel of the sign function on GO(V )(A).
In particular we have a well defined notion of µ2(A), GSO(V )(A), GSO(V )v and so on.

2.2. The Bessel period and definitions.

2.2.1. GSp4(F ) in coordinates. Let W = F 4 and endow W with an antisymmetric bi-
linear form (·, ·)W so that W becomes a four-dimensional symplectic vector space over
F . In the coordinates of F 4 one may choose

(u, v)W = ut
(

0 12
−12 0

)
v

where 12 is the 2 × 2 identity matrix. Setting W1 = F 2 then W = W1 ⊕W∨
1 gives a

complete polarisation of W such that W∨
1 is identified with the dual space of W1 under

the form (·, ·)W . Recall the definition for the symplectic similitude group:

GSp4(F ) = GSp(W ) = { g ∈ GL(W ) : (gu, gv)W = λ(g)(u, v)W ∀ u, v ∈W}
where λ(g) ∈ F×. We use λ for the similitude character of any similitude group.

2.2.2. The torus. Fix a choice of anisotropic, symmetric matrix

S =

(
a b/2
b/2 c

)
∈ Msym

2 (F )

to represent the quadratic form qS(v) = vt Sv for v ∈ W1. Then (W1, qS) is a two-
dimensional quadratic space over F of (scaled) discriminant

d = −4 detS = b2 − 4ac .

By the anisotropy of S (that qS(v) = 0 ⇒ v = 0) it is clear that d is not a square in F .

Hence the discriminant algebra KW1
= F (

√
d ) is a quadratic field extension of F . Fix

the notation K = KW1
. We consider a maximal, non-split torus in GL2(F ) given by the

orthogonal group

T = TS =
{
g ∈ GL2(F ) : gt Sg = (det g)S

}
= GSO(W1) .

One has the isomorphism T ∼= ResK/F K
× of algebraic groups over F . Specifically, one

shows that

T (F ) =
{
x+ y

(
b/2 c
−a −b/2

)
: x, y ∈ F

}×

and defines an isomorphism T (F ) → K× = F (
√
d )× by

x+ y
(
b/2 c
−a −b/2

)
7−→ x+ y

√
d
2 .
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2.2.3. The Bessel subgroup. Consider the following subgroups of GSp4(F ):

• Let U be the unipotent radical stabilising the flag {0} ⊂W1 ⊂ W ; explicitly we
have

U =

{
u(A) =

(
12 A
0 12

)
: A ∈ Msym

2 (F )

}
.

All elements of U have similitude λ(u(A)) = 1. We also identify U with the space
of symmetric F -linear maps W∨

1 →W1. Taking the standard additive character

(2.3) ψ : F\A −→ C
× ,

we define a character ψM of U(F )\U(A), for a matrix M ∈ Msym
2 (F ), by

(2.4) ψM (u(A)) = ψ(Tr(MA)) .

All characters of U arise in this way for some M .

• One has an embedding T →֒ GSp(W ) by mapping g ∈ T to

ĝ =

(
g

(det g) gt −1

)
∈ GSp(W ) .

This element has similitude factor λ(ĝ) = det g. Moreover if u ∈ U then ug = gu.

• The Bessel subgroup of GSp4(F ) is then the semidirect product

R = U ⋊ T .

2.2.4. The Bessel period. Let π be an automorphic representation of GSp4(A). All au-
tomorphic representations of the abelian group T (A) are given by characters

χ : T (F )\T (A) −→ C
× ,

of which we now fix a χ such that ωπ · χ|A× = 1. We shall simultaneously think of χ
as a character of K×\A×

K . For ϕπ ∈ Vπ, the Bessel period of ϕπ (with respect to χ) is
defined by the period integral

(2.5) P(ϕπ , χ) =

∫

A×T (F )\T (A)

∫

U(F )\U(A)
ϕπ(uĝ)χ(g)ψ

−1
S (u) du dg

where du and dt are the Tamagawa measures on U(A) and A×\T (A) respectively. We
realise A

× as the scalar matrices in the domain of integration A
×R(F )\R(A).

2.3. Notation for groups. For a fixed four-dimensional quadratic space V over F and
the four-dimensional symplectic vector space W = F 4 (from §2.2.1) assign the notation

G = GSp(W ) H = GO(V ) H0 = GSO(V )

G1 = Sp(W ) H1 = O(V ) H0
1 = SO(V )

which will be used freely throughout. Also define the groups

Y = G(Sp(W )×O(V )) = { (g, h) ∈ GSp(W )×GO(V ) : λ(g) = λ(h) }
and

G+ = { g ∈ G : λ(g) = λ(h) for some h ∈ H } .
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3. The Theta Correspondence for (GO4,GSp4)

This section is devoted to constructing certain representations of GSp4 from repre-
sentations of GO4 both locally and globally.

3.1. The local theta correspondence. Let v be a place of F and omit the subscript v
from the notation in this section (F = Fv , G = G(Fv), W =W ⊗F Fv and so on). Define
the space W =W⊗V which is given the symplectic form (· , ·)W = (· , ·)W ⊗(· , ·)V . Then
groups G1 and H1 form a reductive dual pair as subgroups of Sp(W). The polarisation
of W =W1 ⊕W∨

1 induces a polarisation

W = (W1 ⊗ V )⊕ (W∨
1 ⊗ V )

on which we make some remarks:

• Having chosen the natural basis for W we may identify W∨
1 ⊗ V ∼= V 2.

• There is an isomorphism W∨
1 ⊗ V ∼= HomF (W1, V ).

(These comments are also relevant in the global setting, considering the adèlic points of
the above spaces.)

Choose a non-trivial additive character ψ of F by taking it to be a local component of
the standard (additive) adèlic character (2.3). Let ω = ωψ be the Weil representation
of G1 × H1, with respect to ψ, which may be extended to a representation of Y as
in [9, p. 82]. We realise ω in the space of Schwartz functions Vω = S(V 2) where Y acts
as follows. For (g, h) ∈ G1 ×H1 and φ ∈ S(V 2):

(3.1)

ω(1, h)φ(x) = φ(h−1x)

ω(J2, 1)φ(x) = γ4 φ̂(x)

ω(u(A), 1)φ(x) = ψ(Tr(MxA))φ(x)

ω(m(B), 1)φ(x) = χV (detB) |detB|2F φ(xB)

where the elements

J2 =

(
0 12

−12 0

)
; u(A) =

(
12 A
0 12

)
; m(B) =

(
B 0

0 Bt
−1

)

generate G1 = Sp(W ) where A ∈ Hom(W∨
1 ,W1) and B ∈ GL(W1). The character

χV (detB) is the quadratic character of F×; it is defined using the Hilbert symbol. The
action of the unipotent group U is dependent on the Gram matrix of x = (x1, x2)

t ∈ V 2

defined to be

Mx =
(
(xi, xj)V

)
i,j
.

We define the character ψS(u(A)) = ψ(Tr(SA)). We also have that γ4 ∈ µ4 is a certain

fourth root of unity and φ̂ is the Fourier transform of the Schwartz function φ (see [18, §1]
for more details on this action). As in [9], the extended action of ω to Y is obtained by
taking (g, h) ∈ Y , φ(x) ∈ S(V 2) and setting:

(3.2) ω(g, h)φ(x) = |λ(h)|−2
F ω(g1, 1)φ(h

−1x)
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where

g1 = g

(
12 0
0 λ(g)−112

)
∈ G1 .

We now closely follow [7, §5]. Define the induced Weil representation by compact
induction:

Ω = IndH×G+

R (ω) .

If σ is an irreducible, unitary, admissible representation of H and σ̄ is the conjugate
representation of σ then the maximal σ̄-isotypic quotient of Ω is given by Ω / ∩ ker(Ψ)
where Ψ runs over HomH(Ω, σ̄). This is a σ̄-isotypic direct sum as an H-representation.
Since G+ naturally commutes with H in G+ ×H, the space of Ω /∩ ker(Ψ) inherits an
action of G+ and as a representation of G+ ×H thus we may write

Ω / ∩ ker(Ψ) = σ̄ ⊠Θ+(σ)

where Θ+(σ) is a smooth representation of G+. We call Θ+(σ) the big theta lift of σ
to G+. Whilst Θ+(σ) may be zero, it is known that if this is not the case then Θ+(σ)
is of finite length, and hence is admissible, and has a unique, maximal, irreducible
quotient [7, Theorem A.1] which we denote θ+(σ). This allow us to finally define the
(local) theta lift of σ to G as

θ(σ) = IndGG+(θ
+(σ)) .

By [7, Lemma 5.2], if σ is non-zero and unitary1 then θ(σ) is an irreducible representation
of G. We obtain a unique (up to scalar) Y -equivariant, surjective map

(3.3) θ : Vσ ⊗ Vω −→ Vθ(σ) .

Remark 3.1. That θ+(σ) exists as a unique, maximal, irreducible representation is in
fact the statement of the local Howe conjectures.

3.2. The global theta correspondence. In this section we return to our original
notation where F is a number field. The following construction follows [7, §7.2].

We have the fixed, non-trivial, additive character ψ = ⊗vψv of A/F (chosen in (2.3)).
For each place v of F we let ωv = ωψv

be the Weil representation of Y (Fv), with respect
to ψv, realised in the Schwartz space Vωv = S(V 2(Fv)). Let Bωv : Vωv ⊗ Vω̄v → C be
the canonical pairing defined by

Bωv(φ, φ̃) =

∫

V 2(Fv)
φ(x) φ̃(x) dx .

The Weil representation of Y (A) is given by ω = ⊗v ωv, and comes equipped with the
decomposable unitary pairing Bω =

∏
v Bωv . The action of ω in Vω =

⊗
v S(V 2(Fv)) is

applied place-by-place using the local action in (3.1) and (3.2).

1This is indeed the case when σ is a local component of an irreducible, unitary, cuspidal automorphic
representation of H(A) with a non-zero, cuspidal global theta lift to G(A).
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The global theta correspondence, in our setting, provides a cuspidal automorphic form
on G(A) from one on H(A). We define this cusp form now. For a Schwartz function
φ ∈ Vω we note that the series

∑

x∈V 2(F )

ω(g, h)φ(x)

is a smooth function on (g, h) ∈ Y (F )\Y (A) of moderate growth.

Definition 3.1. Let σ be an irreducible, cuspidal automorphic representation of H(A)
and let φ ∈ Vω. Then for any f ∈ Vσ ⊂ A0(H) we define the theta integral

(3.4) θ(f, φ; g) =

∫

H1(F )\H1(A)

∑

x∈V 2(F )

ω(g, hhg)φ(x) f(hhg) dh

where hg is any element in H(A) such that λ(hg) = λ(g).

This integral is absolutely convergent and independent of the choice hg since all such
elements are of the form hgh0 for h0 ∈ H1(A). One computes the central character of
θ(f, φ) to be equal to ωσ, the central character of f (since dimV = 4 is even).

