
                          Martin, T., & Azvine, B. (2017). A virtual machine for event sequence
identification using fuzzy tolerance. In 2016 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE 2016): 	Proceedings of a meeting held 24-29
July 2016, Vancouver, British Columbia, Canada. (pp. 1080-1087).
[7737808] (Proceedings of the IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE)). Institute of Electrical and Electronics Engineers
(IEEE). DOI: 10.1109/FUZZ-IEEE.2016.7737808

Peer reviewed version

Link to published version (if available):
10.1109/FUZZ-IEEE.2016.7737808

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7737808/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/83929242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737808
http://research-information.bristol.ac.uk/en/publications/a-virtual-machine-for-event-sequence-identification-using-fuzzy-tolerance(f14901ca-9800-4e5d-881b-bef28e35a7fe).html
http://research-information.bristol.ac.uk/en/publications/a-virtual-machine-for-event-sequence-identification-using-fuzzy-tolerance(f14901ca-9800-4e5d-881b-bef28e35a7fe).html


A Virtual Machine for Event Sequence Identification 
using Fuzzy Tolerance  

 

Trevor Martin a,b 

a Machine Intelligence and Uncertainty Lab, 
Engineering Maths, University of Bristol, 

Bristol, BS8 1UB, UK 

Ben Azvine b 

b Security Futures Lab 
BT TSO 

Adastral Park, Ipswich, IP5 3RE, UK 
 
 

Abstract—Analysing event logs and identifying multiple 
overlapping sequences of events is an important task in web 
intelligence and in other applications involving data streams. It is 
ideally suited to a collaborative intelligence approach, where 
humans provide insight and machines perform the repetitive 
processing and data collection. A fuzzy approach allows flexible 
definition of the relations which link events into a sequence. In 
this paper we describe a virtual machine which enables a 
previously published expandable sequence pattern format to be 
represented as virtual machine instructions, which can filter 
event streams and identify fuzzily related sequences. 

Keywords—Fuzzy Event Sequence Identification, Fuzzy Virtual 
Machine, Collaborative Intelligence 

I. INTRODUCTION 

Collaborative web intelligence is a combination of human 
expertise (to provide insight) with machine power (to provide 
repetitive processing and data gathering capabilities). Current 
web intelligence - in the form of applications such as search 
engines, recommender systems, e-commerce systems, etc. - is 
essentially machine-based, relying on the availability of a large 
quantity of data and sophisticated statistical machine learning 
methods to produce a predictive model. Such models have 
been successful in a range of fields, but can be criticised on a 
number of grounds. They generally do not enable human 
understanding of the underlying mechanisms, and exist 
essentially as black boxes where a set of attributes in a specific 
case leads to a predicted outcome for that case. Secondly, they 
rely on the existence of large collections of reliable data. We 
argue that statistical machine learning is not adequate in 
situations where human expertise is required (either to build or 
to understand the model of a process), or where reliable data is 
not available. For example, in detecting and combating cyber-
attacks, reliance on statistical machine learning is often 
inadequate. Almost by definition, a successful cyber-attack 
needs to involve novel (hitherto unseen) features and is thus 
out of scope for systems which require large scale data 
collection - for example, spectrum.ieee.org/telecom/security/ 
the-real-story-of-stuxnet describes how a number of so-called 
zero-day vulnerabilities were exploited.  

In such cases, collaborative intelligence offers an 
improvement by combining the processing powers and 
visualisation provided by machines with the interpretive skills, 
insight and lateral thinking provided by human analysts. In 

order to successfully implement a collaborative intelligent 
system, it is necessary to exchange knowledge between the 
components - in particular between humans and machines. We 
argue that there is a fundamental difference in the knowledge 
representations, where machine processing is usually centred 
on well-defined entities and relations, ranging from the flat 
table structures of database systems through graph-based 
representations and up to ontological approaches involving 
formal logics. On the other hand, human language and 
communication is based on a degree of vagueness and 
ambiguity that leads to an efficient transmission of information 
between humans without the need for precise definition of 
every term used. Even quantities that can be measured 
precisely (height of a person or building, volume of a sound, 
amount of rainfall, colour of an object, etc.) are usually 
described in non-precise terms such as tall, loud, quite heavy, 
dark green, etc. More abstract properties such as beautiful 
landscape, delicious food, pleasant weather, clear 
documentation, corporate social responsibility, are essentially 
ill-defined, whether they are based on a holistic assessment or 
reduced to a combination of lower-level, measurable quantities. 
Zadeh’s initial formulation of fuzzy sets [1] was inspired 
primarily by the flexibility of definitions in natural language.  

