
 Martin, T., & Azvine, B. (2017). A virtual machine for event sequence
identification using fuzzy tolerance. In 2016 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2016): 	Proceedings of a meeting held 24-29
July 2016, Vancouver, British Columbia, Canada. (pp. 1080-1087).
[7737808] (Proceedings of the IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE)). Institute of Electrical and Electronics Engineers
(IEEE). DOI: 10.1109/FUZZ-IEEE.2016.7737808

Peer reviewed version

Link to published version (if available):
10.1109/FUZZ-IEEE.2016.7737808

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7737808/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/83929242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737808
http://research-information.bristol.ac.uk/en/publications/a-virtual-machine-for-event-sequence-identification-using-fuzzy-tolerance(f14901ca-9800-4e5d-881b-bef28e35a7fe).html
http://research-information.bristol.ac.uk/en/publications/a-virtual-machine-for-event-sequence-identification-using-fuzzy-tolerance(f14901ca-9800-4e5d-881b-bef28e35a7fe).html

A Virtual Machine for Event Sequence Identification
using Fuzzy Tolerance

Trevor Martin a,b

a Machine Intelligence and Uncertainty Lab,
Engineering Maths, University of Bristol,

Bristol, BS8 1UB, UK

Ben Azvine b

b Security Futures Lab
BT TSO

Adastral Park, Ipswich, IP5 3RE, UK

Abstract—Analysing event logs and identifying multiple
overlapping sequences of events is an important task in web
intelligence and in other applications involving data streams. It is
ideally suited to a collaborative intelligence approach, where
humans provide insight and machines perform the repetitive
processing and data collection. A fuzzy approach allows flexible
definition of the relations which link events into a sequence. In
this paper we describe a virtual machine which enables a
previously published expandable sequence pattern format to be
represented as virtual machine instructions, which can filter
event streams and identify fuzzily related sequences.

Keywords—Fuzzy Event Sequence Identification, Fuzzy Virtual
Machine, Collaborative Intelligence

I. INTRODUCTION

Collaborative web intelligence is a combination of human
expertise (to provide insight) with machine power (to provide
repetitive processing and data gathering capabilities). Current
web intelligence - in the form of applications such as search
engines, recommender systems, e-commerce systems, etc. - is
essentially machine-based, relying on the availability of a large
quantity of data and sophisticated statistical machine learning
methods to produce a predictive model. Such models have
been successful in a range of fields, but can be criticised on a
number of grounds. They generally do not enable human
understanding of the underlying mechanisms, and exist
essentially as black boxes where a set of attributes in a specific
case leads to a predicted outcome for that case. Secondly, they
rely on the existence of large collections of reliable data. We
argue that statistical machine learning is not adequate in
situations where human expertise is required (either to build or
to understand the model of a process), or where reliable data is
not available. For example, in detecting and combating cyber-
attacks, reliance on statistical machine learning is often
inadequate. Almost by definition, a successful cyber-attack
needs to involve novel (hitherto unseen) features and is thus
out of scope for systems which require large scale data
collection - for example, spectrum.ieee.org/telecom/security/
the-real-story-of-stuxnet describes how a number of so-called
zero-day vulnerabilities were exploited.

In such cases, collaborative intelligence offers an
improvement by combining the processing powers and
visualisation provided by machines with the interpretive skills,
insight and lateral thinking provided by human analysts. In

order to successfully implement a collaborative intelligent
system, it is necessary to exchange knowledge between the
components - in particular between humans and machines. We
argue that there is a fundamental difference in the knowledge
representations, where machine processing is usually centred
on well-defined entities and relations, ranging from the flat
table structures of database systems through graph-based
representations and up to ontological approaches involving
formal logics. On the other hand, human language and
communication is based on a degree of vagueness and
ambiguity that leads to an efficient transmission of information
between humans without the need for precise definition of
every term used. Even quantities that can be measured
precisely (height of a person or building, volume of a sound,
amount of rainfall, colour of an object, etc.) are usually
described in non-precise terms such as tall, loud, quite heavy,
dark green, etc. More abstract properties such as beautiful
landscape, delicious food, pleasant weather, clear
documentation, corporate social responsibility, are essentially
ill-defined, whether they are based on a holistic assessment or
reduced to a combination of lower-level, measurable quantities.
Zadeh’s initial formulation of fuzzy sets [1] was inspired
primarily by the flexibility of definitions in natural language.

