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Abstract
The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein

(APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role

of APP-Aβmetabolism in AD pathogenesis, we selected 29 genes involved in APP process-

ing, Aβ degradation and clearance. We then used exome and genome sequencing to investi-

gate the single independent (single-variant association test) and cumulative (gene-based

association test) effect of coding variants in these genes as potential susceptibility factors for

AD, in a cohort composed of 332 sporadic andmainly late-onset AD cases and 676 elderly

controls fromNorth America and the UK. Our study shows that common coding variability in

these genes does not play a major role for the disease development. In the single-variant

association analysis, the main hits, none of which statistically significant after multiple testing

correction (1.9e-4<p-value<0.05), were found to be rare coding variants (0.009%<MAF<1.4%)

with moderate to strong effect size (1.84<OR<Inf) that map to genes mainly involved in Aβ

extracellular degradation (TTR, ACE), clearance (LRP1) and APP trafficking and recycling

(SORL1). These results were partially replicated in the gene-based analysis (c-alpha and

SKAT tests), that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e-3 <p-value

<0.05). In concert with previous studies, we suggest that 1) common coding variability in APP-

Aβ genes is not a critical factor for AD development and 2) Aβ degradation and clearance,

rather than Aβ production, may play a key role in the etiology of sporadic AD.
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Introduction
The cerebral deposition of Aβ42 aggregates, insoluble neurotoxic derived of amyloid precursor
protein (APP), is likely caused by an imbalance between Aβ production and clearance and rep-
resents a key event in Alzheimer’s disease (Amyloid hypothesis) [1].

A growing body of evidence has pointed to the critical role of APP-Aβmetabolism in AD
pathogenesis. First, the discovery of APP, PSEN1 and PSEN2mutations showed that familial
Alzheimer’s disease is linked to Aβ42 overproduction [2–4]. Second, genome-wide association
studies (GWASs) identified several susceptibility loci associated with AD (APOE, BIN1,
PICALM, CD33, ABCA7, CLU,MS4A6A, EPHA1, CR1, CD2AP, SORL1, CASS4) and regulating
APP-Aβ levels [5–12]. Third, next generation sequencing laid the ground for the discovery of
TREM2 risk variants, highlighting the possible role of microglia in Aβ clearance [13–14].
Finally, although recent studies have shown that rare coding variability in PSEN1may influ-
ence the susceptibility for apparently sporadic late-onset AD (LOAD) [15–16], increases in Aβ
production currently explain a minority of AD cases. By contrast, it is very likely that the
majority of AD cases are caused by impaired degradation and clearance of Aβ, which is pro-
duced at normal levels throughout life [17–18]. Despite the importance of APP-Aβmetabolism
in AD, the role of genes taking part in Aβ production and catabolism as susceptibility factors
for AD is still elusive and has not been extensively investigated. Therefore, in this study, we
selected 29 genes known to be involved in APP and Aβ processing: ADAM9, ADAM10,
ADAM17,MEP1B, BACE1, BACE2, NCSTN, PSENEN, APH1B, LRRTM3, APLP1, APBA1,
SORL1, TTR, GPR3, ECE1, ECE2, IDE, CST3, CTSB, CTSD, LYZ,MME, ACE,MMP3, A2M,
PLAT, KLK6 and LRP1. We then analyzed the single, independent and the cumulative effect of
protein coding variants in these genes from exome and genome sequencing data, in a cohort
composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from
North America and UK.

Materials and Methods
We used exome and genome sequencing data to identify common, low frequency, and rare
coding variants in 29 genes involved in: Aβ production (ADAM9, ADAM10, ADAM17,
BACE1, BACE2, NCSTN, PSENEN, APH1B,MEP1B, LRRTM3, GPR3), APP stabilization
(APLP1, APBA1), APP recycling (SORL1), Aβ deposition (TTR), intracellular degradation
(ECE1, ECE2, IDE, CST3, CTSB, CTSD, LYZ,MME), extracellular degradation and clearance
(ACE,MMP3, A2M, PLAT, KLK6, LRP1).