By construction, θ(f, φ) is a function on G+(F )\G+(A). By the natural inclusion of
G+ →֒ G we extended θ(f, φ) to a function on G(F )\G(A) by letting it take the value
zero outside G+(A). This extension is unique.

Remark 3.2. For any h ∈ H = H0
⋊ µ2 there is an h0 ∈ H0 with λ(h) = λ(h0) since

h = h0ε for ε ∈ µ2 ∼= 〈ι〉 where ι ∈ H is the element defined in (2.2) with λ(ι) = 1. Thus
we may interchange H with H0 in the definition of G+.

Definition 3.2. Let θ(σ) be the automorphic representation of G(A) realised in the
space

Vθ(σ) =
{
R(g) θ(f, φ) : f ∈ Vσ, φ ∈ S(V 2(A)), g ∈ G(A)

}
.

We call θ(σ) the (global) theta lift of σ to G(A).

We shall fix assumptions on σ (see Assumption 4.1) under which θ(σ) is cuspidal.
Under these conditions [7, Lemma 7.12] applies so that Vθ(σ) 6= 0. We then obtain a
Y (A)-equivariant, surjective map

(3.5) θ : Vσ ⊗ Vω −→ Vθ(σ) .

We may restrict θ to Vωv ⊗Vσv at each place v and conclude that, by the uniqueness of
the local maps (3.3), for σ = ⊗v σv,

θ(σ) ∼= ⊗v θ(σv)

and is irreducible [7, Lemma 7.2]. In particular, the local factors θ(σv) are unitary and
non-zero at each v.
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3.3. Automorphic induction. An alternative description of the theta lift is that it
arises due to a functorial transfer of representations from H ′(A) to GSp4(A) where
H ′ = ResE/F (GL2) is the Weil restriction of scalars (meaning that H ′ is unique in
that H ′(F ) = GL2(E) as algebraic groups) and E is a quadratic extension of F . For
simplicity let us consider the trivial central character interpretation: the automorphic
induction transfer between automorphic representations of the groups H ′

1 = ResE/F SL2

and G1 = Sp4. On the one hand, the L-group of G1 is GL 1 = SO5(C)×GF where GF is
the absolute Galois group of F . On the other hand, the L-group of H ′ is

HL ′
1
∼=

∏

GE\GF

SL2(C)⋊ GF

noting GE\GF ∼= Gal(E/F ) acts on the first factor in the product via permutations of
the index set. Once again, make note of the isomorphism SO5(C) ∼= PGSp4(C) which
gives rise to an embedding

SL2(C)× SL2(C) −→ Sp4(C) ;

((
a b
c d

)
,

(
a′ b′

c′ d′

))
7−→




a b
a′ b′

c d
c′ d′




which in turn induces an L-homomorphism

u : HL ′
1 → GL 1 .

On composing u with a representation r of the Weil–Deligne group W ′
E of E into HL ′

1

we obtain a representation u ◦ r that lands in GL 1. Noting W ′
E ⊂ W ′

F , this acquired
representation is precisely the induced representation

u ◦ r = Ind
W ′

F

W ′
E
r

(on the Galois side). Whilst on the automorphic side we have an irreducible, cuspidal
automorphic representation AI(π′) of G1(A) for each π

′ on H ′
1(A) = SL2(AE). A more

general review in support of this exposition is given in [3].
A characteristic property of such a lift is that the L-function of the representations

(AI(π′) and π′) are equal, thus uniquely characterising the target L-packet. By the work
of Roberts [18, §8] we find that this is also the case for the theta lift discussed in the
previous two sections. Then, due to an exceptional isomorphism (see the next section,
§4.1), we may realise the group GO2 as ResE/F (GL2) and hence any representation given
by the above theta lift is functorial in this sense.

4. Automorphic Representations of GO4

To classify the image of the theta correspondence for (GO4,GSp4) we provide a thor-
ough review concerning the domain of the lift: we determine the structure of all four-
dimensional quadratic spaces V , giving rise to GO(V ) ∼= GO4, and with this analysis
we examine the irreducible, cuspidal automorphic representations of GO(V )(A). The
review in this section is largely expository, however it includes new notation and crucial
results which are used freely later on.
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4.1. Four-dimensional quadratic spaces and their similitude groups. Any four-
dimensional quadratic space is isomorphic to a member of a family of spaces whose struc-
ture is explicit and indexed by two invariants: a quaternion algebra and a square-free
integer (corresponding to the discriminant). For more details we refer to the exposition
given in [18, §2].

Consider a four-dimensional quadratic space V over F with disc(V ) = e. Let E = KV

be the discriminant algebra of V (defined in (2.1)) and put Gal(E/F ) = {1, κ}, using
both κ(z) and zκ to denote the image of z ∈ E under κ. The usual norm and trace of
E/F are given by

NE/F (z) = zzκ and TrE/F (z) = z + zκ .

Definition 4.1. Let B be an arbitrary F -algebra whose centre is E with an involution
x 7→ x∗ that fixes E. Call B a quadratic-quaternion algebra over F if there is a quaternion
algebra D, over F , contained in B such that the natural map D ⊗F E → B, given by
x⊗ z 7→ xz, is an isomorphism of E-algebras and the canonical involution on D is given
by x 7→ x∗. Choosing a D, there is no loss in generality in considering B = D(E), the
E-points of the F -algebra D. The norm and trace on B are defined respectively as

NB(x) = xx∗ and TrB(x) = x+ x∗ .

When restricted toD these are the usual reduced norm ND and trace TrD. EndowB with
the unique Galois action (with respect to D) by linearly extending the automorphism κ
of E to B, that is κ(xz) = xκ(z) for z ∈ E, x ∈ D. Denote this Galois action by κ as
well. Finally, define a second four-dimensional quadratic space (over F ) by

X = XD,e = {x ∈ D(E) : κ(x) = x∗ } ,
whose quadratic form, denoted NX , is given by the restriction of NB to X. We find that
this new space has discXD,e = detNX = e upon computing the determinant of NX .

Remark 4.1. A Galois action on B is an F -automorphism a : B → B such that a2 = 1
and a(xz) = a(x)κ(z) for z ∈ E, x ∈ B. There is a bijection between Galois actions on
B and quaternion F -algebras contained in B.

By [18, Proposition 2.7] we have the exact sequence

(4.1) 1 −→ E× ∆−→ F× ×B× ρ−→ GSO(X) −→ 1 ,

where the injection ∆: E× → F× ×B× is given by ∆(z) = (NE/F (z), z) and the action

of F× ×B× on X is given by

ρ(s, a)x = s−1a x ι(a)∗ .

In particular, writing ∆E× for Im(∆), we have

(4.2) F× ×B× /∆E× ∼= GSO(X) .

The similitude factor of an element ρ(s, a) ∈ GSO(X) is given by

λ(ρ(s, a)) = s−2NE/F (NB(a)) .

We denote by ι the restriction of the Galois action κ to the subspace X ⊂ B (again
writing ι(x) and xι for the image of x under ι). The notation ι rightfully coincides
with that already introduced in §2.1.4 since the map ι is precisely the unique element
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of GO(X) satisfying the properties ι ∈ O(X), ι2 = 1 and det ι = −1 by [18, Proposition
2.5 & 2.7]. We choose this element to fix, once and for all, the splitting

µ2(F ) ∼= 〈 ι 〉 and GO(X) ∼= GSO(X)⋊ 〈 ι 〉 .
Conjugating an element ρ(s, a) ∈ GSO(X) by ι gives the relation ιρ(s, a)ι = ρ(s, aι); we
denote this adjoint of ι action by

(4.3) Ad(ι) : ρ(s, a) 7−→ ρ(s, aι) .

Proposition 4.2. Let V be an arbitrary four-dimensional quadratic space over F of
discriminant e. Then there exists a quaternion algebra D over F and an isomorphism
γ : V −→ XD,e such that the map

cγ : GSO(V ) −→ GSO(XD,e) ,

given by cγ(g) = γ ◦ g ◦ γ−1, is an isomorphism of similitude groups. There is therefore
no loss in generality in considering the space GSO(XD,e) in place of GSO(V )

Proof. See [18, Proposition 2.8]. �

From here on in, fix a quaternion algebra D over F and a square free integer e. We
shall work with the four-dimensional quadratic space X = XD,e. Fix notation for: the
quadratic extension E = F (

√
e ) and the quadratic quaternion algebra B = D(E). We

assume the application of V = X to the notations H = GO(V ) etc. of §2.3.

4.2. Local representation theory for H(Fv). In this section let v be a place of F
and suppress the subscript v from the notation (for example, F now denotes a local
field). We shall systematically discuss the local (and later global) representation theory
of H in terms of that of H0. We use this section to fix notation; this material has been
previously considered in the expositions [10, §1], [18, §2-4] and [7, §A] – we advise the
reader to look there for details and proof. In [20], all restrictions in [18] are removed, in
particular the quadratic space X may be of any signature.

4.2.1. Admissible representations of H0. In light of the isomorphism in (4.2),

ρ : F× ×B× /∆E× ∼−→ H0 ,

let (τ,Vτ ) be an irreducible, admissible, unitary representation of B× = B×(F ) with
central character ωτ (noting ZB× = E×). Further assume that ωτ is Gal(E/F )-invariant;
thus we let ν be the unitary character of F× such that

(4.4) ωτ = ν−1 ◦ NE/F .

Every irreducible, admissible, unitary representation of H0 may then be written in the
form σ0 = σ0(ν, τ), for such a ν and τ , by defining

σ0(ρ(s, a)) = ν(s)τ(a) .

Both σ0 and τ are realised in the same space Vσ0 = Vτ . The requirement on ν (4.4)
ensures that σ0(ν, τ) is indeed trivial on ∆E×. We identify the centre ZH0

∼= F×,
through ρ, as the set

{
(x−1, 1) : x ∈ F×} ⊂ F× ×B×/∆E×,
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from which we note that σ0 has central character

ωσ0 = ν−1 .

Definition 4.2. Suppose that v is not split in E (so that E = E(Fv) is a field). In this
case, we call an irreducible admissible representation σ0 of H0 distinguished if

σ0 = σ0(ω
−1
̺ , ̺DE ) ,

for some irreducible admissible representation ̺ of GL2(F ); denoting by ̺E the base-
change lift of ̺ from GL2(F ) to GL2(E), and appending the superscript D to mean that
̺DE is the Jacquet–Langlands transfer of ̺E from GL(E) to D×(E) = B×.

The central character of such a distinguished σ0(ω
−1
̺ , ̺DE ) is ω̺, the central character

of ̺. This follows from properties of the base-change lift (that ω̺E = ω̺ ◦ NE/F ).

Distinguished representations are invariant under the adjoint action of ι on H0 (4.3).
Hence a distinguished representation has the property that σ0 ∼= σ0◦Ad(ι) since we have
̺E ∼= ̺E ◦ ι (see [1, §3]).