Linking events into sequences is an area in which 
collaborative intelligence can play a role. The notion of 
linkages between events is inherently uncertain in many cases - 
example such internet logs, physical access logs, transaction 
records, email and phone records all contain multiple 
overlapping sequences of events related by different attributes. 
Clearly in the case of phone records, the calls made by a 
specific user (or from a specific phone) would form a sequence 
- but it is often possible to link individual events in different 
ways. Specific problems in extracting sequences of related 
events include determination of what makes events “related”, 
how to find groups of “similar” sequences, identification of 
typical sequences, and detection of sequences that deviate from 
previous patterns. This is strongly linked to the concept of 
information granulation introduced by Zadeh [2] to formalise 
the process of dividing a group of objects into sub-groups 
(granules) based on “indistinguishability, similarity, proximity 
or functionality”. In this view, a granule is a fuzzy set whose 
members are (to a degree) equivalent. In a similar manner, 
humans are good at dividing events into related groups, both 
from the temporal perspective (event A occurred a few minutes 
before event B but involves the same entities) and from the 



perspective of non- temporal event properties (event C is very 
similar to event D because both involve similar entities).  

In related work [3, 4] we have described a novel approach 
to identifying sequences of related events, with scope for 
assistance from human experts. The event sequences are 
represented in a compact and expandable sequence pattern 
format as a directed acyclic graph (DASG : Directed Acyclic 
Sequence Graph) where edges correspond to events, and 
fuzzy matching of event attributes is used to determine the 
similarity of an event sequence to a known pattern. The DASG 
format ensures that common initial and terminal sub-sequences 
are merged. A path from start to end of the graph corresponds 
to a complete event sequence, and any other path is a partial 
event sequence. The representation allows the addition of new 
patterns (event sequences) as they are identified, and 
subtraction / removal of sequences that are no longer relevant. 
Examination of the sequences can be used to further refine and 
modify general patterns of events.  

Given a set of sequences, we can scan event streams to 
identify partial and complete sets of events that match a (fuzzy) 
sequence. This paper describes an efficient virtual machine, 
enabling the DASG patterns to be converted to executable code 
that can filter a stream of events into multiple sequences. The 
novel features are: 

• a fuzzy virtual machine capable of representing the 
compiled fuzzy network of event sequences 

• use of multi-threading in the virtual machine for 
recognising interleaved event sequences 

• the ability to dynamically alter virtual machine code, to 
reflect changes in recognised event sequences 

• easy reconstruction of event sequences from the virtual 
machine execution record 

II. BACKGROUND 

A. SIFT (Sequence Identification using Fuzzy Tolerance) 

We briefly introduce the basic ideas of the sequence 
representation - see [3, 4] for further explanation. We assume 
the data is represented in a time-stamped tabular format with 
one or more specified fields storing date and time information, 
and that data arrives in a sequential manner, either row by row 
or in larger groups which can be processed row-by-row. Each 
column in the table has a domain Di and a corresponding 
attribute name Ai . There is a special domain O which plays the 
role of an identifier (e.g. row number or event id). 

Formally, data is represented by a function 

   f :O → D1 × D2 ×…× Dn
  

which we can write as a relation  

 R ⊂ O × D1 × D2 ×…× Dn
  

where any given identifier oi appears at most once. We use 
Ak(oi) to denote the value of the kth attribute for object oi. and 
assume one or more attributes can be interpreted as a totally 
ordered timestamp. 

Multiple sequences of events can be compactly represented 
using a directed graph (DASG), such that common initial and 
final sub-sequences are combined. User-supplied code defines 
the similarities between events (allowing them to be grouped 
together on the same path) and relations which indicate that 
one event follows another in a sequence.   

We assume that a DASG representation of various ordered 
sequences of events is available, together with a suitable source 
of data and user-supplied code to categorise events and 
sequence steps. Each method in this code takes specified 
arguments from the data, performs appropriate computation 
(for example, to determine that two events are sufficiently 
close in time to belong to the same sequence, or whether one 
event is allowed to follow another). Each method returns a 
value in the range [0, 1] using the normal fuzzy interpretation. 
Since the fuzzy matching is under control of the user, we do 
not cover this aspect in depth. It is important to note that 
fuzziness is fundamental to the virtual machine operation. 