These genes were chosen on the basis of PubMed based literature search and/or based on
predicted protein interactions using STRING (http://string.embl.de/).

The discovery cohort was composed of 332 apparently sporadic AD cases and 676 elderly
controls, neuropathologically and clinically confirmed, originating from the UK and North
America. The mean age at disease onset was 71.66 years (range 41–94 years) for cases and the
mean age of ascertainment was 78.15 years (range 60–102 years) for controls (Table 1). The
majority of the cases (77%) were late-onset (> 65 years at onset).

Among the cases and controls, 42% and 51% were female, respectively. 58% and 47% of the
cases and controls carried the APOE ε4 allele, respectively. The APOE ε4 allele was signifi-
cantly associated to the disease status in the NIH and ADNI series (p-value = 0.02 and 1.19x10-
9, respectively). Importantly, all the BYU controls from the Cache County Study on Memory in
Aging were heterozygous for APOE ε4 allele. However, given the fact that 1) they were elderly
(mean age 80.8 years old [range: 75–94.59]) and without any clinical sign of dementia and 2)
APOE ε4 allele is a risk but not a causative factor, we still considered them as controls and
included in the study.
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Written consent for participation was obtained in accordance with institutional review
board standards. All samples had fully informed consent for retrieval and were authorized for
ethically approved scientific investigation. The UCLH Research Ethics Committee number 10/
H0716/3, BYU IRB, Cardiff REC for Wales 08/MRE09/38+5, REC Reference 04/Q2404/130,
National Research Ethics Service (NRES) specifically approved this study.

Exome sequencing
We performed whole exome sequencing on a cohort of 332 sporadic and mainly late-onset AD
cases and 477 elderly controls. DNA was extracted from blood or brain both for cases and con-
trols using standard protocols. Library preparation for next generation sequencing used DNA
(between 1 μg and 3 μg) fragmented in a Covaris E210 (Covaris Inc.). Following fragmentation,
DNA was end-repaired by 5’phosphorylation, using the Klenow polymerase. A poly-adenine
tail was added to the 3’end of the phosphorylated fragment and ligated to Illumina adapters.
After purification using an AMPure DNA Purification kit (Beckman Coulter, Inc), adapter-
ligated products were amplified. The DNA library was then hybridized to an exome capture
library (NimbleGen SeqCap EZ Exome v2.0, Roche Nimblegen Inc. or TruSeq, Illumina Inc.)
and precipitated using streptavidin-coated magnetic beads (Dynal Magnetic Beads, Invitro-
gen). Exome-enriched libraries were PCR-amplified, and then DNA hybridized to paired-end
flow cells using a cBot (Illumina, Inc.) cluster generation system. Samples were sequenced on
the Illumina HiSeq™ 2000 using 2x100 paired end reads cycles.

Whole Genome sequencing
Genome sequencing was performed in 199 elderly, clinically healthy controls, from the Cache
County Study on Memory in Aging. DNA was extracted from blood using standard protocols.
All samples were sequenced with the use of Illumina HiSeq technology. Alignment was per-
formed with the use of CASAVA software and variant calling was performed with the use of
SAMtools [21] and the Genome Analysis Toolkit GATK [22]. This sequencing and variant call-
ing were performed by our collaborators at Brigham Young University.

Table 1. Cohort description.

COHORTS N TYPE SEQUENCING STRATEGY ORIGIN AGE (YRS) MALE APOE

MEAN ±SD(RANGE) (%) E4+ (%)

NIH-UCL

cases 127 neuropath Exome sequencing Caucasian (British) 65.5(41–94) 46.4 58

controls* 204 neuropath Exome sequencing Caucasian (British, North American) 79.8 (61–102) 58.3 45

WashU

cases 23 clinical Exome sequencing Caucasian(North American) 57 (46–75) 52.17 NA

controls 16 clinical Exome sequencing Caucasian(North American) 79.5 (75–92) 43.7 NA

ADNI

cases 182 clinical Exome sequencing Caucasian(North American) 74.65 (55–90) 67 56.6

controls 257 clinical Exome sequencing Caucasian(North American) 74.68 (60–90) 50.1 27.6

BYU

controls 199 clinical Genome sequencing Caucasian(North American) 80.8 (75–94.5) 37.7 100

NA, not available; YRS, years.

