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Abstract—This work addresses the problem of predicting the
compression efficiency of a video codec solely from features
extracted from uncompressed content. Towards this goal, we have
used a database of videos of homogeneous texture and extracted
both spatial and frequency domain features. The videos are
encoded using High Efficiency Video Coding (HEVC) reference
codec at different quantization scales and their Rate-Distortion
(RD) curves are modelled using linear regression. Using the
extracted features and the fitted parameters of the RD model,
a Support Vector Regression Model (SVRM) is trained to learn
the relationship of the textural features with the RD curves.
The SVRM is tested using iterative five-fold cross-validation.
The presented experimental results demonstrate that RD curve
characteristics can be predicted based on the textural features
of the uncompressed videos, which offers potential benefits for
encoder optimization.

I. INTRODUCTION

Texture perception is a well-studied topic in psychophysics,
neurobiology and signal processing. In images, texture is an
important visual primitive, defined as a spatially repetitive
pattern [1, 2]. In video sequences, texture becomes stochastic
with variations in both its spatial and temporal characteristics.
Analysing and understanding texture is important for video
compression, as how a codec deals with texture content has
a significant effect on its Rate-Distortion (RD) performance.
Videos that contain dynamic textures in particular (e.g. water,
moving tree leaves) pose a significant challenge even to the
most recent video coding standard, High Efficiency Video
Coding reference codec (HEVC HM) [3], requiring many bits
for a good quality reconstruction. Moreover different types
of dynamic texture exhibit different bit rate requirements.
Dynamic textures with irregular local motion, for example,
generate a higher bit rate compared to other types of dynamic
texture when coded using the same Quantization Parameter
(QP). This is illustrated in Fig. 1, where a random frame from
six example sequences [4] is shown along with the average
number of bits generated per pixel, when each sequence is
coded with HEVC HM at a QP of 27.

This paper presents a method of predicting the encoding
difficulty of texturally homogeneous video sequences based
on their textural features. First, texture-related features and
their statistics in the spatial, temporal and frequency domain
are are defined and extracted from uncompressed videos. For
the same videos, the RD curves are obtained using HEVC HM
for various QPs. A big part of these RD points, along with
the extracted features of the videos, are used to train Support

a) Bamboo (0.46bpp) b) BlowingLeaves (0.92bpp)c) LeavesRotating fine (0.52bpp)

d) CalmSea (0.04bpp) e) Flag (0.02bpp) f) BoilingWater (0.06bpp)

Fig. 1: Average required bits per pixel (bpp) for the example sequences [4].

Vector Regression Models (SVRMs). Based on these trained
models, the RD curve of the video may be predicted prior
to encoding. This offers the potential for efficient parameter
selection in the video encoder. Furthermore, the extracted
features, along with the predicted RD curves, could be used for
texture classification and segmentation. Finally, the proposed
approach could be useful for the annotation of a dynamic
texture video database with numerical descriptors instead of
textual annotations that are currently used (e.g. [5]).

Textural features are conventionally defined with the pur-
pose of facilitating similarity, browsing, retrieval and clas-
sification applications [2, 6–12]. Additionally, most works
have only considered static textures, namely images [2, 6–
9]. Hence, most textural features do not capture the dynamic
characteristics that texture obtains in videos. Some of these
features have previously been used for spatial segmentation in
video synthesis and coding [10, 11]. An effort to synergise
spatial and temporal texture features in video (but only for
classification purposes) is reported in [12]. In the present
paper, features that capture both spatial and temporal char-
acteristics of different types of texture in videos are extracted
and correlated with their compression efficiency. Furthermore,
a feature that captures the temporal coherence of successive
frames is introduced.