4.2.2. Admissible representations of H. To describe the irreducible, admissible repre-
sentations of H it suffices2 to consider the induction of some σ0 as σ0 varies over the
irreducible, admissible representations of H0. To make this explicit, put σι0 = σ0 ◦Ad(ι)
and consider a second representation of H0 in Vσ0 given by

σι0(h)v = σ0(ιhι)v for v ∈ Vσ0 .
Now define the representation (σ̂,Vσ̂) of H by setting Vσ̂ = Vσ0 ⊕Vσ0 and letting H act
on u⊕ v by {

σ̂(h0)u⊕ v = σ0(h0)u⊕ σι0(h0)v

σ̂(ι)u⊕ v = v ⊕ u

noting that any h ∈ H may be written uniquely as h = h0ε for some h0 ∈ H0 and ε ∈ µ2.
On the other hand, recall that IndHH0(σ0) is given by right translation in the space

{
f : H −→ Vσ0 | f(h0h) = σ0(h0)f(h) for h0 ∈ H0

}
.

One may check that there is an H-module isomorphism between the representations
σ̂ ∼= IndHH0(σ0). We will use σ̂ as a model for IndHH0(σ0) from now on and proceed by
dividing our analysis into two cases.

Definition 4.3. Let σ0 be an irreducible, admissible representation of H0.

• We say σ0 is regular if σ̂ ∼= IndHH0(σ0) is irreducible. We find σ̂ ∼= σ̂ ⊗ sgn and,

as H0-representations, σ0 6∼= σι0. In this case denote σ+0 = IndHH0(σ0).

2Let σ be an irreducible, admissible representation of H . Then either ResHH0(σ) is irreducible, in which

case σ is an irreducible constituent of IndH
H0(ResHH0(σ)) and we are in the ‘invariant’ case, or

ResHH0(σ) = σ0,1 ⊕ σ0,2 ,

in which case σ ∼= IndH
H0(σ0,i) for either i = 1, 2; this is the ‘regular’ case. Definition 4.3 provides a full

explanation of the invariant and regular cases.
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• We say σ0 is invariant if σ̂ ∼= IndHH0(σ0) is reducible. We find σ̂ 6∼= σ̂ ⊗ sgn and
the adjoint action of ι in Vσ0 is trivial, that is, σ0 ∼= σι0. In this case

IndHH0(σ0) ∼= σ+0 ⊕ σ−0

where σ±0 are two non-isomorphic irreducible representations of H.

Remark 4.3. If σ0 is distinguished then we have already noted that σ0 is invariant. In
this instance exactly one of σ±0 occurs in the theta correspondence with GSp4 (see [18,
Theorem 3.4]), denoting this representation by σ+0 . Then for an irreducible, admissible
representation σ of H we have that θ(σ) 6= 0 if and only if σ 6∼= σ−0 for some distinguished
σ0 of H0.

4.3. Global representation theory and automorphic forms for H(A). In this
section we reinstate F as a number field. Our purpose is now to review the theory
of automorphic forms on H(A). The following sources should be referred to for more
detail: [10, §1], [18, §5-7] and [7, §2].

4.3.1. Automorphic representations of H0(A). The exactness of the sequence in (4.1)
(taking F = Fv for each place v) implies that

1 −→ A
×
E

∆−→ A
× ×B×(A)

ρ−→ H0(A) −→ 1

is also exact, where ρ and ∆ operate as in the exact sequence (4.1) at each place. We
identify E(A) with AE and note B×(A) = D×(AE). As subspaces of L2(A× × B×(A)),
the tensor product of the spaces of cusp forms A0(F

×)⊗A0(B
×) is dense in A0(F

××B×)
and since these are spaces of smooth functions they are isomorphic. Any function on A

××
B×(A) /∆A

×
E is a function on A× ×B×(A) subject to the constraint that it is constant

on equivalence classes modulo ∆A
×
E = Im(∆). In particular, if ν : F×\A× → C

× is a
unitary Hecke character and (τ,Vτ ) an irreducible, cuspidal automorphic representation
of B×(A) then, given some η ∈ Vτ , we have that ν ⊗ η ∈ A0(F

× × B× /∆E×) if and
only if

ωτ (z) = ν−1 ◦ NE/F (z) ∀ z ∈ A
×
E

where ωτ : E
×\A×

E → C× is the central character of τ . Hence any irreducible, cuspidal
automorphic representation of H0(A) is of the form σ0 = σ0(ν, τ), for such a ν and τ ,
where σ0 is realised in the space of cusp forms Vσ0 = { ν ⊗ η : η ∈ Vτ } by the formula
σ0(ρ(s, a)) ν ⊗ η = ν(s)ν ⊗ τ(a)η. Once again, the central character of σ0 is ωσ0 = ν−1.

4.3.2. Factorising automorphic representations of B×(AE) and H0(A). Consider the iso-
morphism

(4.5) E ⊗F Fv ∼=
∏

w|v
Ew ,

where the product is over all places of w of E above v [17, Proposition 4-40]. One
deduces

B×(Fv) ∼=
∏

w|v
B×(Ew) .
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Thus smooth representations of B×(Fv) are of the form τv = ⊗w|v τw where the τw are

smooth representations of B×(Ew) for w|v. If σ0 = σ0(ν, τ) is an irreducible, cuspidal
automorphic representation of H0(A), as in §4.3.1, then by the tensor product theorem
we may assume σ0 ∼= ⊗vσ0,v and ν = ⊗vνv, over places v of F , and τ ∼= ⊗wτw over places
w of E. Then, by the previous remark, these local factors are related by σ0,v = σ0,v(νv, τv)
where τv = ⊗w|v τw and the space Vσ0,v = Vτv = ⊗w|vVτw (as per §4.2.1).

4.3.3. Automorphic representations of H(A).

Assumption 4.1. Let σ ∼= ⊗vσv be an irreducible, cuspidal automorphic representation
of H(A) realised on the space Vσ ⊂ A0(H). For the remainder of this paper we shall
assume the following for such a representation σ.

(1) The Jacquet–Langlands transfer of σ|B×(AE) to GL2(AE) is cuspidal.

(2) There is at least one place v for which σv ∼= σv ⊗ sgn.

(3) If σv 6∼= σv ⊗ sgn then σv 6∼= σ−0,v for any distinguished (and invariant) admissible

representation σ0,v of H0(Fv).

These conditions are imposed in [7], thus ensuring that θ(σ) is both cuspidal (1) and
non-zero (3). Condition (2) is necessary to compute the Petersson inner product of the
theta lift θ(σ) in (4.9).

We now determine all such σ by considering their restriction to H0(A). (This top-
down approach contrasts with the bottom-up analysis used in the local setting.) To this
end, define a (possibly infinite) subset of the places of F by

S = { v : σv ∼= σv ⊗ sgn } .

Assumption 4.1-(2) implies S 6= ∅. By the tensor product theorem, fix an isomorphism
of H(A)-representations

Vσ ∼=
⊗

v

′Vσv = lim−→
S

(⊗

v∈S
Vσv

)
⊗

(⊗

v 6∈S
f◦v

)

where Vσv is the space of σv and, for a sufficiently large set of places S outside which σv
is unramified, f◦v ∈ Vσv is an H(Ov)-invariant (spherical) vector for v 6∈ S. By analogy
with our local discussion §4.2.2, the restriction of σv to H0

v gives rise to two cases.

• If v ∈ S then σv|H0
v

∼= σ0,v ⊕ σι0,v where σ0,v is an irreducible representation of

H0
v with σ0,v 6∼= σι0,v. Earlier, we called such a σ0,v regular and noted that its

induction, σ̂v, was irreducible. The space of σv decomposes as Vσv = Vσ0,v⊕Vσι0,v ,
realising the space Vσι0,v ∼= σv(ι)Vσ0,v . For almost all v ∈ S, the spherical vector

f◦v = F◦
v + σv(ι)F

◦
v ∈ Vσ0,v ⊕ Vσι0,v where F◦

v is an H0(Ov)-invariant vector.

• If v 6∈ S then σv|H0
v
is irreducible and invariant ; we have Vσv = Vσ0,v and the

spherical vector f0v = F◦
v is H0(Ov)-invariant. Write σ0,v = σv|H0

v
in this case.
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Let S be a sufficiently large set of places of F and put S′ = S r (S ∩ S). For each
ε = (εv) ∈ µ2(FS∩S) define Vεσ,S ⊂ Vσ by

Vεσ,S ∼=
( ⊗

v∈S∩S
σv(εv)Vσ0,v

)
⊗

( ⊗

v∈S′

Vσ0,v
)
⊗

(⊗

v 6∈S
f◦v

)
.

Viewing σ from a different perspective, consider the space of restricted functions

Vσ|H0(A) =
{
f |H0(A) : f ∈ Vσ

}
.

By [10, Lemma 2] there exists an irreducible, cuspidal automorphic representation σ0 of
H0(A) realised in a space of cusp forms Vσ0 such that

(4.6) Vσ|H0(A) = Vσ0 ⊕ Vισ0 ,
defining Vισ0 = { f ι = f ◦Ad(ι) : f ∈ Vσ0 }, and such that σ0 6∼= σι0. In this circumstance
we shall say σ lies above σ0.

Applying the tensor product theorem and comparing the local components of σ and
σ0 with those σ0,v already defined, we may assume that σ0 ∼= ⊗vσ0,v. Moreover, choosing
ε = 1, the restriction of the space of functions V1

σ,S = Vσ0 .
As a final remark, (4.6) shows that Vεσ,S |H0(A) = {0} unless ε ∈ µ2(F ) (else contra-

dicting that σ0 6∼= σι0). In particular, consider evaluating a function f ∈ V1
σ,S on

H(A) =
⋃

ε∈µ2(FS∩S)

H0(A)µ2(A
S∩S)ε .

For ε ∈ µ2(FS∩S) we have Vεσ,S = σ(ε)V1
σ,S and hence σ(ε)f = 0 unless ε ∈ µ2(F ). We

then obtain [7, Lemma 2.2]:

(4.7) supp(f) ⊂ H0(A)µ2(A
S∩S) ∪ H0(A)µ2(A

S∩S)ι .

4.4. Explicit unitary pairings and the Petersson inner product. The unique (up
to scalar) unitary pairings Bσ0,v : Vσ0,v ⊗ Vσ̄0,v → C associated to the local components
σ0,v = σ0,v(νv, τv) of σ0(ν, τ), as in §4.3.2, are precisely the pairings on Vτv ⊗ Vτ̄v since
Vσ0,v = Vτv and νv is unitary.

We therefrom assume that, whenever Bτv is specified, by Bσ0,v we always mean the
pairing Bσ0,v = Bτv . The possible splitting of v in E must also be accounted for in our
choice of pairing: we make the convention that if Bτw is a specified pairing on Vτw (for
each place w of E lying above v) then

Bτv = ⊗w|v Bτw
is the fixed pairing on (⊗w|v Vτw)⊗ (⊗w|v Vτ̄w) and hence also on Vσ0,v ⊗ Vσ̄0,v .