Linking events into sequences is an area in which
collaborative intelligence can play a role. The notion of
linkages between events is inherently uncertain in many cases -
example such internet logs, physical access logs, transaction
records, email and phone records all contain multiple
overlapping sequences of events related by different attributes.
Clearly in the case of phone records, the calls made by a
specific user (or from a specific phone) would form a sequence
- but it is often possible to link individual events in different
ways. Specific problems in extracting sequences of related
events include determination of what makes events “related”,
how to find groups of “similar” sequences, identification of
typical sequences, and detection of sequences that deviate from
previous patterns. This is strongly linked to the concept of
information granulation introduced by Zadeh [2] to formalise
the process of dividing a group of objects into sub-groups
(granules) based on “indistinguishability, similarity, proximity
or functionality”. In this view, a granule is a fuzzy set whose
members are (to a degree) equivalent. In a similar manner,
humans are good at dividing events into related groups, both
from the temporal perspective (event A occurred a few minutes
before event B but involves the same entities) and from the

perspective of non- temporal event properties (event C is very
similar to event D because both involve similar entities).

In related work [3, 4] we have described a novel approach
to identifying sequences of related events, with scope for
assistance from human experts. The event sequences are
represented in a compact and expandable sequence pattern
format as a directed acyclic graph (DASG : Directed Acyclic
Sequence Graph) where edges correspond to events, and
fuzzy matching of event attributes is used to determine the
similarity of an event sequence to a known pattern. The DASG
format ensures that common initial and terminal sub-sequences
are merged. A path from start to end of the graph corresponds
to a complete event sequence, and any other path is a partial
event sequence. The representation allows the addition of new
patterns (event sequences) as they are identified, and
subtraction / removal of sequences that are no longer relevant.
Examination of the sequences can be used to further refine and
modify general patterns of events.

Given a set of sequences, we can scan event streams to
identify partial and complete sets of events that match a (fuzzy)
sequence. This paper describes an efficient virtual machine,
enabling the DASG patterns to be converted to executable code
that can filter a stream of events into multiple sequences. The
novel features are:

• a fuzzy virtual machine capable of representing the
compiled fuzzy network of event sequences

• use of multi-threading in the virtual machine for
recognising interleaved event sequences

• the ability to dynamically alter virtual machine code, to
reflect changes in recognised event sequences

• easy reconstruction of event sequences from the virtual
machine execution record

II. BACKGROUND

A. SIFT (Sequence Identification using Fuzzy Tolerance)

We briefly introduce the basic ideas of the sequence
representation - see [3, 4] for further explanation. We assume
the data is represented in a time-stamped tabular format with
one or more specified fields storing date and time information,
and that data arrives in a sequential manner, either row by row
or in larger groups which can be processed row-by-row. Each
column in the table has a domain Di and a corresponding
attribute name Ai . There is a special domain O which plays the
role of an identifier (e.g. row number or event id).

Formally, data is represented by a function

 f :O → D1 × D2 ×…× Dn

which we can write as a relation

 R ⊂ O × D1 × D2 ×…× Dn

where any given identifier oi appears at most once. We use
Ak(oi) to denote the value of the kth attribute for object oi. and
assume one or more attributes can be interpreted as a totally
ordered timestamp.

Multiple sequences of events can be compactly represented
using a directed graph (DASG), such that common initial and
final sub-sequences are combined. User-supplied code defines
the similarities between events (allowing them to be grouped
together on the same path) and relations which indicate that
one event follows another in a sequence.

We assume that a DASG representation of various ordered
sequences of events is available, together with a suitable source
of data and user-supplied code to categorise events and
sequence steps. Each method in this code takes specified
arguments from the data, performs appropriate computation
(for example, to determine that two events are sufficiently
close in time to belong to the same sequence, or whether one
event is allowed to follow another). Each method returns a
value in the range [0, 1] using the normal fuzzy interpretation.
Since the fuzzy matching is under control of the user, we do
not cover this aspect in depth. It is important to note that
fuzziness is fundamental to the virtual machine operation.

The virtual machine is capable of reading an interleaved
series of events and matching them to the sequence patterns,
producing (on demand) lists of event sequences that match
complete sequence patterns, lists of event sequences that match
initial phases of sequence patterns, and lists of events that do
not match any known patterns. The process of translating the
DASG to virtual machine code is not described here, but can
be achieved using standard techniques.