There exists some previous work that relates textural fea-
tures to video compression efficiency [9, 13, 14]. In [9],
Subedar et al. define a no-reference metric of granularity in
static textured images and discuss its relation to compression
efficiency, but with no clear association to RD curves. In [14],



elementary statistics of prediction error for texture and motion
vectors for motion are obtained from H.264/AVC encoder and
used to build variability-distortion models. In [13], a block-
based spatial correlation model is defined and used to predict
the RD bounds within an H.264/AVC encoder. This work was
extended in [15] to consider the block-based spatial correlation
among two successive frames within HEVC HM. The present
work moves beyond the state of the art by predicting the RD
curves of video sequences with homogeneous texture based
on textural features that are extracted from the uncompressed
sequences.

The remainder of the paper is organised as follows. Sec-
tion II describes the selected features of texture in videos and
the new dataset. In Section III, the RD curves are modelled and
their basic characteristics are discussed. The proposed SVRM
to predict the compression efficiency based on the video
content is detailed in Section IV, where also the experimental
results are presented and discussed. Finally, the conclusions
are drawn in Section V.

II. VIDEO TEXTURE FEATURES

The selected features are designed to capture the basic
characteristics of video texture: coarseness, directionality, reg-
ularity, and temporal stationarity.

A. Gray Level Co-occurrence Matrix (GLCM)

The Gray Level Co-occurrence Matrix (GLCM)[6] is a
commonly used spatial textural feature [10]. It expresses the
intensity contrast of neighbouring pixels in a frame, thus
capturing the degree of coarseness and directionality of the
texture.

For the present frame It, let G be the GLCM, whose
element Gij is the number of occurrences for pixel pair ij with
intensity values Yi, Yj , with Y ∈ {0, 255}. The probability
that a pixel pair ij assumes Yi, Yj values is pij = Gij/K,
where K is the number of occurrences. GLCM has five
main descriptors: contrast, correlation, energy (or uniformity),
homogeneity and entropy that are formally defined in the
equations below:

GLCMcontrast =

M∑
i=1

N∑
j=1

(i− j)2pij , (1)

GLCMcorrelation =

M∑
i=1

N∑
j=1

(i−mr)(j −mc)pij
σrσc

, (2)

GLCMenergy =

M∑
i=1

N∑
j=1

p2ij , (3)

GLCMhomogeneity =
pij

1 + |i− j|
, (4)

GLCMentropy = −
M∑
i=1

N∑
j=1

pij log2 pij , (5)

where M,N are the rows and columns dimensions respec-
tively, mr,mc the mean and σr, σc the standard deviation
along rows and columns of both It and G. All GLCM

descriptors are computed at a frame level per sequence. Then,
all features are averaged over the number of frames of a
sequence.

B. Normalized Cross-Correlation (NCC)

The Normalized Cross-Correlation (NCC) is commonly
used in image processing applications for spatial similarity
purposes [16]. It assumes values within the range [-1,1] with
its maximum value indicating the maximum correlation and
vice versa. In this paper, NCC is used as a spatio-temporal
feature, as it examines the spatial similarity of two successive
frames, It−1 and It, using a sliding matching template window
T of w × w size from the reference frame It−1:

NCC =

M∑
i=1

N∑
j=1

|It(i, j)− Īt(u, v)||T (i− u, i− v)− T̄ |)√√√√( M∑
i=1

N∑
j=1

|It(i, j)− Īt(u, v)|

)2(
M∑
i=1

N∑
j=1

|T (i− u, i− v)− T̄ |

)2

(6)
where u, v define the area covered by the window T . NCC
is recorded for every pair of successive frames and its statis-
tics (standard deviation, skewness, kurtosis and entropy) are
computed at a sequence level.