If Vσ0,v carries a pairing Bσ0,v and σv is an irreducible, admissible representation above
σ0,v then we choose to consider a specific pairing on Vσv :

• If v ∈ S then Vσv |H0
v
= Vσ0,v ⊕ Vσι0,v is irreducible; take the pairing

Bσv : (Vσ0,v ⊕ Vσι0,v )⊗ (Vσ̄0,v ⊕ Vσ̄ι0,v ) −→ C

given by Bσv ((x+ σv(ι)y), (x̃+ σ̄v(ι)ỹ)) =
1
2(Bσ0,v (x, x̃) + Bσ0,v (y, ỹ)).

• If v 6∈ S then Vσv |H0
v
= Vσ0,v is irreducible; take Bσv = Bσ0,v .
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This pairing is chosen carefully so that we may factorise the Petersson inner products
Bσ and Bσ0 when σ = ⊗vσv is an automorphic representation of H(A) that lies above
σ0 = ⊗vσ0,v. As before, fix an isomorphism for the conjugate representation σ̄ ∼= ⊗vσ̄v

Vσ̄ ∼=
⊗

v

Vσ̄v = lim−→
S

(⊗

v∈S
Vσ̄v

)
⊗

(⊗

v 6∈S
f̃◦v

)

where, for a sufficiently large set of places S outside which σ̄v is unramified, f̃◦v ∈ Vσv is

an H(Ov)-invariant (spherical) vector for v 6∈ S. If v ∈ S then f̃◦v = F̃◦
v + σv(ι)F̃

◦
v where

F̃◦
v is an H0(Ov)-invariant vector and if v 6∈ S then f̃0v = F̃◦

v is H0(Ov)-invariant.

Lemma 4.4. For almost all v suppose that Bσ0,v is normalised by Bσ0,v (F◦
v, F̃

◦
v) = 1.

Then, if the pairings Bσ0,v are normalised so that the Petersson inner product may be
factorised as Bσ0 =

∏
v Bσ0,v , we additionally have the following decomposition:

Bσ =
∏

v

Bσv .

Proof. See [7, Lemma 2.3]. �

The Petersson inner products for both the automorphic representations σ0 = σ0(ν, τ)

and τ agree: if we have (η, η̃) ∈ Vτ ⊗ Vτ and f0 = ν ⊗ η, f̃0 = ν̄ ⊗ η̃ then

Bσ0(f0, f̃0) = Bτ (η, η̃) .
The Petersson inner product associated to the unitary Hecke character χ of A×

K (triv-

ially) coincides with the Tamagawa number of F×\K×, given by Vol(A×K×\A×
K) = 2

(see [14, p. 44]). Underlying our calculations we choose local pairings Bχv = 1 at all v.

4.5. The Petersson inner product for theta lifts. Gan–Ichino prove a decomposi-
tion of the Petersson inner product for the theta lift θ(σ) with respect to some specified
pairings for the local factors θ(σv). This result assumes that F is a totally real num-
ber field and that σ = ⊗vσv is an irreducible, cuspidal automorphic representation of
H(A) satisfying Assumption 4.1. In particular, in this assumption, conditions (2) and
(3) are used explicitly in the proof of this formula whereas the totally real assumption
is required for an application of the Siegel–Weil formula.

Fix a choice of local pairings Bσ0,v such that Bσ0 =
∏
v Bσ0,v and consider the pairings

Bσv , defined in §4.4. For (f, f̃) ∈ Vσ ⊗ Vσ̄ and Schwartz functions (φv , φ̃v) ∈ Vωv ⊗ Vω̄v

define

(4.8)

Bθ(σv)(θ(fv, φv), θ(f̃v, φ̃v)) =

ζFv(2) ζFv (4)

L(std, σv , 1)

∫

H1(Fv)
Bωv(ωv(hv)φv, φ̃v)Bσv (σv(hv)fv, f̃v) dhv

where the Haar measures dhv on H1,v are those determined by a differential form (of
top degree) on H1 and the self-dual Haar measure on F×

v (with respect to ψv) – these
in fact give the Tamagawa measure dh =

∏
v dhv of H1(A) (as constructed in [22]).

Gan–Ichino take care in deriving the constant of proportionality between the Petersson
inner product for θ(σ) and

∏
v Bθ(σv). With Assumption 4.1 we have [7, Proposition 7.13]:
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(4.9) Bθ(σ) =
L(std, σ, 1)

ζF (2) ζF (4)

∏

v

Bθ(σv) .

5. Global Calculation: The Bessel Period

Preliminary remarks aside, we use this section to determine the form of the Bessel
period (2.5) for the theta integral (3.4). First of all we explicitly highlight any running
assumptions and notations (in addition to those in Assumption 4.1).

5.1. Hypotheses and variables. We have fixed the (base) number field F to be totally
real. This assumption permits the use of the Siegel–Weil formula (or rather its corollary;
the Rallis inner product formula) in a calculation made in [7] whereby the Petersson inner
product for a theta lift is computed in terms of local pairings (see Proposition 4.9).

In §4.1 we acquired the following notation an assumptions: V is a four-dimensional
quadratic space (over F ) of discriminant discV = e; we assume that e is not a square in
F× (since the case when e is a square has been settled by Liu); Proposition 4.2 implies
that it suffices to fix such an e ∈ F× and a (possibly split) quaternion algebra D over F
and consider instead the space X = XD,e – we do this and apply V = X to the notations
H = GO(V ) etc. of §2.3; fix once and for all E = F (

√
e ) and B = D(E) ∼= D ⊗F E.

Our result is concerned with irreducible, cuspidal automorphic representations of
GSp4(A) lifted from GO(V )(A) by the theta correspondence (§3).
Assumption 5.1. We only consider representations of PGSp4(A)

∼= SO5(A); these are
precisely the representations of GSp4(A) with trivial central character.

Note that the theta lift θ(σ) has central character ωθ(σ) = ωσ so we assume ωσ = 1. If

σ lies above σ0 = σ0(ν, τ), as in (4.6), then ν = ω−1
σ = 1. For the remainder of this paper,

we keep in mind a fixed irreducible, cuspidal automorphic representation σ ∼= ⊗vσv of
H(A) (in the space Vσ) lying above σ0 = σ0(1, τ) where τ ∼= ⊗wτw is an irreducible,
cuspidal automorphic representation of B×(A) whose central character ωτ = 1. Also fix
a factorisation for the conjugate representation σ̄ ∼= ⊗vσ̄v. There exists a set of places
S = { v : σv ∼= σv ⊗ sgn } which determine σ uniquely given σ0 (see §4.3.3).

Let f = ⊗vfv ∈ Vσ be a pure tensor, fixing this choice throughout the remainder of
this paper. We identify a factorisation for the conjugate of f by

(5.1) f̄ = ⊗vf̄v

so that it makes sense to talk about a specific f̄v corresponding to a local factor fv
of f . Similarly, we fix factorisations for the Schwartz functions φ = ⊗vφv ∈ Vω and
φ̄ = ⊗vφ̄v ∈ Vω̄.

Choose a series of local unitary pairings Bτw on Vτw ⊗Vτ̄w , for each place w of E, such
that the Petersson pairing has the factorisation Bτ =

∏
w Bτw . Due to the choices of §4.4,

we then automatically obtain the pairings Bσ0,v and Bσv for σ0,v and σv, respectively.
Note that these depend on the place v of F . The Petersson pairings will satisfy a similar
factorisation

(5.2) Bσ0 =
∏

v

Bσ0,v and Bσ =
∏

v

Bσv .
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Fix another non-square element d ∈ F×. LetK = F (
√
d ) and define a Hecke character

χ : K×\A×
K → C×. Then K and χ index a unique Bessel period (see §2.2.4). We impose

the following assumption, which is essentially the trivial central character assumption
when considering χ as a representation of GSO(X).

Assumption 5.2. Suppose that χ is unitary and satisfies χ|
A
×
F
= 1.

5.2. Explicit vectors. We shall consider vectors ϕ = θ(f, φ) for f ∈ Vσ and φ ∈ Vω

such that ϕ = ⊗vϕv is a pure tensor. The global map θ of (3.5) is linear in each variable
and hence ϕ is a pure tensor when both f = ⊗vfv and φ = ⊗vφv are pure tensors (as
we have assumed). We fix the notation ϕv = θ(fv, φv) for the local components in the
factorisation of θ(f, φ) (noting that this is necessary as each local map θ (3.3) is only
unique up to a scalar constant).

Our choice of local vectors f̄v ∈ Vσ̄v (see (5.1)) and φ̄v ∈ Vω̄v give rise to the factors
in ϕ̄ = ⊗vϕ̄v in the sense that

(5.3) ϕ̄v = θ(fv, φv) = θ(f̄v, φ̄v)

by the uniqueness of (3.3) and (3.5), the choice of vectors ϕv = θ(fv, φv) and then
applying [7, Proposition 5.5].

Lemma 5.1. Define f ι(h) = f(hι). One has θ(f, φ) = θ(f ι,ω(ι)φ).

Proof. We compute

θ(f ι,ω(ι)φ; g) =

∫

H1(F )\H1(A)

∑

x∈X2(F )

ω(g, hhgι)φ(x) f(ιhhgι) dh .

=

∫

H1(F )\H1(A)

∑

ιx∈X2(F )

ω(g, ιhιh′g)φ(ιx) f(ιhιh
′
g) dh

= θ(f, φ; g)

where h′g = ιhgι has λ(h
′
g) = λ(g). Here we use the automorphy of f under ι ∈ µ2(F )

and rearrange the summation by x 7→ ιx. The Tamagawa measure dh is invariant under
the transformation h 7→ ιhι. �

Since an arbitrary element f of Vσ is of the form f = f1 + f ι2 for some f1, f2 ∈ V1
σ,S

(by (4.6)), Lemma 5.1 implies

θ(f1 + f ι2, φ) = θ(f1, φ) + θ(f2,ω(ι)φ) .

There is then no loss in generality in restricting our choice of f ∈ Vσ to the following.

Assumption 5.3. For a fixed, finite set S, assume that f = ⊗vfv ∈ V1
σ,S is a pure

tensor. Such an f satisfies the property that f |H0(A) ∈ Vσ0,v .

Recalling that τ is the automorphic representation of B×(A) such that σ0 = σ0(1, τ),
we denote by

η = ⊗wηw ∈ Vτ
(decomposed over places w of E) the function such that

f(ρ(s, a)) = η(a) .



22 ANDREW J. CORBETT

The local factors of these functions are identified by fv = ⊗w|vηw (see §4.3.2). Note that
f ι = σ(ι)f , and since θ(f, φ) = ⊗vθ(fv, φv), Lemma 5.1 implies that for each v

θ(fv, φv) = θ(σv(ι)fv,ωv(ι)φv) .

5.3. A calculation in terms of the variant theta integral. To simplify matters
(overall) we introduce the variant theta integral (to be compared with (3.4)):

θ0(f, φ; g) =

∫

H0
1 (F )\H0

1 (A)

∑

x∈X2(F )

ω(g, h0hg)φ(x) f(h0hg) dh0

where the domain is defined in terms of the connected, index-two subgroup H0
1 of H1.