*These controls have been largely used in 2 previous studies [19–20]

doi:10.1371/journal.pone.0150079.t001

Coding Variability in APP-Aß Metabolism Genes in Alzheimer's Disease

PLOS ONE | DOI:10.1371/journal.pone.0150079 June 1, 2016 3 / 14



Bioinformatic
Sequence alignment and variant calling were performed against the reference human genome
(UCSC hg19). Paired end sequence reads (2x100bp paired end read cycles) were aligned using
the Burrows-Wheeler aligner [23]. Format conversion and indexing were performed with
Picard (www.picard.sourceforge.net/index.shtml). GATK was used to recalibrate base quality
scores, perform local re-alignments around indels and to call and filter the variants [22].
VCFtools was used to annotate gene information for the remaining novel variants. We used
ANNOVAR software to annotate the variants [24]. Variants were checked against established
databases (1000 Genomes Project and dbSNP v.134). The protein coding effects of variants was
predicted using SIFT, Polyphen2 and SeattleSeq Annotation (gvs.gs.washington.edu/
SeattleSeqAnnotation). All variants within the coding regions of 29 candidate genes (A2M
[NM_000014], ACE [NM_000789], ADAM9 [NM_003816], ADAM10 [NM_001110], ADAM17
[NM_003183], APBA1 [NM_001163], APH1B [NM_031301], APLP1 [NM_001024807],
BACE1 [NM_012104], BACE2 [NM_012105], CST3 [NM_000099], CTSB [NM_001908],
CTSD [NM_001909], ECE1 [NM_001397], ECE2 [NM_014693], GPR3 [NM_005281], IDE
[NM_004969], LRP1 [NM_002332], KLK6 [NM_001012964], LRRTM3 [NM_178011], LYZ
[NM_000239],MEP1B [NM_005925],MME [NM_000902],MMP3 [NM_002422], NCSTN
[NM_015331], PLAT [NM_000930], PSENEN [NM_172341], SORL1 [NM_003105], TTR
[NM_000371]) have been collected and analyzed. (S1 Table) (Further details are provided in the
supplementary materials)

Statistical Analysis
For each variant, allele frequencies were calculated in cases and controls and Fisher’s exact test
on allelic association was performed. All computations were performed in R (version x64 3.0.2,
http://www.r-project.org/). The threshold call rate for inclusion of both subjects and variants
in the analysis was 95%.

In this study, we have sufficient power (�80%) to detect common SNVs (MAF> 5%) with
modest effect (OR = 2) through single-variant association analysis; however, we had limited
power (<80%) to detect very rare SNVs (MAF< 0.1%), even those with strong effect (OR> 4).

A p-value of 0.05 was set as a nominal significance threshold. Based on simple Bonferroni
correction for multiple testing, the thresholds for single variant and gene-based association are
defined by p-value = 1.9e-4 (0.05/256 coding variants) and 1.7e-3 (0.05/29 genes), respectively.

For the gene-based analysis we have pooled together coding and non-coding variants with a
MAF�0.05 and studied their cumulative effect on the AD trait.

C-alpha test and SKAT are closely related, being both non-burden tests, analyzing and col-
lapsing the effect of genetic variants of different frequency (common and rare), effect (protective,
damaging and neutral) and effect size (modest, moderate, strong). SKAT can be considered an
expansion of the c-alpha test because overcomes some of its limits. Indeed, SKAT 1) can be
applied also to the study of continuous traits; 2) does not need any permutation; 3) applies covar-
iates to the study. In addition, we have used a set of 5–10 size matched genes not linked to
APP-Aβmetabolism (based on a Pubmed and STRING search) as negative controls for the gene-
based association analysis. Moreover, we have assessed the reliability of our results, comparing
the total variant frequency of the selected genes in our study with the one reported for the Euro-
pean-American cohort in the Exome Variant Server (EVS)(http://evs.gs.washington.edu/EVS/).