C. Temporal Coherence (TC)

In order to express how easy or difficult one frame can be
predicted from its previous temporal neighbour, the spectral
magnitude coherence among two successive frames It−1It, is
employed. It is computed using the Fast Fourier Transform
(FFT) [17] and is defined as follows:

TC =
|PIt−1It |2

PIt−1It−1
PItIt

, (7)

where PIt−1
is the auto-spectral density of It−1 and PIt−1It

the cross-spectral density of frames It−1It. TC is normalized
within the range [0,1] and assumes its maximum value for
static or purely translational motion among two successive
frames. Due to its dependence on the frequency response, it
is evident that the TC for textures with high density of high
frequencies and low motion will have higher TC values (e.g.
Bamboo) compared to textures that are less dense in terms of
high frequencies (e.g. CalmSea). TC is computed for every
pair of successive frames and its statistics (standard deviation,
skewness, kurtosis and entropy) are computed at a sequence
level.

D. Dataset and Feature Extraction

In order to extract our features, the new dataset,
Homogeneous Video Texture Dataset (HomTex) [4], has been
created. This comprises 256 × 256 cropped homogeneous
regions from the DynTex [5] and the BVI video dataset [18].
DynTex is a database with annotated videos (original resolu-
tion is 720 × 576 at 25 fps) of different types of dynamic
textures (with a variation form weakly to strongly dynamic).
The BVI video dataset contains textured natural scenes (origi-
nally with HD resolution and 60 fps). The 120 selected videos



contain spatially homogeneous texture of different types. Par-
ticularly, 25 static, 45 dynamic continuous and 50 dynamic
discrete. The type of the texture has been manually annotated
by experts. The term “dynamic continuous” refers to scenes of
moving deformable surfaces (e.g. water, flag), while “dynamic
discrete” refers to perspectively moving structures (e.g. straws,
leaves). As “static” we characterize the texture videos that have
almost exclusively global motion. The granularity level in the
videos varies in three levels, from fine to coarse. Moreover, in
some sequences, except from the local motion, global motion
also occurs due to the camera motion.

Figure 2 depicts the selected features for two of the example
sequences, Bamboo and CalmSea. Bamboo is a dynamic tex-
ture with fast and irregular moving structures, while CalmSea
is dynamic surface with slow irregular motion. As expected,
their features are quite different. For example, Bamboo has
a high range of GLCM values and higher TC and NCC,
compared to CalmSea. Also, the scattered features reveal
different relations for these two different types of texture. It is
important to mention that there many variations of these plots
depending mainly on the texture granularity and the motion
variation that affects the temporal coherence.

III. RATE-DISTORTION CURVES

In order to plot the RD curves, the same video sequences
used for feature extraction were encoded for five different
quantization scales, QP = {20, 25, 27, 32, 37}, using the
Random Access configuration of HM16.2. The RD curves
characterize the relationship of the mean bit rate and the video
quality. The RD curves are highly dependent on the video
content. Particularly, motion and texture are important aspects
that influence video compression efficiency. These factors
result in RD curves of different characteristics, as illustrated in
Fig. 3 (a), where the RD curves for five different quantization
parameters of the example sequences from HomTex are drawn.
Particularly, “CalmSea”, “Flag”, and “BoilingWater” represent
dynamic continuous texture, while the rest example sequences
represent dynamic discrete texture. As it can be observed, these
different types of textures result in RD curves with different
characteristics. For example, the “CalmSea” sequence, which
is annotated as dynamic continuous texture, represents slow
motion water and its curve shows that using a lower QP value
results in a high Peak Signal to Noise Ratio (PSNR) value
for a rather small bit rate increase. On the other hand, the
“BlowingLeaves” sequence, which is annotated as dynamic
discrete texture, depicts irregularly moving tree leaves, and its
RD curve shows that many bits are required to provide high
video quality.