The virtual machine is capable of reading an interleaved 
series of events and matching them to the sequence patterns, 
producing (on demand) lists of event sequences that match 
complete sequence patterns, lists of event sequences that match 
initial phases of sequence patterns, and lists of events that do 
not match any known patterns. The process of translating the 
DASG to virtual machine code is not described here, but can 
be achieved using standard techniques. 

B. Related Research 

The major research fields linked to this work are 

(i) compilation of finite state machines (FSM) into 
executable code or a virtual machine. This is a well-developed 
area of computer science and is used extensively in compilers, 
string processing, speech recognition, etc. See [5] for a tutorial 
description of finite state machines. Open source software such 
as http://smc.sourceforge.net exists to convert FSM 
specifications into most common programming languages. 

 (ii) implementation of virtual machines for logic 
programs, such as the Warren Abstract Machine (WAM) [6]. 
The Fril Abstract Machine [7, 8] is of particular relevance to 
the work described here as the representation used in SIFT 
incorporates fuzzy matching. Fril is the only logic 
programming compiler with a mechanism to handle 
uncertainty integrated at the lowest level.  

(iii) compilation of graphical models, although the notion 
of “compilation” here refers to translation into library routine 
calls, rather than to a dedicated virtual machine [9].  

 Our work uses a much more general representation than a 
finite state machine. In particular, the use of fuzzy values and 
multiple labels to define an edge distinguishes the approach 
from finite state machines. Fuzzy labels mean it may be 
necessary to revisit a node and test alternative edges from it. 
Multiple labels allow more complex branching behaviour than 
is possible in a finite state machine. As a consequence of these 
differences, the execution model described here is very 
different to a finite state machine. The notion of restarting 
computation and multiple threaded execution is not common in 
finite state machines. 



Additionally, it is a relatively simple task to dynamically 
alter the virtual machine code to reflect changes in the DASG 
model of event sequences. There is a close (essentially, one-to-
one) correspondence between the DASG representation of 
event sequences and sections of code for the virtual machine. 
Broadly speaking, edges correspond to short instruction 
sequences and nodes correspond to points at which execution 
may be suspended. 

Finally, the virtual machine allows reconstruction of event 
data corresponding to recognised sequences and to 
unrecognised sequences by examination of the thread 
execution records. 

Virtual machines for logic programs are complex, 
reflecting the fact that they implement complete programming 
languages. This DASG machine is a much simpler design, 
meaning that the use of multiple execution threads is easier. 

Graphical models (particularly bayesian nets) are normally 
implemented using specialist code, and “compilation” in this 
context typically refers to a translation process, whereby a 
specification of a graphical model is converted to a sequence of 
program calls to pre-written library functions. Initial 
construction of the graphical model and its use in simulation is 
reliant on the user’s statistical knowledge, the collection of 
large quantities of data and an assumption that past 
performance can be used to predict future behaviour. In 
contrast, the work described here does not rely on statistics to 
form the initial network of event sequences, and allows the 
graph to reconfigure easily, as new patterns are incorporated. 
The virtual machine gives a simple execution model 
corresponding to the DASG and does not rely on complex 
library functions.  

C. Sample Data 

A small subset of data from the 2009 VAST challenge1 was 
used in [3] to illustrate DASG formation. A similar subset 
(Table 1)  is used here, but events are listed in time order (and 
eventIDs are changed to reflect the ordering). To illustrate 
features of the system, row 8 has been changed so that the 
sequence for employee 10 no longer matches any pattern and 
an event has been added at row 20 which cannot be matched to 
any initial pattern step. The data is drawn from attributes 

Employee = set of employee ids = {10, 11, 12} 

Date,Time = date / time of event 

Entrance points = {B - building, C - classified section} 

Access direction = {in, out} 

and represents movement of employees in and out of a building 
(B) with a swipecard barrier on entrance but not on exit. The 
building contains a classified area (C) with swipecard access 
on entrance and exit. Tailgating (following another employee 
without swiping a card) is possible. We use the same user-
defined relations as [3]. For a candidate sequence of n events: 