B. Related Research

The major research fields linked to this work are

(i) compilation of finite state machines (FSM) into
executable code or a virtual machine. This is a well-developed
area of computer science and is used extensively in compilers,
string processing, speech recognition, etc. See [5] for a tutorial
description of finite state machines. Open source software such
as http://smc.sourceforge.net exists to convert FSM
specifications into most common programming languages.

 (ii) implementation of virtual machines for logic
programs, such as the Warren Abstract Machine (WAM) [6].
The Fril Abstract Machine [7, 8] is of particular relevance to
the work described here as the representation used in SIFT
incorporates fuzzy matching. Fril is the only logic
programming compiler with a mechanism to handle
uncertainty integrated at the lowest level.

(iii) compilation of graphical models, although the notion
of “compilation” here refers to translation into library routine
calls, rather than to a dedicated virtual machine [9].

 Our work uses a much more general representation than a
finite state machine. In particular, the use of fuzzy values and
multiple labels to define an edge distinguishes the approach
from finite state machines. Fuzzy labels mean it may be
necessary to revisit a node and test alternative edges from it.
Multiple labels allow more complex branching behaviour than
is possible in a finite state machine. As a consequence of these
differences, the execution model described here is very
different to a finite state machine. The notion of restarting
computation and multiple threaded execution is not common in
finite state machines.

Additionally, it is a relatively simple task to dynamically
alter the virtual machine code to reflect changes in the DASG
model of event sequences. There is a close (essentially, one-to-
one) correspondence between the DASG representation of
event sequences and sections of code for the virtual machine.
Broadly speaking, edges correspond to short instruction
sequences and nodes correspond to points at which execution
may be suspended.

Finally, the virtual machine allows reconstruction of event
data corresponding to recognised sequences and to
unrecognised sequences by examination of the thread
execution records.

Virtual machines for logic programs are complex,
reflecting the fact that they implement complete programming
languages. This DASG machine is a much simpler design,
meaning that the use of multiple execution threads is easier.

Graphical models (particularly bayesian nets) are normally
implemented using specialist code, and “compilation” in this
context typically refers to a translation process, whereby a
specification of a graphical model is converted to a sequence of
program calls to pre-written library functions. Initial
construction of the graphical model and its use in simulation is
reliant on the user’s statistical knowledge, the collection of
large quantities of data and an assumption that past
performance can be used to predict future behaviour. In
contrast, the work described here does not rely on statistics to
form the initial network of event sequences, and allows the
graph to reconfigure easily, as new patterns are incorporated.
The virtual machine gives a simple execution model
corresponding to the DASG and does not rely on complex
library functions.

C. Sample Data

A small subset of data from the 2009 VAST challenge1 was
used in [3] to illustrate DASG formation. A similar subset
(Table 1) is used here, but events are listed in time order (and
eventIDs are changed to reflect the ordering). To illustrate
features of the system, row 8 has been changed so that the
sequence for employee 10 no longer matches any pattern and
an event has been added at row 20 which cannot be matched to
any initial pattern step. The data is drawn from attributes

Employee = set of employee ids = {10, 11, 12}

Date,Time = date / time of event

Entrance points = {B - building, C - classified section}

Access direction = {in, out}

and represents movement of employees in and out of a building
(B) with a swipecard barrier on entrance but not on exit. The
building contains a classified area (C) with swipecard access
on entrance and exit. Tailgating (following another employee
without swiping a card) is possible. We use the same user-
defined relations as [3]. For a candidate sequence of n events:

 S1 = o11, o12, … ,o1n()
we define the following computed quantities :

ElapsedTime ΔTij = Time oij() − Time oij−1()
with ΔTi1 = Time oi1()

and restrictions (for j>1) :

Date oij() = Date oij−1()
0 < Time oij() − Time oij−1() ≤ Tthresh

Emp oij() = Emp oij−1()
Action oij−1(), Action oij()() ∈AllowedActions

where Action oij() = Entrance oij(), Direction oij()()

and Tthresh specifies how close events must be to form part
of the same sequence. The relation AllowedActions is given by
the following table (row = first action, column = next action)

b,in c,in c,out
b,in x x
c.in x
c,out x x

These constraints can be summarised as

• events in a single sequence refer to the same
employee

• successive events in a single sequence conform to
allowed transitions between locations and are on the
same day, within a specified time of each other. We
choose Tthresh = 8 (this ensures anything more than 8
hours after the last event is a new sequence). Note that