A. RD Curve Modelling

In this paragraph, it is shown that the RD curves can be
approximated linearly, if the logarithm of the rate is used.
In Fig. 3 (b), the horizontal axis represents the logarithm of
the bit rate R, log10(R). Since Pearson linear Correlation
Coefficient (PCC) over the test sequences has a mean value
of 0.9845, this shows a strong linear correlation of PSNR and

500 550 600 650
0

1

2

3

4

5

6

7

GLCM contrast
0.66 0.68 0.7 0.72 0.74

1.3

1.35

1.4

1.45

1.5

1.55
x 10

−4

GLCM correlation

G
LC

M
 e

ne
rg

y

0.1 0.11 0.12 0.13
0.74

0.75

0.76

0.77

0.78

0.79

0.8

GLCM homogeneity

G
LC

M
 e

nt
ro

py

0 0.5 1
0

1000

2000

3000

TC

0 0.5 1
0.2

0.25

0.3

0.35

mean TC

st
d 

T
C

−1 −0.5 0 0.5 1
1.5

2

2.5

3

skew TC

ku
rt

 T
C

0 0.5 1
0

10

20

30

NCC
0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

mean NCC

st
d 

N
C

C

−2 −1 0 1
0

2

4

6

8

10

skew NCC

ku
rt

 N
C

C

(a) Features of Bamboo sequence.
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(b) Features of CalmSea sequence.

Fig. 2: Examples of extracted features for two example sequences, (a) Bamboo
and (b) CalmSea. The first row illustrates GLCM with their descriptors;
contrast in a histogram and correlation, energy, homogeneity and entropy in
scatter plots. Rows two and three, depict TC and NCC in histograms with
their statistics in scatter plots, respectively.

log10(R). Hence, the relation of PSNR and log10(R) can be
modelled as a linear function. Thus,

PSNR = α log10(R) + β , (8)

where α ∈ R+ and β ∈ R. Ordinary a least squares fit is used
for the computation of parameters α, β.

To assess the validity of the linear model, the Bjontegaard
delta PSNR (BDPSNR) measurement for all sequences was
used [19]. Figure 3 (c) depicts a histogram of the computed
BDPSNR values for all HomTex video sequences. The average
BDPSNR value equals to 0.0873 dB. Also, as it is obvious
from Fig. 3 (c), the distribution around the mean value is
narrow. This means that there is a small deviation between the
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Fig. 3: RD Curves of the example sequences. (a) RD curves based on measurements in HEVC HM. (b) The continuous curves are the same as in (a), but
with log10(R) x-axis. The dashed lines depict the linearly fitted curves. (c) Histogram of the BDPSNR for all linearly modelled RD curves.

estimated PSNR values using Eq. (8) and the measured PSNR
values. All the aforementioned justify the linear approximation
of the curves.

IV. PREDICTION OF THE RD CURVES USING SVRM

A. Training and Testing

120 test sequences were used, each with 250 frames and
Group of Pictures (GOP) length equal to 8. The RD curves
were built per sequence and per GOP resulting in 3600
RD curves. The RD curves were obtained by encoding the
test sequences for five different quantization scales, QP =
{20, 25, 27, 32, 37}. For all the RD curves, parameters α and
β were fitted.

To ensure the validity of the training and testing a repetitive
randomized process was followed. A random split of the
data (including both extracted features and fitted parameters
α, β per sequence and per GOP) was performed with 70%
of the data being used for model configuration and training
and the remaining 30% of the data for the final prediction
and performance evaluation. Regarding the training process,
a five-fold cross-validation was used. Parameters α and β
were consodered independent and two different regression
models were built. Each time, four groups were used to train
the SVRM to predict parameter α and the other SVRM to
predict parameter β. Then, the respective SVRM is used to
predict parameters α̂ and β̂ of the RD curves in the remaining
fifth group. The partitioning, training, and final prediction are
conducted iteratively 100 times to ensure the validity of the
SVRM training and the accuracy of predictions. The LIBSVM
ToolBox was used to build the regression models and the radial
basis function was adopted as the SVRM kernel [20].

B. Results and Discussion

The evaluation of the performance of the proposed approach
takes place in two steps. First, the accuracy of predicting
parameters α̂ and β̂ is assessed. Next, the RD curves based
on the predicted α̂ and β̂ are validated using BDPSNR.