 S1 = o11, o12, … ,o1n( )  
we define the following computed quantities : 

ElapsedTime ΔTij  = Time oij( ) − Time oij−1( )
with ΔTi1  = Time oi1( )

  

and restrictions ( for j>1) : 

Date oij( )  = Date oij−1( )
0 < Time oij( ) − Time oij−1( ) ≤ Tthresh

Emp oij( ) = Emp oij−1( )
Action oij−1( ), Action oij( )( ) ∈AllowedActions

where Action oij( )  = Entrance oij( ), Direction oij( )( )

  

and Tthresh specifies how close events must be to form part 
of the same sequence.  The relation AllowedActions is given by 
the following table (row = first action, column = next action) 

b,in c,in c,out
b,in x x  
c.in  x 
c,out x x  

These constraints can be summarised as 

• events in a single sequence refer to the same 
employee 

• successive events in a single sequence conform to 
allowed transitions between locations and are on the 
same day, within a specified time of each other. We 
choose Tthresh = 8 (this ensures anything more than 8 
hours after the last event is a new sequence). Note that 

                                                           
1 http://hcil2.cs.umd.edu/newvarepository/benchmarks.php 
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1 Jan-2 07:30 10 b in 
2 Jan-2 09:30 11 b in 
3 Jan-2 10:20 11 c in 
4 Jan-2 13:20 11 c out 
5 Jan-2 13:30 10 b in 
6 Jan-2 14:10 10 c in 
7 Jan-2 14:10 11 c in 
8 Jan-2 14:40 10 c out 
9 Jan-2 16:20 11 c out 
10 Jan-3 09:00 12 b in 
11 Jan-3 09:20 10 b in 
12 Jan-3 10:20 12 c in 
13 Jan-3 10:40 10 c in 
14 Jan-3 13:00 12 c out 
15 Jan-3 14:00 10 c out 
16 Jan-3 14:30 12 c in 
17 Jan-3 14:40 10 c in 
18 Jan-3 15:10 12 c out 
19 Jan-3 16:50 10 c out 
20 Jan-4 06:00 12 b in 



the allowed transitions are defined by a human expert. 
In an environment where “tailgating” occurs 
commonly, it is likely that learning from data would 
see this as normal behaviour.  

We see from events 2, 3, 4, 7, 9 that employee 11 enters 
the building at approx 9:00 (rounding times to the hour), 
enters the classified area at 10:00 and leaves it after 3 
hours, re-enters at 14:00, leaving 2 hours later. This 
corresponds to path S-5-6-12-13-14-E in the graph (Fig 2). 

III. THE VIRTUAL MACHINE  

The DASG is compiled to a sequence of instructions for the 
virtual machine. The instructions contain an initialisation 
section (labelled LS), an acceptance section (labelled L0), and 
code corresponding to the nodes and edges in the graph. A 
distinguished code label <E> denotes the final edge in the 
graph. Given a valid graph, the corresponding virtual machine 
code can be generated straightforwardly. It is easy to make 
small optimisations (such as re-ordering operations so that 
instructions most likely to fail are executed first). Other 
obvious enhancements (not described here) include  

• use of an index table or switching code to select best 
threads, given event data 

• time-out scheduler (assuming events arrive in real time or 
in temporal order, this causes threads to fail when the time 
since their last event exceeds a threshold) 

• addition of arbitrary code to graph nodes (for instance, to 
raise an alert) 

Each sequence of events is represented by an execution 
thread. A partially recognised sequence corresponds to a 
suspended or executing thread; fully recognised sequences or 
rejected (unrecognised) sequences correspond to terminated 
threads.  

A thread is represented by a small set of registers and a 
stack plus queue, and suspends execution once it has consumed 
relevant data. Execution of a thread terminates successfully if a 
complete sequence is identified.  Unsuccessful termination 
represents a set of events which was not recognised as a 
sequence. Lists of executing / suspended threads and 
terminated threads are maintained. If not terminated, the thread 
is either executing or suspended (on the open sequence list). 
The return values from thread execution are 

• SUSPENDED-SUCCESS 

• SUSPENDED-FAIL 

• TERMINATE-SUCCESS 

• TERMINATE -FAIL 

Each thread has an associated degree of match, depending 
on how well the event data matches the fuzzy patterns used to 
describe the sequence. If this value falls below a specified 
threshold during thread execution, the computation is unwound 
and restarted at a previously unconsidered path from a 
branching node (with outdegree >2).  