1 http://hcil2.cs.umd.edu/newvarepository/benchmarks.php

TABLE I. SAMPLE DATA
ev

en
tI

D

D
at

e

T
im

e

E
m

p
lo

ye
e

E
n

tr
an

ce

D
ir

ec
ti

on

1 Jan-2 07:30 10 b in
2 Jan-2 09:30 11 b in
3 Jan-2 10:20 11 c in
4 Jan-2 13:20 11 c out
5 Jan-2 13:30 10 b in
6 Jan-2 14:10 10 c in
7 Jan-2 14:10 11 c in
8 Jan-2 14:40 10 c out
9 Jan-2 16:20 11 c out
10 Jan-3 09:00 12 b in
11 Jan-3 09:20 10 b in
12 Jan-3 10:20 12 c in
13 Jan-3 10:40 10 c in
14 Jan-3 13:00 12 c out
15 Jan-3 14:00 10 c out
16 Jan-3 14:30 12 c in
17 Jan-3 14:40 10 c in
18 Jan-3 15:10 12 c out
19 Jan-3 16:50 10 c out
20 Jan-4 06:00 12 b in

the allowed transitions are defined by a human expert.
In an environment where “tailgating” occurs
commonly, it is likely that learning from data would
see this as normal behaviour.

We see from events 2, 3, 4, 7, 9 that employee 11 enters
the building at approx 9:00 (rounding times to the hour),
enters the classified area at 10:00 and leaves it after 3
hours, re-enters at 14:00, leaving 2 hours later. This
corresponds to path S-5-6-12-13-14-E in the graph (Fig 2).

III. THE VIRTUAL MACHINE

The DASG is compiled to a sequence of instructions for the
virtual machine. The instructions contain an initialisation
section (labelled LS), an acceptance section (labelled L0), and
code corresponding to the nodes and edges in the graph. A
distinguished code label <E> denotes the final edge in the
graph. Given a valid graph, the corresponding virtual machine
code can be generated straightforwardly. It is easy to make
small optimisations (such as re-ordering operations so that
instructions most likely to fail are executed first). Other
obvious enhancements (not described here) include

• use of an index table or switching code to select best
threads, given event data

• time-out scheduler (assuming events arrive in real time or
in temporal order, this causes threads to fail when the time
since their last event exceeds a threshold)

• addition of arbitrary code to graph nodes (for instance, to
raise an alert)

Each sequence of events is represented by an execution
thread. A partially recognised sequence corresponds to a
suspended or executing thread; fully recognised sequences or
rejected (unrecognised) sequences correspond to terminated
threads.

A thread is represented by a small set of registers and a
stack plus queue, and suspends execution once it has consumed
relevant data. Execution of a thread terminates successfully if a
complete sequence is identified. Unsuccessful termination
represents a set of events which was not recognised as a
sequence. Lists of executing / suspended threads and
terminated threads are maintained. If not terminated, the thread
is either executing or suspended (on the open sequence list).
The return values from thread execution are

• SUSPENDED-SUCCESS

• SUSPENDED-FAIL

• TERMINATE-SUCCESS

• TERMINATE -FAIL

Each thread has an associated degree of match, depending
on how well the event data matches the fuzzy patterns used to
describe the sequence. If this value falls below a specified
threshold during thread execution, the computation is unwound
and restarted at a previously unconsidered path from a
branching node (with outdegree >2).

The virtual machine consists of registers, storage areas for
runtime structures (stacks etc.) and code made up of

instructions which operate on the registers and storage. The
registers and runtime structures are described below, with the
virtual machine instructions listed in Fig 1.

Registers

args[0…n-1, n…m]
(typed) argument registers corresponding to a row of event
data. Registers from n upwards are used as working storage but
are not saved on the stack

N NextChoice :
instruction label, gives alternative execution address if current
instruction fails. Can be null.

C ContinuationInstruction
instruction label, indicating the next step for execution when
new data arrives and is accepted by this thread. Can be null

M MatchDegree
number in the interval [0,1] giving the membership of the
sequence on its matched path. Set by XOF instruction.