For this function we also have

(5.4) θ0(f, φ) = θ0(f ι,ω(ι)φ)

by a computation identical to Lemma 5.1. Observe how θ0(f, φ) is related to θ(f, φ).

Lemma 5.2. For any integrable function Φ on H1(F )\H1(A) we have
∫

H1(F )\H1(A)
Φ(h) dh =

∫

µ2(F )\µ2(A)

∫

H0
1 (F )\H0

1 (A)
Φ(h0ε) dh0 dε

where dε is the Tamagawa measure on µ2(A).

Since θ0(f, φ; g) is independent of a particular choice of hg we may apply Lemma 5.2
and substitute hg 7→ εhgε (as λ(ε) = 1) to find

(5.5) θ(f, φ; g) =

∫

µ2(F )\µ2(A)
θ0(σ(ε)f, ω(ε)φ; g) dε .

This relation permits one to consider the refined quantity P(θ0(f, φ), χ).

5.4. Unfolding the Weil representation. By definition (see (2.5)) we have

P(θ0(f, φ), χ) =

∫

A×T (F )\T (A)

∫

U(F )\U(A)
θ0(f, φ;uĝ)χ(g)ψ−1

S (u) du dg

so we start out by computing

θ0(f, φ;uĝ) =

∫

H0
1 (F )\H0

1 (A)

∑

x∈X2(F )

ω(uĝ, h0hg)φ(x) f(h0hg) dh0 .

Applying the action of ω to φ = ⊗vφv (place-by-place) we find that

ω(uĝ, h0hg)φ(x) =

(∏

v

χV,v(det(gv)) |λ(gv)|−2
v |det gv|2v

)
ψMx(u)φ(h

−1
g h−1

0 xg)

= ψMx(u)φ(h
−1
g h−1

0 xg) ,

recalling
∏
v χV,v(det(gv)) = 1 (by quadratic reciprocity) and ψMx is the character of

U defined in (2.4). On removing the factor containing the integral over U(F )\U(A) we
obtain
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P(θ0(f, φ), χ) =

∫

A×T (F )\T (A)

∫

H0
1 (F )\H0

1 (A)

∑

x∈X2(F )

φ(h−1
g h−1

0 xg) f(h0hg)Φ(x) dh0 dg

where we have introduced the notation

Φ(x) =

∫

U(F )\U(A)
ψMx(u)ψ

−1
S (u) du .

This integral of orthogonal characters simply boils down to

(5.6) Φ(x) =

{
Vol(U(F )\U(A)) ψMx = ψS

0 otherwise .

The group U is abelian (and hence unimodular) so the Tamagawa number is immediately
Vol(U(F )\U(A)) = 1 (see [22]). Writing u = u(A) for A ∈ Msym

2 (A) we then have

Φ(x) = 1 ⇐⇒ ψ(Tr(SA−MxA)) = 1

⇐⇒ Mx = S .

Thus Φ(x) is an indicator function allowing only those x ∈ X2(F ) with Mx = S to
contribute non-zero terms to the summation in P(θ0(f, φ), χ). Define

X2
S =

{
x ∈ X2 : Mx = S

}

so that

P(θ0(f, φ), χ) =

∫

A×T (F )\T (A)

∫

H0
1 (F )\H0

1 (A)

∑

x∈X2
S
(F )

φ(h−1
g h−1xg) f(hhg) dh dg .

We are interested in decomposing the algebra B ∼= D⊗E into its subalgebras, in par-
ticular the role played by the field L ∼= K⊗E. Hence we make the following observation.

Proposition 5.3. If L does not embed into B as a subalgebra, then X2
S(F ) = ∅ and

consequently
P(θ0(f, φ), χ) = 0 .

Proof. Suppose L 6 →֒ B and assume the contrary: there exists ξ ∈ X2
S(F ) with ξ 6= 0.

Then ξ gives a realisation ofW1 as a quadratic subspace of X and we have X =W1⊕W⊥
1

as before. Since E ∩X = F we have that X ⊗ E ∼= B, so we may decompose B as

B = (W1 ⊗ E)⊕ (W⊥
1 ⊗E).

But Lemma 5.4 gives us that W1 = Kw for any w ∈W1. Noting that 1 ∈ X we proceed
by checking two cases: Firstly, if 1 ∈ W1 we may take w = 1 so that W1 = K. Then
W1 ⊗ E = L and B = L ⊕ L⊥. Thus L →֒ B as a quadratic subalgebra (over E), a
contradiction. Secondly, if 1 6∈ W1 then J = W⊥

1 ⊗ E is a field and subalgebra of B.
In fact this field has to be L: for any j ∈ J⊥ = W1 ⊗ E we may write J⊥ = Jj but
W1 = Kw implies Jj = Lw for any w ∈W1 ⊂ J⊥. Taking j = w gives J = L and thus,
once again, we have the contradiction L →֒ B. �
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Assumption 5.4. Without loss in generality we assume that X2
S(F ) 6= ∅.

Indeed it is clear from (5.6) that X2
S(F ) = ∅ implies P(θ0(f, φ), χ) = 0. Under

Assumption 5.4 we may conclude that, by Proposition 5.3, one has an algebra-embedding
L →֒ B and subsequently that K →֒ D as a subalgebra too. Note that this assumption
is truly on the choice of K (or equivalently d) since E has been fixed in advance.

We continue by expressing X2
S in terms of the group SO(X) acting on it, reconsidering

points of X2
S via the isomorphism X2(F ) ∼= HomF (W1,X). Fix a base point ξ ∈ X2

S(F ),
to be considered as an F -homomorphism ξ : W1 → X satisfying the properties:

(1) ξ is injective (since the Gramm matrix Mξ = S is invertible).

(2) ξ is an isometry onto its image in X.

We briefly justify (2). Recall that (§2.2.2) W1 is endowed with the quadratic form qS; a
simple calculation shows that for w ∈ W1 we have qS(w) = qMξ

(w) = NX(ξ(w)). Thus
W1 is identified with a quadratic subspace of X via ξ. (We abuse notation and call this
subspace W1 too.) Consider the orthogonal decomposition

X =W1 ⊕W⊥
1 .

Lemma 5.4. The image of W1 in X is a one-dimensional K-vector space: for any
w ∈ W1 we have W1 = Kw. In particular there is an F -vector space isomorphism
W1

∼= K.

Proof. Recall Mξ = S and fix

S =

(
a b/2
b/2 c

)
∈ Msym

2 (F )

so that d = −4 detS = b2−4ac. Fix a basis {e1, e2} of W1 and let ξi = ξ(ei) for i = 1, 2.
We show that any two vectors in W1 are linearly dependant over K. Note that the
polynomial p(X) = X2 − bX + ac has the root ξ2ξ

∗
1 = 1

2(b−
√
δ). Multiplying each side

by ξ1, and noting a = NX(ξ1) by assumption, we see that

ξ2 =
1

2a
(b−

√
δ)ξ1 ∈ Kξ1 .

Since ξ is injective, ξ1 and ξ2 constitute a basis for W1 ⊂ X over F . Hence the K-span
of any vector w ∈W1 is equal to W1 as F -vector spaces. �

We proceed by continuing to exploit the base point ξ. The group SO(X) acts tran-
sitively on X2

S(F ) in which the stabiliser of ξ is SO(W⊥
1 ) by construction. Then after

some calculation the isomorphism

X2
S(F )

∼= SO(W⊥
1 )\SO(X)

permits the following reformulation of (5.4):

P(θ0(f, φ), χ) =

∫

SO(W⊥
1 )(A)\ SO(X)(A)

φ(h−1
0 ξ)Λξ(R(h0)f, χ) dh0 ,

by defining
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Λξ(f, χ) =

∫

A× G(SO(W⊥
1 )×SO(W1))\G(SO(W⊥

1 )×SO(W1))(A)
χ(g) f(yghg) dyg dg

where hg ∈ H0(A) is any element such that

λ(hg) = λ(g)

with the additional constraints that hg(ξ(v)) = ξ(g(v)) for v ∈W1 and hg(w) = w when

w ∈W⊥
1 . The variable of integration (yg, g) is an element of G(SO(W⊥

1 )× SO(W1))(A)
whence λ(yg) = λ(g).

5.5. Exploiting exceptional isomorphisms. In this section we analyse the domain
of Λξ(f, χ) and apply the representation theory of H to rewrite this integral as a period

of automorphic forms on B×(A). By the decomposition X = W1 ⊕ W⊥
1 , we look to

reinterpret the subgroup G(SO(W⊥
1 )× SO(W1)) 6 GSO(X) (featured in Λξ(f, χ)) as a

subgroup of F× ×B× /∆E× via the isomorphism ρ of (4.2).

5.5.1. Structural decomposition of quadratic spaces. Since K →֒ D the standard involu-
tion ∗ on D restricts to the non-trivial Galois automorphism of K. We may write

D = K ⊕Kj

for any j ∈ K⊥ since for such a j we have K⊥ = Kj. Extending this decomposition to
B ∼= D ⊗ E (where ∗ extends to a Galois action on B, trivial on E, as in §4.1) define

L = K(E) ∼= K ⊗F E .

Then L = E(
√
d ) is a quadratic extension of E such that we have an embedding L →֒ B.

The standard involution on B (given by x 7→ x∗) restricts to the non-trivial Galois
involution on L. Then, for the same j ∈ K⊥ as before, we have B = L⊕ L j.

Focusing now on the subspace X ⊂ B define

XL = {x ∈ L : ι(x) = x∗ } .
Both XL ⊂ X and 1 ∈ XL. Moreover, we may realise XL as a quadratic extension of
F . Under the quadratic form NX we have the orthogonal decomposition X = XL ⊕X⊥

L
which is described by the following lemma.

Lemma 5.5. For any z0 ∈ E with TrE/F (z0) = 0 we have the orthogonal decomposition

X = XL ⊕ z0Kj .

Proof. The orthogonal complement X⊥
L is given by X ∩ L j (otherwise XL ∩X⊥

L 6= 0).

Hence X⊥
L contains elements xj where x ∈ L such that ι(xj) = (xj)∗; these are the

elements x ∈ L such that x + ι(x) = 0 since j and x are orthogonal under NX . Fix
some z0 ∈ E with TrE/F (z0) = 0 then for any k ∈ K we have ι(z0k) = −z0k. Hence

z0Kj ⊆ X⊥
L , and since both are two-dimensional F -vector spaces we have equality. �

Lemma 5.4 gave us an interpretation of W1 ⊂ X as the space W1
∼= K. Combining

this with Lemma 5.5 allows one to deduce the following (F -vector space) isomorphisms:

W1
∼= X⊥

L and W⊥
1

∼= XL .

Consequently we have the reinterpretation of the orthogonal groups
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GSO(X⊥
L )

∼= GSO(W1) ∼= K× and GSO(XL) ∼= GSO(W⊥
1 ) ,

justifying our conclusion that

(5.7) G(SO(XL)× SO(X⊥
L ))

∼= G(SO(W⊥
1 )× SO(W1)) .