In Table I, the mean values and standard deviations of
Normalised Root MSE (NRMSE), PCC and Spearman’s Rank
Correlation Coefficient (SROCC) for the predicted parameters
α̂ and β̂ are reported. The prediction accuracy for both
parameters is similar. Also, the predicted values of parameters
α̂ and β̂ are scattered over the fitted values of α and β in Fig. 4.
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Fig. 4: Scattering of predicted parameters α̂ and β̂ versus the fitted ones.

Both parameters show that most of the predicted values that
lie on or very close to the diagonal are predicted with high
accuracy, which is also inferred by the mean PCC values in
Table I. However, some predicted α̂ and β̂ deviate from the
diagonal in Fig. 4 and consequently lead to deviations in the
predicted RD curves.

TABLE I: Goodness of prediction of parameters α̂, β̂ using mean±standard
deviation values over all tested sequences.

Parameter NRMSE PCC SROCC

α̂ 0.3335±0.0198 0.7939±0.0194 0.7700±0.0266

β̂ 0.3094±0.0202 0.8154±0.0180 0.7984±0.0251

A visual example of the predicted curves for the six example
sequences is provided in Fig. 5 (a). From this example, it
is clear that for all example sequences, the predicted RD
curves are close to the encoder-derived RD curves for the used
range of QP values. As it can be seen, for some sequences
the predicted curves are more accurate, as for example for
CalmSea. This can be explained by the fact that the spatial
diversity of this sequence is low, as also indicated by its
GLCM statistics in Fig. 2 (b). On the other hand, Bamboo
has irregularly moving objects in the foreground and a still
background, which is also reflected by its GLCM statistics in
Fig. 2 (a).

The accuracy of the predicted RD curves compared to the
measured RD curves is measured using BDPSNR for the tested
data and a random instance of the testing is depicted in the
histogram of Fig. 5 (b). The mean BDPSNR value over all
predictions is -0.1187 dB with a standard deviation of 3.7012
dB. Regarding the outliers in the prediction, one reason is
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Fig. 5: Predicted RD curves for the example sequences. (a) Predicted (dashed
lines) and measured curves (continuous lines). (b) Histogram of the BDPSNR
of the predicted RD curves over the measured ones.

that, as in all regression methods, the finite number of test
sequences does not cover the infinite number of RD curves
and all possible values of the different textural features. Also,
the accuracy of the predicted curves depends on two predicted
parameters, α̂ and β̂. This is the case for the annotated point
in Fig. 5. For example, for the RD curve of GOP19 of the
sequence BricksTilting wall2 1, although the prediction of α̂
is accurate, the prediction of β̂ deviates from its fitted value,
resulting in a RD curve that has a very low BDPSNR value
compared to the measured one. This means that a deviated
prediction of both parameters might result in outliers. Also,
for some outliers, although their textural content was perceived
as homogeneous by experts, it is spatially quite variable. The
spatial variability affects the values of the extracted features,
thus the accuracy of the predicted RD curves.

V. CONCLUSION

A novel method of predicting the RD curves based on
features extracted from uncompressed video sequences with
homogeneous texture has been proposed. Two SVRMs have
been trained to learn the underlying relationship between
the textural features and the RD curve parameters. Based
on experimental results, the proposed features are related to
the difficulty to encode different types of texture in videos
and the regression models perform well in predicting the
RD curve parameters. The predicted RD curves are close to
the measured, with a mean BDPSNR value equal to -0.1187
dB. The proposed method offers the benefit of a means of
prediction of video compression performance and could be
used to support encoder configuration and prior to encoding
adaptive rate-quality optimization. Future work will focus on
extending the dataset and by including more textural features

1BricksTilting wall2 is a static sequence with the camera tilting over a
brick wall.

related to directionality and regularity of the texture. Also, the
extension in the prediction of the RD curves for videos with
content with mixed textures is another interesting direction for
future research.
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