CP
code pointer, indicates current instruction (not saved on stack)

StackTop top frame on stack.

UR UserReturn : returned result (match) from user code

TS thread status

nodeArgs[0…n-1]
saved arguments in top stack frame, accessed via StackTop

n number of arguments in data table

types[0…n-1] data types in the data table

Threshold minimum value for M (MatchDegree)

Runtime Structures

Stack
storage area for execution records (last in, first out stack)

RematchQueue
0 or more sets of n-1 argument registers stored as a queue (first
in, first out).

USL unidentified sequence list

OSL open sequence list

ISL identified sequence list

Each of the lists USL, OSL, ISL is initially empty and
enables addition and removal of specified sequence threads
from the list.

IV. VIRTUAL MACHINE EXECUTION

Execution consists of the steps shown in Fig 3, for each
data row. For simplicity, the algorithm does not cater for
threads that “time out” i.e. partial event sequences that were
last modified at a point exceeding the time threshold. With the
assumption that all events arrive in the correct temporal order,
a simple extension to the execution model described makes it
possible to identify threads that can no longer be extended and
they can be failed (and moved to the USL).

DFR DequeueFromRematch

Copy content of argument registers from the front of rematch queue, and de-allocate the space used.

EXEC <label>
If <label> is null, execute FAIL. Otherwise, continue execution from the instruction labelled by <label>.

FAIL
reset MatchDegree to value saved in top stack frame
IF <NextChoice> is not null THEN
 continue execution from address given by <NextChoice>
ELSE IF <NextChoice> is null THEN
 DO pop stack // (copies arguments into rematch queue)
 UNTIL NextChoice is non-null or stack is empty
 IF NextChoice is not null THEN
 continue execution from NextChoice
 ELSE If stack is empty THEN
 return TERMINATE -FAIL
 ENDIF
ENDIF

POP Reset registers N, C, M and args to saved values
set StackFrame to previous frame
QueueOnRematch (QOR) // copy saved args[0…n-1] to rematch queue

PUSH Allocate StackFrame and save registers N, C, M plus n arguments

QOR QueueOnRematch
Allocate space for argument registers 0…n-1 at the back of the rematch queue and copy content of
argument registers to the newly allocated space

RIF <userMethod(typed arguments)> RejectIfFailure
Executes userMethod on the specified arguments. If the result of userMethod is <= Threshold, the thread
suspends and returns the value SUSPENDED-FAIL

SLN SaveLiveNode
IF rematch queue is not empty THEN
 DFR // dequeue a set of arguments from rematch queue
 EXEC Contin // continue execution at address in the Contin register
ELSE If rematch queue is empty,
 PUSH // save all registers in new stack frame
 IF Contin register is <E> THEN
 terminate execution
 return TERMINATE-SUCCESS
 ELSE
 suspend execution
 return SUSPEND-SUCCESS
 ENDIF
ENDIF

TNA ThereIs No Alternative
Writes NULL into NextChoice register

XOF <userMethod(typed arguments)> ExtendOrFail
Executes user method with specified arguments (from arg registers and nodeArg registers).
Return value is a number in the range [0,1] representing data match.
If return value is <= Threshold, execute <FAIL>
Otherwise set MatchDegree = min(return value, MatchDegree) and continue with next instruction.

XWA <L1> <L2> ExecuteWithAlternative
Writes <L2> into NextChoice register and passes control to <L1>

Fig. 1. Virtual machine instructions (listed alphabetically by abbreviated code), with abbreviated code, longer descriptive name if appropriate, arguments,
and a brief description

A. Worked Example

We represent the sequences in Table 1 as a minimal DASG
with edges labelled by event categorisations (see Fig 3).

Fig 2 : illustrative DASG with event categorisations (3 distinct sequences)

This corresponds to the following virtual machine code.
Labels (e.g. L1) correspond to graph nodes and comments are
delimited by // and end of line.