Proposition 5.6. There is an F -isomorphism of algebraic groups

Φ: F× × L× /∆E× ∼−→ G(SO(W⊥
1 )× SO(W1))

where the projection onto the second component is given by (s, k) 7−→ s−1kkι ∈ K×

(whereby K× acts on W1
∼= K by left multiplication).

Proof. By the isomorphism (5.7), it suffices to find an isomorphism Φ such that the
following diagram commutes.

(5.8)

F× ×B× /∆E× ρ−→ GSO(X) = GSO(XL ⊕X⊥
L )

∪ ∪

F× × L× /∆E× Φ−→ G(SO(XL)× SO(X⊥
L ))

We consider the surjective map

Φ: F× × L× −→
{
(s−1k ι(k)∗ , s−1k ι(k) ) : s ∈ F×, k ∈ L× }

.

One can check that the projections of Im(Φ), onto the first and second components, act
on XL and X⊥

L , respectively, by left multiplication. Noting that the similitude factors
of each component in the image are equal, hence we may extend Φ to a mapping into
G(SO(XL)× SO(X⊥

L )). Since the kernel of Φ is ∆E× we have an injection

Φ: F× × L× /∆E× −֒→ G(SO(XL)× SO(X⊥
L )) .

To demonstrate the surjectivity of Φ we need only check that diagram (5.8) commutes.
Observe that, for (s, k) ∈ F× × L×,

ρ(s, k)
(
XL ⊕X⊥

L

)
= s−1k

(
XL ⊕X⊥

L

)
ι(k)∗

= s−1k ι(k)∗XL ⊕ s−1k ι(k)X⊥
L

= Φ(s, k)
(
XL ⊕X⊥

L

)
.

Thus meaning that, up to an automorphism of XL ⊕ X⊥
L , ρ|F××L× = Φ. Since ρ is

one-to-one then Φ must also be surjective. �

5.5.2. Interpretation of the integral Λξ(f, χ). Considering the domain of Λξ(f, χ), one
uses Proposition 5.6 to deduce the isomorphism

A
×G(SO(W⊥

1 )× SO(W1)) \ G(SO(W⊥
1 )× SO(W1))(A) ∼= A

×
E L

×\A×
L .

The application of this isomorphism to Λξ(f, χ) requires a change of integration variable.
This is accomplished by substituting

(yg, g) 7−→ ρ(1, k)
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where k ∈ A
×
E L

×\A×
L . For this we note that the original variables hg ∈ GSO(W1)(A)

and (yg, g) ∈ G(SO(W⊥
1 )× SO(W1))(A) satisfy:

• hg ∈ GSO(W1)(A) fixes W
⊥
1 (A) and acts as g on W1(A),

• yg ∈ GSO(W⊥
1 )(A) fixes W1(A) and acts as yg on W⊥

1 (A),

• λ(hg) = λ(yg).

Hence the product yghg, corresponding to (yg, g), is substituted with ρ(1, k) and element
g ∈ GSO(W1)(A), the projection of (yg, g) onto its second factor, is substituted with kkι

(as in Proposition 5.6). This substitution returns

Λξ(f, χ) =

∫

A
×
E
L×\A×

L

χ(kkι) f(ρ(1, k)) dk .

For any k ∈ A
×
L we have kkι ∈ A

×
K so we have a character Ω: L×\A×

L → C
× by defining

(5.9) Ω(k) = χ(kkι)

such that upon restricting Ω to A
×
E we have Ω|

A
×
E

= χ ◦ NE/F . Since we have chosen

f ∈ V1
σ,S to correspond to some η ∈ Vτ such that f |H0(A)(ρ(s, a)) = η(a), the integral

above becomes

(5.10) Λξ(f, χ) =

∫

A
×
E
L×\A×

L

Ω(k) η(k) dk .

6. Local Calculation: Integrals Over Matrix Coefficients

We will ultimately show that |P(θ(f, φ), χ)|2 factorises into a product of special L-
values and a finite number of local integrals. In this section we follow [14] in defining
these local integrals and make use of the excellent results proved by Liu to rearrange
them for our purposes. Throughout this section we work locally at a place v of F
suppressing the subscript v form the notation (so that F = Fv, σ denotes one local
component in the tensor product ⊗vσv and so on).

6.1. Local integrals. To provide a complete picture, we define the local integrals in full
generality for any (local) irreducible, admissible representation π of G. The definition
is divided into a non-archimedean and an archimedean case; this is due to the nature of
the analysis in [14, §3] in ‘regularising’ these integrals. Immediately after this definition
we specialise to choosing π = θ(σ), the (local) theta lift of σ, and unify the integrals
from each case since they have the same form in this specialisation. We point out that
such a π = θ(σ) is always tempered and thus the regularisation results of [14] apply.

6.1.1. The non-archimedean case. Suppose that F is a non-archimedean local field. We
consider the notion of a stable integral as defined in [13]. We refer the reader to there
for more information since it is not of central importance to our discussion.

Definition 6.1 (The non-archimedean local factors). Given ϕ ∈ Vπ, ϕ̃ ∈ Vπ̄ and a
unitary paring

Bπ : Vπ ⊗ Vπ̄ → C
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we define

α(ϕ, ϕ̃;χ) =

∫

F×\T

∫ st

U
Bπ(π(ug)ϕ, ϕ̃)χ(g)ψ−1

S (u) du dg

where the integral over U is called a stable integral (see [13, Definition 2.1]) and is eval-
uated on a certain compact open subgroup N ⊂ U . This N is chosen to be ‘maximally’
in the sense that if N ′ is another compact open subgroup with N ⊂ N ′ ⊂ U then the
integral over N ′ equals the integral over N . The product of Haar measures du dg is again
a Haar measure on the Bessel subgroup F×\R.

Indeed it is not obvious that the integrals of Definition 6.1 converge, nor should
such an N exist, but Liu proves these facts in [14, Theorem 2.1] and [14, Lemma 3.2],
respectively.

6.1.2. The archimedean case. Let F be an archimedean local field. The method of
regularisation here is to consider the Fourier transform of certain matrix coefficients in
a so-called regular subset of U .

Recall that the abelian unipotent group U ∼= Msym
2 (F ) is self-dual and all its characters

are given by ψM , for some M ∈ Msym
2 (F ), as in 2.4. We denote by Msym

2 (F )reg the open
and dense subset of non-singular symmetric matrices in Msym

2 (F ) and define its image
in U as

U reg ∼= Msym
2 (F )reg .

Definition 6.2 (The archimedean local factors). Given ϕ ∈ Vπ, ϕ̃ ∈ Vπ̄ and a unitary
paring

Bπ : Vπ ⊗ Vπ̄ → C

we define

α(ϕ, ϕ̃;χ) =

∫

F×\T

∫

U reg

Bπ(π(ug)ϕ, ϕ̃)χ(g)ψ−1
S (u) du dg .

Here, for a fixed g ∈ T , the map

ψS 7−→
∫

U reg

Bπ(π(ug)φ, φ̃)ψ−1
S (u) du

is the Fourier transform (in U reg) of the function u 7−→ Bπ(π(ug)θ(f, φ), θ(f̃ , φ̃)).
Once again, Liu proves that this integral converges absolutely in [14, Theorem 2.1].

6.1.3. Normalisation of local integrals. In his paper [14], Liu goes on to show that there
exists a specified set of good places, which exclude a finite number of places of the base
number field (including the archimedean ones), for which the local integrals may be
computed as follows (see [14, p. 7] for details).

Proposition 6.1. If v is a good place of the base number field then for the local vectors
ϕ ∈ Vπ, ϕ̃ ∈ Vπ̄ one has

α(ϕ, ϕ̃;χ) =
ζF (2) ζF (4)L(1/2, π ⊠ χ)

L(1, π,Ad)L(1, χK/F )
.
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Hence we normalise the local factors by setting

(6.1) α♮(ϕ, ϕ̃;χ) =
L(1, π,Ad)L(1, χK/F )

ζF (2) ζF (4)L(1/2, π ⊠ χ)
α(ϕ, ϕ̃;χ)

so that α♮(ϕ, ϕ̃;χ) = 1 for almost all v.
Given any place v, if, instead of considering an arbitrary vector ϕ̃ ∈ Vπ̄, we take the

local vector ϕ̃ = ϕ̄ – in the context of being local factors of functions on adèle groups as
in (5.3) – then we define the notation

(6.2) α(ϕ ,χ) = α(ϕ, ϕ̄;χ) and α♮(ϕ,χ) = α♮(ϕ, ϕ̄;χ) .

As well as absolute convergence, [14, Theorem 2.1] states that whenever such a π is
tempered, we have the positivity result

α(ϕ ,χ) ≥ 0 .

Remark 6.2. The integrals defining α(ϕ, ϕ̃;χ) have a unipotent part (over U) which is
given by either a stable integral (over a compact open N ⊂ U) or a Fourier transform
(with respect to U reg ⊂ U) when v is non-archimedean or archimedean, respectively. We
consider these integrals for π tempered. The choices of regularisation for these integrals
are justified by noting that when π is square integrable we may take the entire space U
in each definition. That is, for any v, when π is square integrable we have

α(ϕ, ϕ̃;χ) =

∫

F×\T

∫

U
Bπ(π(ug)ϕ, ϕ̃)χ(g)ψ−1

S (u) du dg ,

by Propositions 3.5 and 3.15 of [14].

6.1.4. A unified result for theta lifts. Let us specialise now by assuming π = θ(σ) is
the theta lift of σ, a local factor of the fixed representation in §5.1. We select the
pairing Bπ to be defined as in (4.8); this depends on a choice of Bσ which we made in
(5.2). Retaining some generality in what follows, we note that by [7, Proposition 5.5]

the conjugate representation π̄ is generated by elements θ(f̃ , φ̃) for f̃ ∈ Vσ̄ and φ̃ ∈ Vω̄.

Proposition 6.3. In either the non-archimedean or archimedean cases, if θ(f, φ) ∈ Vπ
and θ(f̃ , φ̃) ∈ Vπ̄ then the local integrals become

α(θ(f, φ), θ(f̃ , φ̃);χ) =
ζF (2) ζF (4)

L(1, σ, std)

∫

F×\GSO(W1)

∫

O(X)

∫

SO(W⊥
1 )\SO(X)

×φ(h−1
g h−1h−1

1 ξ g) φ̃(h−1
1 ξ)Bσ(σ(hhg)f, f̃) dh1 dh dg

where hg ∈ H0(A) is any element such that λ(hg) = λ(g) with the additional constraints

that hg(ξ(v)) = ξ(g(v)) for v ∈ W1 and hg(w) = w when w ∈ W⊥
1 (for comparison

see §5.4); the element ξ ∈ X2
S is the base point chosen in §5.4; dh is the Haar measure

for O(X) fixed in the definition for Bθ(σ), see (4.8); and finally dh1 is the Siegel–Weil

measure on SO(W⊥
1 )\SO(X).

Proof. This follows immediately from [14, Lemma 4.2]. �

Remark 6.4. The product of local Siegel–Weil measures is precisely the Tamagawa mea-
sure on the adèlic points of the group in question (see [14, Remark 3.18]).