Results
The study population consisted of a total of 332 sporadic and mainly late-onset AD cases and
676 elderly controls of British and North American ancestry (Table 1).
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We do not report any pathogenic mutation in APP, PSEN1 and PSEN2 in our cohort. How-
ever, one of the controls was an heterozygous carrier of the protective variant APP p.A673T
(MAF 7x10e-4 in our cohort and MAF 5x10e-4 among the European non-finnish, ExAC data-
base, released 13 January 2015).

We performed a single-variant and a single-gene association analysis in a pre-defined set of
genes involved in APP processing (ADAM9, ADAM10, ADAM17,MEP1B, BACE1, BACE2,
NCSTN, PSENEN, APH1B, APLP1, APBA1), Aβmetabolism and catabolism (LRRTM3, LRP1,
TTR, GPR3, SORL1, ECE1, ECE2, IDE, CST3, CTSB, CTSD, LYZ,MME, ACE,MMP3, A2M,
PLAT, KLK6), including 68 Megabase pairs (Mbs) of coding sequence.

A total of 960 single nucleotide variants (SNVs) has been identified. Among these, 256
(26.6%) were nonsynonymous, 194 (20.20%) were synonymous, 97 (10.1%) were intronic and
413 (43%) UTR variants. Among the missense variants, 192 (75%) were very rare (MAF<1%),
16 (6.25%) were low frequency (1%<MAF<5%) and 12(4.68%) were common (MAF>5%). In
addition, we report 36 novel coding variants. Variant minor allele frequency and novel variants
were based on ExAC database, released 13 January 2015, or dbSNP 137(S2 Table). The overall
variant frequency in our cohort was in line with the variant frequency reported in the Ameri-
can-European cohort in the Exome Variant server database (S3 Table).

Moreover, 120 missense variants (46.8%) were described as damaging variants by at least 2
out of 3 in silico prediction softwares (SIFT, Polyphen and Mutation Taster). Importantly,
genes involved in Aβ degradation and clearance harbor the highest relative frequency of rare
coding and damaging variants (mean = 4.73 rare coding variants/Kbp of coding sequence and
3.16 damaging coding variants/Kbp of coding sequence, respectively). By contrast, genes taking
part in APP processing and Aβ production, present the lowest relative frequency of rare coding
and damaging variants (mean = 3.59 rare coding variants/Kbp of coding sequence and 1.5
damaging coding variants/Kbp of coding sequence, respectively), suggesting a higher degree of
conservation of this last cluster of genes (S4 and S5 Tables).

Single coding variant association test
We identified 3 nominally significant variants, clustering in genes involved in Aβ catabolism
(TTR [p.T139M], ACE [p.T916M]) and APP cleavage (APH1B [p.T27I]). Overall, the main hits
(variants with the lowest p-values) mainly cluster to genes predominantly involved in Aβ degra-
dation and clearance (6 out of 8 genes [75%]), with ACE, SORL1 and LRP1 harboring multiple
variants, compared to APP processing (2 out of 8 genes [25%]). Moreover, most of these top
genes are highly expressed in the brain (http://biogps.org/) and harbor very rare coding variants
(0.009%<MAF<1.4%) with moderate to strong effect size (1.84<OR<Inf). (Table 2).

However, none of the coding variants detected in the studied genes reached the statistical sig-
nificance, based on a corrected p-value (p-value<1.9e-4), in the single-variant association test.

For all these main variants, with the APH1B (p.T27I) and SORL1 (p.D2065V) exceptions,
the minor allele was substantially more frequent in cases compared to controls, suggesting a
possible role as a risk factor for AD. The study possessed relatively low power to detect any sig-
nificant association between cases and controls for low frequency and rare variants. Neverthe-
less, we analyzed these variants because we could not preclude the possibility that high effect
risk alleles were present.