The virtual machine consists of registers, storage areas for 
runtime structures (stacks etc.) and code made up of 

instructions which operate on the registers and storage. The 
registers and runtime structures are described below, with the 
virtual machine instructions listed in Fig 1.  

Registers 

args[0…n-1, n…m]  
(typed) argument registers corresponding to a row of event 
data. Registers from n upwards are used as working storage but 
are not saved on the stack 

N NextChoice : 
instruction label, gives alternative execution address if current 
instruction fails. Can be null. 

C   ContinuationInstruction 
instruction label, indicating the next step for execution when 
new data arrives and is accepted by this thread. Can be null 

M MatchDegree  
number in the interval [0,1] giving the membership of the 
sequence on its matched path. Set by  XOF instruction. 

CP  
code pointer, indicates current instruction (not saved on stack) 

StackTop top frame on stack.    

UR UserReturn  : returned result (match) from user code 

TS thread status 

nodeArgs[0…n-1]   
saved arguments in top stack frame, accessed via StackTop 

n   number of arguments in data table  

types[0…n-1]  data types in the data table 

Threshold minimum value for M (MatchDegree) 

Runtime Structures 

Stack  
storage area for execution records (last in, first out stack) 

RematchQueue   
0 or more sets of n-1 argument registers stored as a queue (first 
in, first out).  

USL  unidentified sequence list  

OSL  open sequence list 

ISL  identified sequence list 

Each of the lists USL, OSL, ISL is initially empty and 
enables addition and removal of specified sequence threads 
from the list. 

IV. VIRTUAL MACHINE EXECUTION 

Execution consists of the steps shown in Fig 3, for each 
data row. For simplicity, the algorithm does not cater for 
threads that “time out” i.e. partial event sequences that were 
last modified at a point exceeding the time threshold. With the 
assumption that all events arrive in the correct temporal order, 
a simple extension to the execution model described makes it 
possible to identify threads that can no longer be extended and 
they can be failed (and moved to the USL). 



 
DFR  DequeueFromRematch 

Copy content of argument registers from the front  of rematch queue, and de-allocate the space used. 

EXEC <label> 
If <label> is null, execute FAIL. Otherwise, continue execution from the instruction labelled by <label>.  

FAIL 
reset MatchDegree to value saved in top stack frame 
IF <NextChoice> is not null THEN 
 continue execution from address given by <NextChoice> 
ELSE IF <NextChoice> is null THEN 
 DO pop stack    // (copies arguments into rematch queue)  
 UNTIL NextChoice is non-null or stack is empty 
 IF NextChoice is not null THEN 
  continue execution from NextChoice 
 ELSE If stack is empty THEN 
   return TERMINATE -FAIL 
 ENDIF 
ENDIF 

POP Reset registers N, C, M and args to saved values  
set StackFrame to previous frame 
QueueOnRematch (QOR)   // copy saved args[0…n-1] to rematch queue 

PUSH  Allocate StackFrame and save registers N, C, M plus n arguments 

QOR  QueueOnRematch 
Allocate space for argument registers 0…n-1 at the back of the rematch queue and copy content of 
argument registers to the newly allocated space 

RIF  <userMethod(typed arguments)> RejectIfFailure 
Executes userMethod on the specified arguments. If the result of userMethod is <= Threshold, the thread 
suspends and returns the value SUSPENDED-FAIL 

SLN   SaveLiveNode 
IF rematch queue is not empty THEN 
 DFR       // dequeue a set of arguments from rematch queue 
 EXEC Contin  // continue execution at address in the Contin register 
ELSE If rematch queue is empty,  
 PUSH     // save all registers in new stack frame  
  IF Contin register is <E> THEN 
  terminate execution  
  return TERMINATE-SUCCESS 
 ELSE 
  suspend execution  
  return SUSPEND-SUCCESS 
 ENDIF 
ENDIF 

TNA ThereIs No Alternative 
Writes NULL into NextChoice register 

XOF  <userMethod(typed arguments)> ExtendOrFail  
Executes user method with specified arguments (from arg registers and nodeArg registers).  
Return value is a number in the range [0,1] representing data match.  
If return value is <= Threshold, execute <FAIL>  
Otherwise set MatchDegree = min(return value, MatchDegree) and continue with next instruction. 