30 ANDREW J. CORBETT

6.2. Explicit local factors for theta lifts. We analyse the terms α♮(θ(f, φ), θ(f̃ , φ̃);χ)

where θ(f, φ) ∈ Vπ and θ(f̃ , φ̃) ∈ Vπ̄ are as before. We point out again that, even though
the subscripts are removed, everything is local here. We will determine the quantity

(
ζF (2) ζF (4)

L(1, σ, std)

)−1

α(θ(f, φ), θ(f̃ , φ̃);χ) =

∫

F×\GSO(W1)

∫

O(X)

∫

SO(W⊥
1 )\ SO(X)

(ω(h)φ)(ξ) (ω̄(h1)φ̃)(ξ)

×Bσ(σ(h−1
1 hgh)f, f̃)χ(g) dh1 dh dg

after making the substitution h 7→ h−1
1 hghh

−1
g and recalling that ξ g = hg ξ, by definition.

We decompose the integral over O(X) in terms of its connected component SO(X) and
replace the measure dh with

dh2 = 2dh|SO(X)

so that the volumes

Vol(O(X), dh) = Vol(SO(X), dh2) .

Then we find that the right-hand side of the above quantity is equal to

1

2

∑

ε∈µ2(F )

∫

F×\GSO(W1)

∫

SO(X)

∫

SO(W⊥
1 )\SO(X)

(ω(h2ε)φ)(ξ) (ω̄(h1)φ̃)(ξ)

×Bσ(σ(h−1
1 hgh2ε)f, f̃)χ(g) dh1 dh2 dg .

To simplify further, note that

SO(X) ∼= (SO(W⊥
1 )\SO(X)) × SO(W⊥

1 )

where we substitute h2 7→ (h2, y), with measure dh2 7→ dh2dy, so that

(
ζF (2) ζF (4)

L(1, σ, std)

)−1

α(θ(f, φ), θ(f̃ , φ̃);χ) =

1

2

∑

ε∈µ2(F )

∫

F×\GSO(W1)

∫

SO(W⊥
1 )

∫

(SO(W⊥
1 )\SO(X))2

(ω(h2ε)φ)(ξ) (ω̄(h1)φ̃)(ξ)

×Bσ(σ(h−1
1 yhgh2ε)f, f̃)χ(g) dh1 dh2 dy dg ,

recalling that y ∈ SO(W⊥
1 ) stabilises ξ and commutes with hg. Using that σ is unitary

under Bσ we finally obtain

α(θ(f, φ), θ(f̃ , φ̃);χ) =
1

2

ζF (2) ζF (4)

L(1, σ, std)

∑

ε∈µ2(F )

∫

(SO(W⊥
1 )\SO(X))2

(ω(h2ε)φ)(ξ)

× (ω̄(h1)φ̃)(ξ) Γξ,v(σ(h2ε)f, σ̄(h1)f̃ ;χ) dh1 dh2
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by defining

Γξ,v(f, f̃ ;χ) =

∫

F×\GSO(W1)

∫

SO(W⊥
1 )

Bσ(σ(yhg)f, f̃)χ(g) dy dg .

7. The Result: Local and Global Assembly

This section concludes with the unification of the global period in §5 and the rear-
ranged local integrals in §6. The connection is facilitated by the work of Waldspurger [21]
who, in 1985, gave the pioneering example of refined Gan–Gross–Prasad conjecture: a
proof for the pair (SO3,SO2). We apply his formula to our calculation.

7.1. A theorem of Waldspurger. Let B be a (possibly split) quaternion algebra
over E. Let L be a quadratic extension of a number field E such that there exists
an embedding L →֒ B and let Ω be a Hecke character of A×

L . Let τ = ⊗wτw be an
irreducible, cuspidal automorphic representation of B×(AE), realised in Vτ , such that
ωτ · Ω|A×

E
= 1. For η ∈ Vτ define the global period integral

Q(η,Ω) =

∫

A
×
E
L× \A×

L

Ω(k) η(k) dk .

For each place w of E let Bτw be a unitary pairing on Vτw ⊗Vτ̄w . For each ηw ∈ Vτw and
η̃w ∈ Vτ̄w define the local integrals

βw(ηw, η̃w; Ωw) =

∫

E×
w \L×

w

Bτw(τw(kw)ηw, η̃w)Ωw(kw) dkw

and their natural normalisation,

β♮w(ηw, η̃w; Ωw) =
L(1, τw,Ad)L(1, χLw/Ew

)

ζEw(2)L(1/2, τL,w ⊗ Ωw)
βw(ηw, η̃w; Ωw) .

where τL,w is the base change lift of τw to B×(Lw).
The following theorem was originally given in [21, §III.3] (and then stated in terms

of the refined Gan–Gross–Prasad conjecture in [12, §6]). Fix a choice of Haar measures
dkw, such that the Tamagawa measure on (E×\L×)(A) decomposes as dk =

∏
w dkw,

and a choice of local parings Bτw , such that the Petersson inner product decomposes as
Bτ =

∏
w Bτw .

Theorem 7.1 (Waldspurger). The integrals βw(ηw, η̃w; Ωw) are absolutely convergent
and

β♮w(ηw, η̃w; Ωw) = 1

for almost all places w of E. If, in addition, τ has trivial central character (ωτ = 1) and
Ω is unitary then

Q(η,Ω)Q(η̃, Ω̄) =
1

2

ζE(2)L(1/2, τ
′
L ⊗ Ω)

L(1, τ,Ad)L(1, χL/E)

∏

w

β♮w(ηw, η̃w; Ωw)

where τL denotes the base change lift of τ to B×(AL) and τ ′L is the Jacquet–Langlands
transfer of τL to GL2(AL).
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We remark that the L-function L(1/2, τ ′L⊗Ω) may be interpreted in various ways due
to the low-dimensional isomorphisms that occur (see §2.1.3).
7.2. Application of Waldspurger. Let the arbitrary notation introduced in §7.1 now
assume the running meanings that we assigned in §5.1 (for the representation τ = ⊗wτw
and the pairings Bτw) and §5.5 (for the algebras B ∼= D ⊗ E, L ∼= K ⊗ E). We draw
special attention to the assumption that f ∈ V1

σ,S with f |H0(A) ◦ ρ = η. The set S

contains those places of F such that σv ∼= σv⊗ sgn and S is the fixed, finite set of places
of F outside which fv = f◦v is H(Ov)-invariant (see §4.3.3). We choose η = ⊗wηw,
implying f = ⊗vfv with fv = ⊗w|vηw as in §4.3.2. The pairings Bτw , for w|v, determine
the pairings Bσ0,v and Bσv (as in §4.4) which are used to define the local integrals (§6).
Lemma 7.2. The global period integral in Waldspurger’s formula satisfies

Λξ(f, χ) = Q(η,Ω) .

Proof. We only need to remark that Ω|
A
×
E
= χ◦NE/F , implying the condition Ω|

A
×
E
= 1 is

satisfied since χ|A× = 1 (Assumption 5.2). Moreover, Ω is unitary because χ is assumed
so. We then have that the form of Λξ(f, χ) in (5.10) is given precisely by Q(η,Ω). �

In a similar manner, we identify the local period integrals in Waldspurger’s formula
with our own terms Γξ,v(fv, f̃v;χv). The following lemma is a local analogue of the
analysis of Λξ(f, χ) in §5.5.
Lemma 7.3. Let v be a place of F . Then, for fv ∈ Vσv and f̃v ∈ Vσ̄v as above,

Γξ,v(fv, f̃v;χv) =
1

2cv

∏

w|v
βw(ηw, η̃w; Ωw)

where

cv =

{
1 if v ∈ S ∩ S
0 otherwise .

Proof. Analogous to the global setting (discussed in §5.5.2) we have

F×
v \GSO(W1)v × SO(W⊥

1 )v ∼= F×
v \G(SO(W⊥

1 )× SO(W1))v
so that

(7.1) Γξ,v(fv, f̃v;χv) =

∫

F×
v \G(SO(W⊥

1 )×SO(W1))v

Bσv (σv(yhg)fv, f̃v)χv(g) dyg dg

where hg ∈ H0
v is any element such that

λ(hg) = λ(g)

with the additional constraints that hg(ξ(v)) = ξ(g(v)) for v ∈W1,v and hg(w) = w when

w ∈ W⊥
1,v. The variable of integration (yg, g) is an element of G(SO(W⊥

1 ) × SO(W1))v
whence λ(yg) = λ(g). By Proposition 5.6 there is an Fv-isomorphism

F×
v \G(SO(W⊥

1 )× SO(W1))v ∼= (E×\L×)(Fv) .
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Applying this isomorphism to (7.1) (checking §5.5.2 for comparison), we substitute
the element yghg, which corresponds to (yg, g) by definition, with ρ(1, k) where k ∈
(E×\L×)(Fv). The element g ∈ GSO(W1)v is the projection of (yg, g) onto its sec-
ond factor; as in Proposition 5.6, this projection corresponds to ρ(1, k) 7→ kkι. This
substitution returns

Γξ,v(fv, f̃v;χv) =

∫

(E×\L×)(Fv)
Bσv (σv(ρ(1, kv))fv, f̃v)χv(kvkιv) dkv .

The automorphic character Ω = ⊗wΩw of (5.9), factorised over places of E, may be
divided into factors corresponding to each place v of F by Ωv = ⊗w|vΩw. These factors
coincide with the factorisation of χ = ⊗vχv in that Ωv : kv 7→ χv(kvk

ι
v).

The measures dkv are chosen so that the Tamagawa measure dk on (E×\L×)(AE)
factorises as

dk =
∏

w

dkw ,

over places of E, with dkv =
∏
w|v dkw. The dkv are precisely the measures dh1,v of H1,v

in (4.8) (defining Bθ(σv)). We now express the domain in terms of places w of E. By
(4.5) we have

(E×\L×)(Fv) ∼=
∏

w|v
E×
w\L×

w .

Our calculation now depends on whether or not v ∈ S. With the vectors fv = ⊗w|vηw
and f̃v = ⊗w|vη̃w we have

Bσv(fv, f̃v) =
1

2cv
Bσ0,v (fv, f̃v) =

1

2cv

∏

w|v
Bτw(ηw, η̃w) .

This is clear from the definition of the pairing Bσv in §4.4 if v 6∈ S or v 6∈ S. If v ∈ S∩S

then

fv = fv + 0 ∈ Vσ0,v ⊕ Vσι0,v
so we pick up the factor of 1/2cv = 1/2.

At last we obtain

Γξ,v(fv, f̃v;χv) =

∫
∏

w|v E
×
w \L×

w

1

2cv

∏

w|v
Bτw(τw(kw)ηw, η̃w)Ωw(kw) dkw

=
1

2cv

∏

w|v
βw(ηw, η̃w; Ωw) .