L0: // Thread Acceptance Code
 RIF equalityCheck(a[3], nodeArgs [3])
 // accept if day and emp-id match
 RIF equalityCheck(a[1], nodeArgs[1])
 a[7] = elapsedTime(a[2], n[2])
 RIF lessEqCheck(a[7], 8)
 // Time threshold = 8

RIF allowedAction(a[4], a[5],
nodeArgs[4], nodeArgs[5])

 EXEC Contin
 // accepted - match to next edge

LS : // thread initialisation step
 N (NextChoice) = null
 C (Contin) = null
 M (Match Degree)=1
 RIF equalityCheck(a[4],b)

 RIF equalityCheck(a[5],in)
 XWA <LS1> <LS2>
LS1 :
 XOF equivCheck (a[2], 7)
 C = L1
 SaveLiveNode

LS2 :
 TNA
 XOF equivCheck(a[2],9)
 C = L5
 SaveLiveNode

L1:
 TNA
 XOF equivCheck(a[2],13)
 XOF equalityCheck(a[4],b)
 XOF equalityCheck(a[5],in)
 C = L2
 SaveLiveNode
L2: etc
L3:
 TNA
 XOF equivCheck(a[7],0)
 XOF equalityCheck(a[4],c)
 XOF equalityCheck(a[5],out)
 C = L4
 SaveLiveNode

L4: etc

L5:
 TNA
 XOF equivCheck(a[2],10)
 XOF equalityCheck(a[4],c)
 XOF equalityCheck(a[5],in)
 Contin = L6
 SaveLiveNode

L6:
 XOF equalityCheck(a[4],c)
 XOF equalityCheck(a[5],out)
 a[7] = elapsedTime(a[2], n[2])
 XWA L6A, L6B
L6A:
 XOF equivCheck(a[7],2)
 Contin = L7
 SaveLiveNode

L6B:
 TNA
 XOF equivCheck(a[7],3)
 contin = L7
 SaveLiveNode
etc

After three rows of data have been read, the virtual machine
state is shown in Fig 4. The top section of the figure shows the
content of the sequence lists OSL, USL, ISL (respectively,

open, unidentified and identified sequence lists. The status of
registers for each thread is shown below, labelled T1, T2, …
(for first thread, second thread etc).

OSL T1, T2
USL empty
ISL empty

Thread T1
Stack

N C M A[0] A[1] A[2] A[3] A[4] A[5]

LS2 L1 1 1 Jan-2 07:30 10 b in

RematchQueue : empty

Thread T2
Stack

N C M A[0] A[1] A[2] A[3] A[4] A[5]

- L6 1 3 Jan-2 10:20 11 c in

- L5 1 2 Jan-2 09:30 11 b in

RematchQueue : empty

Fig 4 Machine State after reading three rows of data

Figs 5 and 6 show the machine state after 10 and 20 rows
(respectively) have been read. After 10 rows (Fig 5), thread 2
has terminated - this corresponds to the path S-5-6-12-13-14-E
in the graph (Fig 2). This will be recognised on reading
subsequent data when the threshold time will be exceeded. At
this stage, thread 2 can be moved to a record of completed
threads (sequences), processed to extract relevant data, or
simply discarded according to the task requirements.

OSL T3
USL T1
ISL T2

Thread T1
Stack : Empty

N C M A[0] A[1] A[2] A[3] A[4] A[5]

RematchQueue

A[0] A[1] A[2] A[3] A[4] A[5]

8 Jan-2 14:40 10 b in

6 Jan-2 14:10 10 c in

5 Jan-2 13:30 10 b in

1 Jan-2 07:30 10 b in

Thread T2
Stack

N C M A[0] A[1] A[2] A[3] A[4] A[5]

- <E> 1 9 Jan-2 16:20 11 c out

- L13 1 7 Jan-2 14:10 11 c in

- L12 1 4 Jan-2 13:20 11 c out

- L6 1 3 Jan-2 10:20 11 c in

- L5 1 2 Jan-2 09:30 11 b in

RematchQueue : empty

Thread T3
Stack

N C M A[0] A[1] A[2] A[3] A[4] A[5]

- L5 1 10 Jan-3 09:00 12 b in

RematchQueue : empty

Fig 5 Machine State after reading ten rows of data

READ data for next event into argument registers a[0 … n-1]
SET ThreadStatus to SUSPENDED-FAIL
WHILE (ThreadStatus == SUSPENDED-FAIL)
 IF (OSL contains untried threads) THEN
 select an untried thread and remove it from the OSL
 ThreadStatus = execute thread from L0
 ELSE // i.e. no threads accepted data
 create new thread
 ThreadStatus = execute thread starting from LS
 ENDIF
 IF ThreadStatus == TERMINATE-SUCCESS THEN
 add thread to ISL
 ELSE IF ThreadStatus == TERMINATE -FAIL THEN
 add thread to USL
 ELSE IF ThreadStatus == SUSPENDED-SUCCESS THEN
 add thread to OSL
 ELSE IF ThreadStatus == SUSPENDED-FAIL THEN
 add thread to OSL
 ENDIF
ENDWHILE