Gene-based association test
In addition to single-marker analysis, we performed gene-wide analysis to combine the joint
signal from multiple coding and non-coding variants with a MAF� 0.05 within a gene and to
provide greater statistical power than that for single-marker tests. All the variants
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(nonsynonymous, synonymous, UTRs) located within the studied genes and their exon-intron
flanking regions were collapsed together and their joint effect has been studied and compared
with 5 to 10 size and variant matched gene controls (S6A and S6B Table). Genes involved in
Aβ degradation and clearance were enriched for the lowest p-values. The combined effect of
variants in ECE1, LYZ and in TTR reached the nominal significance in the c-alpha and SKAT
tests, respectively (1.7e-3 <p-value<0.05) (Tables 3 and 4). There was a partial overlap
between genes identified in the single-marker analysis and those with SKAT and c-alpha tests.
Importantly, TTR was the main finding both in the SKAT and single-marker association analy-
sis. Therefore, suggesting TTR as a promising potential candidate risk gene for AD.

Discussion
The Amyloid cascade hypothesis is the main accepted hypothesis underlying AD pathology.
Several genes within the APP-Aβmetabolism pathway have been reported as potential candi-
date genes for AD. However, coding variability among these has not been extensively

Table 3. C-ALPHA TEST.

TRANSCRIPT ID POSITION GENE N.VARIANTS TEST P-VALUE CORRECTED P-VALUE

NM_001397 chr1:21543823..21671981 ECE1 51 CALPHA 0.00576606 0.1653

NM_000239 chr12:69742188..69747889 LYZ 5 CALPHA 0.0322581 0.928

NM_001908 chr8:11700101..11725587 CTSB 75 CALPHA 0.0706522 1

NM_000371 chr18:29171879..29178899 TTR 6 CALPHA 0.142857 1

NM_003183 chr2:9629731..9695906 ADAM17 18 CALPHA 0.16 1

NM_014693 chr3:183967457..184010734 ECE2 32 CALPHA 0.22 1

NM_000789 chr17:61554500..61574779 ACE 45 CALPHA 0.193548 1

NM_003816 chr8:38854521..38962660 ADAM9 23 CALPHA 0.196429 1

NM_001110 chr15:58888656..59042155 ADAM10 26 CALPHA 0.275 1

NM_031301 chr15:63569800..63601264 APH1B 39 CALPHA 0.277778 1

NM_000014 chr12:9220607..9268549 A2M 26 CALPHA 0.277778 1

NM_012105 chr21:42539814..42648229 BACE2 88 CALPHA 0.285714 1

NM_002332 chr12:57522754..57607023 LRP1 111 CALPHA 0.322581 1

NM_015331 chr1:160313330..160328428 NCSTN 21 CALPHA 0.36 1

NM_001012964 chr19:51462012..51471329 KLK6 11 CALPHA 0.444444 1

NM_000902 chr3:154797478..154901245 MME 40 CALPHA 0.6 1

NM_012104 chr11:117156543..117186818 BACE1 39 CALPHA 0.714286 1

NM_000099 chr20:23614297..23618571 CST3 12 CALPHA 0.714286 1

NM_002422 chr11:102706685..102714317 MMP3 16 CALPHA 0.714286 1

NM_001163 chr9:72042470..72287163 APBA1 41 CALPHA 0.833333 1

NM_178011 chr10:68685929..68860827 LRRTM3 29 CALPHA 0.833333 1

NM_172341 chr19:36237681..36237803 PSENEN 2 CALPHA 1 1

NM_005925 chr18:29772759..29800324 MEP1B 19 CALPHA 1 1

NM_001024807 chr19:36360709..36370689 APLP1 22 CALPHA 1 1

NM_005281 chr1:27720353..27722269 GPR3 17 CALPHA 1 1

NM_003105 chr11:121323007..121504463 SORL1 88 CALPHA 1 1

NM_004969 chr10:94211444..94333827 IDE 27 CALPHA 1 1

NM_001909 chr11:1774022..1782657 CTSD 20 CALPHA 1 1

NM_000930 chr8:42032237..42065098 PLAT 24 CALPHA 1 1

N. VARIANTS, number of variants. Position is in hg19/GRCh37. Statistical significance p-value < 1.7e-3. Corrected p-value, p-value after Bonferroni