XWA  <L1> <L2> ExecuteWithAlternative  
Writes <L2> into NextChoice register and passes control to <L1> 

Fig. 1. Virtual machine instructions (listed alphabetically by abbreviated code), with abbreviated code, longer descriptive name if appropriate, arguments, 
and a brief description 



A. Worked Example 

We represent the sequences in Table 1 as a minimal DASG 
with edges labelled by event categorisations (see Fig 3).  

 
Fig 2 : illustrative DASG with event categorisations (3 distinct sequences) 

This corresponds to the following virtual machine code. 
Labels (e.g. L1) correspond to graph nodes and comments are 
delimited by // and end of line. 

L0:   // Thread Acceptance Code 
 RIF equalityCheck(a[3], nodeArgs [3])
    // accept if day and emp-id match 
 RIF equalityCheck(a[1], nodeArgs[1]) 
 a[7] = elapsedTime(a[2], n[2]) 
 RIF lessEqCheck(a[7], 8)  
  // Time threshold = 8 

RIF allowedAction(a[4], a[5], 
nodeArgs[4], nodeArgs[5]) 

 EXEC  Contin    
  // accepted - match to next edge 
 

LS :  // thread initialisation step 
 N (NextChoice) = null 
 C (Contin) = null 
 M (Match Degree)=1 
 RIF equalityCheck(a[4],b) 

 RIF equalityCheck(a[5],in) 
 XWA <LS1> <LS2> 
LS1 :  
 XOF equivCheck (a[2], 7) 
 C = L1 
 SaveLiveNode 
 

LS2 :  
 TNA 
 XOF equivCheck(a[2],9) 
 C = L5 
 SaveLiveNode 
 

L1:  
 TNA 
 XOF equivCheck(a[2],13) 
 XOF equalityCheck(a[4],b) 
 XOF equalityCheck(a[5],in) 
 C = L2 
 SaveLiveNode 
L2: etc 
L3:  
 TNA 
 XOF equivCheck(a[7],0) 
 XOF equalityCheck(a[4],c) 
 XOF equalityCheck(a[5],out) 
 C = L4 
 SaveLiveNode 
 

L4: etc 
 

L5:  
 TNA 
 XOF equivCheck(a[2],10) 
 XOF equalityCheck(a[4],c) 
 XOF equalityCheck(a[5],in) 
 Contin = L6 
 SaveLiveNode 
 

L6:  
 XOF equalityCheck(a[4],c) 
 XOF equalityCheck(a[5],out) 
 a[7] = elapsedTime(a[2], n[2]) 
 XWA L6A, L6B 
L6A: 
 XOF equivCheck(a[7],2) 
 Contin = L7 
 SaveLiveNode 
 
L6B: 
 TNA 
 XOF equivCheck(a[7],3) 
 contin = L7 
 SaveLiveNode 
etc 

After three rows of data have been read, the virtual machine 
state is shown in Fig 4.  The top section of the figure shows the 
content of the sequence lists OSL, USL, ISL (respectively, 



open, unidentified and identified sequence lists. The status of 
registers for each thread is shown below, labelled T1, T2, … 
(for first thread, second thread etc). 

OSL T1, T2 
USL empty 
ISL empty 
 
Thread T1 
Stack 

N C M A[0] A[1] A[2] A[3] A[4] A[5]

LS2 L1 1 1 Jan-2 07:30 10 b in 

 

RematchQueue : empty 

Thread T2 
Stack 

N C M A[0] A[1] A[2] A[3] A[4] A[5]

- L6 1 3 Jan-2 10:20 11 c in 

- L5 1 2 Jan-2 09:30 11 b in 

 

RematchQueue : empty 

Fig 4      Machine State after reading three rows of data 

 

 

Figs 5 and 6 show the machine state after 10 and 20 rows 
(respectively) have been read. After 10 rows (Fig 5), thread 2 
has terminated - this corresponds to the path S-5-6-12-13-14-E 
in the graph (Fig 2).  This will be recognised on reading 
subsequent data when the threshold time will be exceeded. At 
this stage,  thread 2 can be moved to a record of completed 
threads (sequences), processed to extract relevant data, or 
simply discarded according to the task requirements. 