�

Combining the previous two lemmas allows Waldspurger’s formula to be rewritten in
terms of the integrals defining Λξ and Γξ. Recall the notation S′ = S r (S ∩ S) and
introduce

s = |S ∩S| and s′ = |S′| .
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Proposition 7.4. For all pure tensors f = ⊗vfv ∈ V1
σ,S and f̃ = ⊗vf̃v ∈ V1

σ̄,S we have

Λξ(f, χ)Λξ(f̃ , χ̄) = 2s−1
∏

v

Γξ,v(fv, f̃v;χv) .

7.3. The explicit formula. Applying the definition of the variant theta integral (5.5)
we begin computing the Bessel period’s square:

|P(θ(f, φ), χ)|2 =

∫

µ2(F )\µ2(A)

∫

µ2(F )\µ2(A)
P(θ0(σ(δ)f,ω(δ)φ), χ)P(θ0(σ(ε)f,ω(ε)φ), χ) dδ dε .

As µ2(F ) is of index-two in µ2(A) we rearrange so that the above integral equals

(7.2)

1

4

∫

µ2(A)

∫

µ2(A)
P(θ0(σ(δ)f,ω(δ)φ), χ)P(θ0(σ(ε)f,ω(ε)φ), χ) dδ dε

=
1

41+s+s′
∑

µ2(FS)

∑

µ2(FS)

P(θ0(σ(δ)f,ω(δ)φ), χ)P(θ0(σ(ε)f,ω(ε)φ), χ) .

This equality follows since, as εv ∈ H(Ov), the integrals for v 6∈ S fix the integrand and
elsewhere we have the (normalised) counting Haar measure. We further reduce the sum
by noting that, for h0 ∈ H0(A),

σ(ε)f(h0) = f(h0ε) = 0

unless ε ∈ µ2(A
S∩S){1, ι} (by (4.7) or [7, Lemma 2.2]). Hence (7.2) equals

1

41+s+s′
∑

µ2(FS′)

∑

µ2(FS′)

(
P(θ0(σ(δ)f,ω(δ)φ), χ) + P(θ0(σ(δι)f,ω(δι)φ), χ)

)

×
(
P(θ0(σ(ε)f,ω(ε)φ), χ) + P(θ0(σ(ει)f,ω(ει)φ), χ)

)
.

The invariance under ι, noted in (5.4), implies we have the equality

|P(θ(f, φ), χ)|2 =
1

4s+s
′

∑

µ2(FS′)

∑

µ2(FS′)

P(θ0(σ(δ)f,ω(δ)φ), χ)P(θ0(σ(ε)f,ω(ε)φ), χ) .

Hence it suffices to proceed by considering the summands

P(θ0(σ(δ)f,ω(δ)φ), χ)P(θ0(σ(ε)f,ω(ε)φ), χ)

=

∫ ∫

((SO(W⊥
1 )\SO(X))(A))2

(ω(h2δ)φ)(ξ) (ω(h1ε)φ)(ξ)

×Λξ(σ(h2δ)f), χ)Λξ(σ(h1ε)f, χ) dh1 dh2 .
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We have Λξ(σ(h1ε)f, χ) = Λξ(σ̄(h1ε)f̄ , χ̄) where f̄ = ⊗vf̄v ∈ V1
σ̄,S and the vectors

σ(h1ε)f = ⊗vσv(h1,vεv)fv ∈ V1
σ,S and σ̄(h1ε)f̄ = ⊗vσ̄v(h1,vεv)f̄v ∈ V1

σ̄,S

are pure tensors. Thus the hypotheses of Proposition 7.4 are satisfied; we have

Λξ(σ(h2δ)f), χ)Λξ(σ(h1ε)f, χ) = 2s−1
∏

v

Γξ,v(σv(h2,vδv)fv, σ̄v(h1,vεv)f̄v;χv) .

Subsequently

P(θ0(σ(δ)f,ω(δ)φ), χ)P(θ0(σ(ε)f,ω(ε)φ), χ)

= 2s−1
∏

v

∫ ∫

(SO(W⊥
1 )v\SO(X)v)2

(ωv(h2,vδv)φv)(ξ) (ω̄v(h1,vεv)φ̄v)(ξ)

×Γξ,v(σv(h2,vδv)fv, σ̄v(h1,vεv)f̄v;χv) dh1,v dh2,v .

In summary, we have the following formula

(7.3) |P(θ(f, φ), χ)|2 =
1

4s+s′
2s−1

∑

δ∈µ2(FS′)

∑

ε∈µ2(FS′)

∏

v

Iv(δv , εv)

for which we have introduced the place-holder notation

Iv(δv, εv) =
∫ ∫

(SO(W⊥
1 )v\SO(X)v)2

(ωv(h2,vδv)φv)(ξ) (ω̄v(h1,vεv)φ̄v)(ξ)

×Γξ,v(σv(h2,vδv)fv, σ̄v(h1,vεv)f̄v;χv) dh1,v dh2,v .

The Iv(δv , εv) are connected to the local integrals of §6.2 by

α(θ(fv, φv), χv) =
1

2

ζFv(2) ζFv (4)

L(1, σv , std)

∑

̺v∈µ2(Fv)

Iv(̺v, 1) ,

recalling α(θ(fv, φv), χv) = α(θ(fv, φv), θ(f̄v, φ̄v);χv). We now separate the sum in (7.3)
according to the representation σv at v. The index set for the double summation runs
over δ, ε ∈ µ2(FS′), with δ = (δv) and ε = (εv), where δv = εv = 1 if v ∈ S or v 6∈ S.

• If v 6∈ S then, since ̺v ∈ H(Ov), Iv(̺v , 1) = Iv(1, 1) meaning

Iv(1, 1) =
1

2

∑

̺v∈µ2(Fv)

Iv(̺v, 1) =
L(1, σv , std)

ζFv(2) ζFv (4)
α(θ(fv, φv), χv) .

• If v ∈ S ∩S then Iv(ι, 1) = 0. Indeed, for f = f + 0 ∈ Vσ0,v ⊕ Vσι0,v we have

Bσv(σv(ι)fv , f̄v) =
1

2

(
Bσ0,v (0, f̄v) + Bσ0,v(fv, 0)

)
= 0 + 0 .

The remaining term is
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Iv(1, 1) = 2

(
L(1, σv , std)

ζFv(2) ζFv (4)

)
α(θ(fv, φv), χv) .

• If v ∈ S′ we have a four-term summation. Using that Iv(ι, ι) = Iv(1, 1) we find

∑∑

δv,εv∈µ2(Fv)

Iv(δv, εv) = 2
∑

̺v∈µ2(Fv)

Iv(̺v, 1) = 4

(
L(1, σv , std)

ζFv(2) ζFv (4)

)
α(θ(fv, φv), χv) .

Together, these three points prove that (7.3) becomes

|P(θ(f, φ), χ)|2 =
1

4s+s′
2s−1 2s 4s

′

(
L(1, σ, std)

ζF (2) ζF (4)

) ∏

v

α(θ(fv, φv), χv)

=
1

2

(
L(1, σ, std)

ζF (2) ζF (4)

)
ζF (2) ζF (4)L(π, χ, 1/2)

L(Ad, π, 1)L(χK/F , 1)

∏

v

α♮(θ(fv, φv), χv) .

Finally, for our formula to be independent of choice of local pairings (see Remark 7.7)
we normalise the Bessel period and instead calculate

(7.4)
|P(ϕ,χ)|2

Bθ(σ)(ϕ, ϕ̄)Bχ(χ, χ̄)
for ϕ ∈ Vθ(σ). The Petersson pairing for the one-dimensional representation χ is trivially
constant in this case and is easily seen to equal the Tamagawa number

Bχ(χ, χ̄) = Bχ(1, 1) = Vol(A×K×\A×
K) = 2 .

The Petersson pairing for the theta lift θ(σ) is dealt with by the formula of Gan–Ichino
(4.9) which states that the Petersson inner product for θ(σ) equals

Bθ(σ) =
L(1, σ, std)

ζF (2) ζF (4)

∏

v

Bθ(σv) .

Combining these final comments gives the main result.

Theorem 7.5. Let (π,Vπ) be an irreducible, cuspidal automorphic representation of
PGSp4(A) lifted, via the theta correspondence in §3, from (the Jacquet–Langlands trans-
fer of) a cuspidal automorphic representation of GL2(AE) with trivial central character.
Let K be a quadratic field extension of F such that SO2

∼= K×/F×. Let χ be a unitary
Hecke character of A×

K such that χ|A× = 1; such a χ may also be viewed as an automor-
phic representation of SO2(A). For the cusp forms ϕ = ⊗vϕv ∈ Vπ and ϕ̄ = ⊗vϕ̄v ∈ Vπ̄
define the local integrals α♮(ϕv , χv) as in §6: we have α♮(ϕv, χv) = 1 for almost all v.
For any choice of local Haar measures defining α♮(ϕv , χv) let C ∈ C be the Haar measure
constant (the constant of proportionality given by the ratio of the Tamagawa measure di-
vided by the product of local measures). For each v, let Bπv be any choice of local unitary
pairing. We have proved that
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|P(ϕ,χ)|2
Bπ(ϕ, ϕ̄)Bχ(χ, χ̄)

=
C

4

ζF (2) ζF (4)L(1/2, π ⊠ χ)

L(1, π,Ad)L(1, χK/F )

∏

v

α♮(ϕv , χv)

Bπv(ϕv , ϕ̄v)
.

Definition 7.1. We define the local integrals to be properly normalised in the following
way: choose local unitary pairings Bχv on each one-dimensional space Vχv ⊗ Vχ̄v such
that the Petersson pairing decomposes as Bχ =

∏
v Bχv . We then take the normalised

quantity
Bχv(χv, χ̄v)α

♮(ϕv , χv)

in place of the local integrals in the formula of Theorem 7.5. Note that in the original
definition of the local integrals (§6.1) we implicitly take Bχv = 1 for each v, as per §4.4,
and we found the decomposition Bχ = 2

∏
v Bχv .

Corollary 7.6. Assuming C = 1, Bπ =
∏
v Bπv and that the local integrals α♮(ϕv , χv)

are properly normalised (as in Definition 7.1), Theorem 7.5 becomes

|P(ϕ,χ)|2 =
1

4

ζF (2) ζF (4)L(1/2, π ⊠ χ)

L(1, π,Ad)L(1, χK/F )

∏

v

α♮(ϕv , χv) .

Remark 7.7. In a more general setting, the representation χ need not be one-dimensional
(when considering other groups). Normalising the left-hand-side of the equation in
Theorem 7.5 by the Petersson pairings for π and χ, and including the Haar measure
constant, ensures that the local choices of pairings and measures are independent of
the global setting. These objects may be chosen and may be chosen arbitrarily without
affecting the formula and, in particular, the local integrals are independent of such
choices (see [11, Remark 1.3]).

Our normalisations may seem ad hoc at first, due to the trivial pairings on χ, however
we state our theorem in this way so that it sits in the more general framework of Liu’s
conjecture. In Liu’s work one sees that the issue of normalisation appears in a natural
setting and we invite the reader to check [14, Conjecture 2.5] for consolidation.
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