correction (p-value*29 [number of genes considered in the single-variant association test])

doi:10.1371/journal.pone.0150079.t003
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investigated. The vast majority of reported studies are based on candidate gene approaches
using array-based SNP genotyping and are focused mainly on genes involved in Aβ catabolism
(http://www.alzgene.org/). Thus, leaving low frequency and rare coding variants and genes
involved in Aβ production largely unexplored.

GWASs and chip-based candidate gene approaches have shown that common and generally
non-coding variability within these genes does not play a critical role for AD development. The
only exceptions to this general rule are represented by SORL1 and ABCA7, which have been
reported associated with late-onset apparently sporadic and familial AD both with GWASs,
candidate gene approaches and exome sequencing [25–28].

In this study, we report a screening of genes known to be involved in the APP-Aβmetabo-
lism (APP processing, Aβ production, degradation and clearance). We applied single-marker
and gene-based association analyses, to investigate the independent and joint effect of coding
variability within these genes in a cohort composed of 332 apparently sporadic and mainly
late-onset AD cases and 676 elderly controls from North America and the UK.

Table 4. SKAT TEST.

TRANSCRIPT ID POSITION GENE N.VARIANTS TEST P-VALUE CORRECTED P-VALUE

NM_000371 chr18:29171879..29178899 TTR 6 SKAT 0.0234248 0.667

NM_000902 chr3:154797478..154901245 MME 40 SKAT 0.0558425 1

NM_003816 chr8:38854521..38962660 ADAM9 23 SKAT 0.0986587 1

NM_003183 chr2:9629731..9695906 ADAM17 18 SKAT 0.132024 1

NM_002422 chr11:102706685..102714317 MMP3 16 SKAT 0.171193 1

NM_003105 chr11:121323007..121504463 SORL1 88 SKAT 0.230435 1

NM_001908 chr8:11700101..11725587 CTSB 75 SKAT 0.231384 1

NM_015331 chr1:160313330..160328428 NCSTN 21 SKAT 0.273587 1

NM_000789 chr17:61554500..61574779 ACE 45 SKAT 0.311289 1

NM_012104 chr11:117156543..117186818 BACE1 39 SKAT 0.350782 1

NM_005925 chr18:29772759..29800324 MEP1B 19 SKAT 0.404511 1

NM_031301 chr15:63569800..63601264 APH1B 39 SKAT 0.415623 1

NM_001110 chr15:58888656..59042155 ADAM10 26 SKAT 0.416865 1

NM_000239 chr12:69742188..69747889 LYZ 5 SKAT 0.454856 1

NM_012105 chr21:42539814..42648229 BACE2 88 SKAT 0.465396 1

NM_000099 chr20:23614297..23618571 CST3 12 SKAT 0.485137 1

NM_001012964 chr19:51462012..51471329 KLK6 11 SKAT 0.586652 1

NM_000014 chr12:9220607..9268549 A2M 26 SKAT 0.600323 1

NM_172341 chr19:36237681..36237803 PSENEN 2 SKAT 0.61164 1

NM_014693 chr3:183967457..184010734 ECE2 32 SKAT 0.808793 1

NM_002332 chr12:57522754..57607023 LRP1 111 SKAT 0.813088 1

NM_001163 chr9:72042470..72287163 APBA1 41 SKAT 0.815816 1

NM_001024807 chr19:36360709..36370689 APLP1 22 SKAT 0.848962 1

NM_004969 chr10:94211444..94333827 IDE 27 SKAT 0.868194 1

NM_001397 chr1:21543823..21671981 ECE1 51 SKAT 0.894799 1

NM_178011 chr10:68685929..68860827 LRRTM3 29 SKAT 0.890455 1

NM_001909 chr11:1774022..1782657 CTSD 20 SKAT 0.899719 1

NM_000930 chr8:42032237..42065098 PLAT 24 SKAT 0.906314 1

NM_005281 chr1:27720353..27722269 GPR3 17 SKAT 0.975572 1

N. VARIANTS, number of variants. Position is in hg19/GRCh37. Statistical significance p-value < 1.7e-3. Corrected p-value, p-value after Bonferroni