 

OSL  T3 
USL T1 
ISL T2 
 
Thread T1   
Stack  : Empty 

N C M A[0] A[1] A[2] A[3] A[4] A[5] 

RematchQueue   

A[0] A[1] A[2] A[3] A[4] A[5] 

8 Jan-2 14:40 10 b in 

6 Jan-2 14:10 10 c in 

5 Jan-2 13:30 10 b in 

1 Jan-2 07:30 10 b in 

Thread T2 
Stack 

N C M A[0] A[1] A[2] A[3] A[4] A[5] 

- <E> 1 9 Jan-2 16:20 11 c out 

- L13 1 7 Jan-2 14:10 11 c in 

- L12 1 4 Jan-2 13:20 11 c out 

- L6 1 3 Jan-2 10:20 11 c in 

- L5 1 2 Jan-2 09:30 11 b in 

RematchQueue :  empty 

Thread  T3 
Stack 

N C M A[0] A[1] A[2] A[3] A[4] A[5] 

- L5 1 10 Jan-3 09:00 12 b in 

 

RematchQueue : empty 
 
Fig 5 Machine State after reading ten rows of data 

 

 

READ data for next event into argument registers a[0 … n-1] 
SET ThreadStatus to SUSPENDED-FAIL 
WHILE (ThreadStatus == SUSPENDED-FAIL) 
 IF  (OSL contains untried threads) THEN 
  select an untried thread and remove it from the OSL 
  ThreadStatus = execute thread from L0 
 ELSE  // i.e. no threads accepted data 
  create new thread 
  ThreadStatus = execute thread starting from LS 
 ENDIF 
 IF ThreadStatus == TERMINATE-SUCCESS  THEN 
  add thread to ISL 
 ELSE IF ThreadStatus == TERMINATE -FAIL THEN 
   add thread to USL 
 ELSE IF ThreadStatus == SUSPENDED-SUCCESS THEN 
   add thread to OSL 
 ELSE IF ThreadStatus == SUSPENDED-FAIL THEN 
   add thread to OSL 
 ENDIF 
ENDWHILE 

Fig 3    Execution steps for each row of data



OSL  empty 

USL T1, T6 

ISL T2, T3, T4 

Thread T1  (as before) 

Thread T2  (as before) 

Thread T3 

Stack 
N C M A[0] A[1] A[2] A[3] A[4] A[5]

 <E> 1 18 Jan-3 15:10 12 c out 

- L3 1 16 Jan-3 14:30 12 c in 

L6B L7 1 14 Jan-3 13:00 12 c out 

- L6 1 12 Jan-3 10:20 12 c in 

- L5 1 10 Jan-3 09:00 12 b in 

RematchQueue :  empty 

Thread T4 

Stack 
N C M A[0] A[1] A[2] A[3] A[4] A[5]

 <E> 1 19 Jan-3 16:50 10 c out 

- L13 1 17 Jan-3 14:40 10 c in 

- L12 1 15 Jan-3 14:00 10 c out 

- L6 1 13 Jan-3 10:40 10 c in 

- L5 1 11 Jan-3 09:20 10 b in 

RematchQueue :  empty 

Thread T5   

Stack  : Empty 

N C M A[0] A[1] A[2] A[3] A[4] A[5]

RematchQueue   
A[0] A[1] A[2] A[3] A[4] A[5] 

20 Jan-4 06:00 12 b in 

 

 

V. SUMMARY 

Defining and recognising meaningful event sequences is a 
complex task which often requires human expertise to group 
attributes and events into related categories, which tend to be 
fuzzy in nature. It is a key task in analysing many data sources, 
including activity logs of users interacting with web 
applications - and hence, it is a key enabler for web 
intelligence. Our previous work has described a way of storing 
event sequences in a compact directed graph format, providing 
an efficient incremental algorithm to update the graph with an 
unseen sequence. A human expert can easily add sequence 
patterns, even if these have not been seen in the data yet. This 
aspect particularly distinguishes our work from statistical 
machine learning. The work described in this paper illustrates 
how a virtual machine can be defined from the directed graph 
representation, enabling event streams to be filtered and 
classified according to the sequences identified. The virtual 
machine can be implemented in software or by means of 
configurable hardware.    
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Fig 6 Machine state after reading 20 rows 
 
 