Fig 3 Execution steps for each row of data

OSL empty

USL T1, T6

ISL T2, T3, T4

Thread T1 (as before)

Thread T2 (as before)

Thread T3

Stack
N C M A[0] A[1] A[2] A[3] A[4] A[5]

 <E> 1 18 Jan-3 15:10 12 c out

- L3 1 16 Jan-3 14:30 12 c in

L6B L7 1 14 Jan-3 13:00 12 c out

- L6 1 12 Jan-3 10:20 12 c in

- L5 1 10 Jan-3 09:00 12 b in

RematchQueue : empty

Thread T4

Stack
N C M A[0] A[1] A[2] A[3] A[4] A[5]

 <E> 1 19 Jan-3 16:50 10 c out

- L13 1 17 Jan-3 14:40 10 c in

- L12 1 15 Jan-3 14:00 10 c out

- L6 1 13 Jan-3 10:40 10 c in

- L5 1 11 Jan-3 09:20 10 b in

RematchQueue : empty

Thread T5

Stack : Empty

N C M A[0] A[1] A[2] A[3] A[4] A[5]

RematchQueue
A[0] A[1] A[2] A[3] A[4] A[5]

20 Jan-4 06:00 12 b in

V. SUMMARY

Defining and recognising meaningful event sequences is a
complex task which often requires human expertise to group
attributes and events into related categories, which tend to be
fuzzy in nature. It is a key task in analysing many data sources,
including activity logs of users interacting with web
applications - and hence, it is a key enabler for web
intelligence. Our previous work has described a way of storing
event sequences in a compact directed graph format, providing
an efficient incremental algorithm to update the graph with an
unseen sequence. A human expert can easily add sequence
patterns, even if these have not been seen in the data yet. This
aspect particularly distinguishes our work from statistical
machine learning. The work described in this paper illustrates
how a virtual machine can be defined from the directed graph
representation, enabling event streams to be filtered and
classified according to the sequences identified. The virtual
machine can be implemented in software or by means of
configurable hardware.

REFERENCES

[1] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-

353, 1965.

[2] L. A. Zadeh, "The Concept of a Linguistic Variable and its Application
to Approximate Reasoning (Part 1)," Information Sciences, vol. 8, pp.
199-249, 1975.

[3] T. P. Martin and B. Azvine, "Representation and Identification of
Approximately Similar Event Sequences," in Flexible Query Answering
Systems, Krakow, Poland, 2015, pp. 24-29.

[4] T. P. Martin and B. Azvine, "Sequence Identification," Europe Patent,
2014 (patentscope.wipo.int/search/en/detail.jsf?docId=WO2015044629).

[5] J. E. Hopcroft and J. D. Ullman, Introduction To Automata Theory,
Languages, And Computation: Addison-Wesley Longman Publishing
Co., Inc., 1979.

[6] D. H. D. Warren, "An Abstract Prolog Instruction Set," SRI
International, Menlo Park, CA Tech.Note 903, 1983.

[7] [J. F. Baldwin and T. P. Martin, "An Abstract Mechanism for Handling
Uncertainty," in Uncertainty in Knowledge Bases. vol. (LNCS 521), B.
Bouchon-Meunier, et al., Eds.: Springer Verlag, 1991, pp. 126-135.

[8] J. F. Baldwin and T. P. Martin, "Fast Operations on Fuzzy Sets in the
Abstract Fril Machine," in First IEEE International Conference on
Fuzzy Systems, San Diego, CA, 1992, pp. 803-810.

[9] J. Bilmes and G. Zweig, "The graphical models toolkit: An open source
software system for speech and time-series processing," in Acoustics,
Speech, and Signal Processing (ICASSP), 2002 IEEE International
Conference on, 2002, pp. IV-3916-IV-3919.

Fig 6 Machine state after reading 20 rows