correction (p-value*29 [number of genes considered in the single-variant association test])

doi:10.1371/journal.pone.0150079.t004
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In our cohort, genes involved in Aβ degradation and clearance harbor the highest relative
frequency of rare and predicted damaging variants (mean = 4.73 rare coding variants/Kbp of
coding sequence and 3.16 damaging coding variants/Kbp of coding sequence, respectively).
Conversely, genes encoding for proteins regulating Aβ production presented the lowest relative
frequency of coding and likely damaging variability (mean = 3.59 rare coding variants/Kbp of
coding sequence and 1.5 damaging coding variants/Kbp of coding sequence, respectively) (S4
and S5 Tables), suggesting a higher degree of conservation.

In the single-variant association analysis, the main hits were very rare coding variants (MAF
0.009%<MAF<1.4%) with strong effect sizes (1.84<OR<Inf) mapping to genes involved in Aβ
extracellular degradation (ACE, TTR, CTSB,MMP3), APP trafficking and recycling (SORL1),
and clearance (LRP1). Among the main single-marker hits only 2 genes (APH1B, NCSTN)
were component of the γ secretase complex and therefore pivotal for APP processing. Our
study was underpowered for the detection of rare and low frequency variants and these variants
were nominally significant after Bonferroni correction (1.9e-4<p-value<0.05). Importantly, in
our cohort, TREM2 p.R47H, the second most common risk factor for sporadic AD, has been
detected in 6 cases (1.8%) and 4 controls (0.59%) and, given our small sample size, with a
MAF = 0.2%, was not significantly associated to AD (p-value = 0.09). Therefore, we suggest
that the main variants detected in our study may be functional and warrant a follow up in an
extended sample size.

Transthyretin (TTR) is a 55-kDa protein, particularly abundant in the CSF and human
plasma, where it transports thyroxin from the peripheral blood circulation to the brain. TTR
has been already reported linked to AD dementia. Particularly, it has been hypothesized that
TTR may act as a scaffold protein, binding to amyloid and preventing its deposition and aggre-
gation in plaques [29]. Moreover, TTR is a well established biomarker for AD: 1) a decrese in
the CSF and serum TTR levels has been associated to an increased AD severity and faster rate
of disease progression and 2) 5 SNPs and different TTR haplotypes have been related to hippo-
campal atrophy [30]. By contrast, TTR overexpression decreases Aβ deposition, protects
against Aβ plaques formation and improves the cognitive function in different AD mouse
model strains [31–32]. Finally, TTR, likewise other well conserved secreted proteins critically
involved in dementia (PRP and PGRN), has no homologous proteins (http://string-db.org/),
therefore implying that even subtle changes to its epitopes and/or domains may be functionally
relevant and phenotypically manifest. In line with this hypothesis, TTR is the main hit both in
the single-variant analysis and, with only 6 variants detected (4 coding and 2 3´ UTR variants),
in the gene-based analysis (SKAT). Thus, suggesting that either the joint effect of the coding
and non-coding variability at the TTR locus is likely to be functional or that the signal is driven
by TTR p.T139M, that has a very strong effect size (OR = 6.19, 95% CI = 1.099–63.091).

The second strongest signal in the single variant analysis maps to ACE (p.T916M), encoding
angiotensin I converting enzyme 1 (ACE1), a zinc metalloprotease, which regulates blood pres-
sure. Multiple lines of evidence have shown that ACE1may ameliorate the cognitive decline
either regulating the cerebral blood flow and/or converting Aβ42 to Aβ40, a more soluble isoform
and its activity is increased in AD brain, in proportion to the parenchymal Aβ load [33–35].

SORL1 encodes for Sortilin related receptor (SORLA, also known as LR11), which binds to
APOE and mediates several intracellular sorting and trafficking functions through a VPS10
(vacuolar protein sorting protein 10) domain [36]. SORLA is highly expressed in the brain and
modulates APP recycling through the retromer complex, thereby influencing levels of Aβ [37–
38]. A growing body of evidence suggested SORL1 as an excellent positional and functional
candidate for AD [12, 25, 39–42, 25–26]. Moreover, decreased expression and DNAmethyla-
tion changes at the SORL1 locus have been reported associated to AD [43–44]. SORL1 harbors
3 of the top variants identified (p.E270K, p.D2065V and p.R11P). Importantly, p.E270K has
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been reported in 7 Carribean Hispanic families and in vitro studies showed that SORL1 p.
E270K is a functional variant, leading to increased secretion of Aβ, when transfected in
HEK293 cell lines and weakening the binding to APP [45]. Therefore, it is plausible that
SORL1 (p.E270K) may increase the susceptibility also for apparently sporadic LOAD. Thus,
this finding, with the other main SORL1 variants detected (p.D2065V and p.R11P) should be
further investigated.

Finally, four of the main hits map to the low-density lipoprotein receptor related protein 1
(LRP1) gene. Importantly, LRP1 is a major Aβ clearance receptor in cerebral vascular smooth
muscle cells and disturbance of this pathway contributes to Aβ accumulation in the brain [46].
In addition, LRP1 locus was identified as an AD candidate locus in consanguineous Israeli-
Arab community [47].

The c-alpha and SKAT tests reported ECE1 and LYZ and TTR, respectively, as main genes
associated with LOAD, although after the Bonferroni correction, the association was only nom-
inally significant. Very interestingly, the main genes identified both with the single-marker and
gene-based analysis play a pivotal role in the cardiovascular system and have been already sig-
naled as potential risk factors for cerebral amyloid angiopathy (CAA) or vascular dementia [48].
First, ECE1 and ACE are key components of the renin-angiotensin cascade, that controls blood
pressure [49]. Second, ECE1, ACE and TTR are mostly expressed by endothelial cells in the CNS
(http://web.stanford.edu/group/barres_lab/brain_rnaseq.html). Third, acute and chronic hyp-
oxia, through the release of the hypoxia inducible factor 1α (HIF-1α), exerts a critical epigenetic
regulation on APP processing and Aβ catabolism key genes. Notably, HIF-1α has been reported
to increase γ and β cleavage of APP and impair Aβ degradation and clearance mainly through
the down regulation of pivotal proteins such as MME, ECE1 and TTR [50–53].

In summary, our study shows that 1) common coding variability within genes involved in
APP-Aβmetabolism does not play a critical role for AD development; 2) genes regulating Aβ
production are more conserved than genes playing a key role in Aβ degradation and clearance,
thus less frequently involved in sporadic AD; 3) TTR, ACE, SORL1, CTSB and LRP1 harbor
rare coding variants with strong effect size, likely to be functional and warrant further investi-
gation in an extended cohort; 4) ECE1, LYZ and TTR play a critical role in the cardiovascular
system and the joint effect of their variants may increase the susceptibility to AD. Finally, in
concert with previous studies, our results support a potential overlapping biology with shared
risk factors between CAA, vascular dementia and AD.
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S1 Table. List of the 29 genes selected in our study.
(DOCX)

S2 Table. Coding variants detected in APP-Aß metabolism genes in our study. Aa, aminoa-
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(XLSX)

S3 Table. Comparison between total variants and relative frequency of variants detected in
our study and Exome Variant Server database (EVS) in the European-American cohort.
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S4 Table. Relative frequency of rare variants in the 29 genes analyzed.Kbp, kilobasepair.
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S5 Table. Relative frequency of predicted damaging variants in the 29 genes analyzed. The
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