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Abstract—Scientific applications demand huge computational
power connected through fast networks. They are developed
using parallel kernel methods, usually implemented with the Mes-
sage Passing Interface (MPI), presenting well-behaved communi-
cation patterns across computing nodes. The current network
technologies do not allow defining traffic forwarding policies
considering the different application traffic, resulting in an
unbalanced load on the network links. Moreover, the devices are
not concerned if the traffic is latency-sensitive or bandwidth-
intensive. To handle this, we present NetSA, a framework
exploiting the communication patterns of scientific applications,
considering latency and bandwidth constraints, as the key logic
for evenly placing the application flows on the network available
paths. Through NetSA, the scientific application developer can
easily modify the network behavior to best fit the application
communication requirements. We have performed experiments
for optimizing the MPI communication primitives and applied
our solution to speed up scientific applications, obtaining an
execution time reduction up to 27%.

I. INTRODUCTION

Scientists are using scientific applications (SciApps) to
create and predict complex phenoms, for example, weather
forecasting, prediction of natural disasters, bacterial profiling,
animal genotyping, and so forth. Often, these applications
have requirements such as model deterministic or stochastic,
the existence of multiple simultaneous dependent phenomena,
resolution, complexity, and ensemble size. The developer
must evaluate these requirements and apply one or more
computational methods (or kernels) to implement the scientific
software. These kernels usually present well-behaved patterns
to exchange data across the computing nodes.

For more accurate results, SciApps are increasingly de-
manding computational power, being executed in dedicated
clusters connected through extremely fast networks for moving
the huge amounts of generated data. A programming approach
based on communications has become crucial, so the Message
Passing Interface (MPI) library was born with the efforts of
many industrial and academic, leading to a de facto standard
for developing parallel and distributed programs [1].

In general, the performance of parallel and distributed
computation is greatly affected by communication due to
network congestion points or bottlenecks [24]. To tackle these
bottlenecks, a multiple-path network usually provides more
than one path between any pair of computing nodes. Link

Aggregation Control Protocol (LACP, IEEE 802.3ad) and
Equal-Cost Multi-Path (ECMP, IEEE 802.1Qbp) are used for
load-balancing the communications across these paths.

These protocols apply a hash function on some packet
header fields for choosing the output port to forward packets.
The problem is that two or more long-lived flows can collide
on their hash and end up on the same output port, creating a
bottleneck, overwhelming the switch buffers and degrading the
overall switch performance [2]. Furthermore, these protocols
do not consider the different characteristics of network paths,
where some may provide higher bandwidth while others
exhibit lower latency.

Software-Defined Networking (SDN) has emerged to sup-
port new possibilities for network management, decoupling
control and forwarding functions and enabling the network to
become directly programmable according to the user require-
ments [20]. The existing works using SDN for forwarding
communications through multiple paths use information col-
lected from end-hosts or network devices [2], [6], [12]. To
our knowledge, this is the first work using the well-behaved
patterns expressed by SciApps to forward their communication
flows through multiple network paths, considering latency and
bandwidth requirements.

In this paper, we present NetSA, a framework to opti-
mize the software-defined Network for Scientific Applications.
NetSA exploits the communication patterns of SciApps as the
key logic for balancing the application communications on the
network paths. NetSA provides an API allowing the SciApp
developer to tune the network forwarding according to his
application. The framework keeps a database of communica-
tion patterns, annotated with constraints on latency-sensitive
and bandwidth-intensive communications. When NetSA re-
ceives an API call, it identifies the pattern in its database,
placing the communications according to existing constraints:
latency-sensitive are forwarded through low-latency paths and
bandwidth-intensive via higher bandwidth links.

The rest of this paper is structured as follows. Section II
presents a brief literature review and related works, Section III
shows the NetSA implementation details, and Section IV
reports the impacts of the network topology on applications
communications. Section V shows the experiments using our
approach for balancing the Message Passing Interface (MPI)



collective communications and optimizing parallel kernels and
SciApps; finally, the conclusion is reported in Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, we explain some SDN concepts, bringing
up related works where SDN was applied for optimizing user
applications and SciApps. We also report proposals using the
SciApps communication patterns to improve the performance.

SDN aims to overcome the conventional network limita-
tions; in the existing pre-SDN network infrastructure, each
device must be individually configured, eventually causing
misconfigurations and errors. Furthermore, each device has
a specific purpose, for example, switches are used to con-
nect computers to a Local Area Network (LAN), routers
interconnect several LANs and provide Internet connection,
and firewalls filter out unwanted packets. SDN allows the
network devices functionalities to be defined or modified
after being deployed. It presents an open architecture that
makes the network configuration and management flexible and
programmable, enabling new features to be added without
changing the network hardware [20].

OpenFlow [14] has been adopted by enterprises and
academy, becoming a de facto SDN protocol for programming
the SDN devices. The packet forwarding is performed consid-
ering flows, using multiple packet headers fields instead of just
destination addresses. OpenFlow-enabled switches maintain
flow-tables with entries containing a matching pattern, actions,
and priorities. When a network device receives a new packet,
it searches its flow tables looking for an entry that matches the
packet header fields. If multiple matching entries are found,
the one with the highest priority is used, and its actions are
performed on all packets belonging to that flow (e.g. forward
to an output port). If no match is found, the device forwards the
packet to the network controller. The controller manages the
switches flow tables by adding, modifying, or removing their
entries, and querying flows statistics. By creating matching on
flows, it is possible to accommodate network traffic through
different physical topology paths; even traffic from the same
parallel application.

Many proposals are using SDN to modify the forwarding for
improving the application performance. B4 [12] allows to de-
fine application priority and uses multipath routing/tunneling
to optimize link usage. Mahout [6] detects elephant flows at
the end hosts and uses placement algorithms to compute paths
for them. NoF [21] raises the network programming level by
allowing the application specialists to program the network
through high-level constructs. U-Chupala et al. [22] have
proposed a bandwidth and latency aware routing to improve
the overall network performance.

We have also seen works modifying the network topology
for increasing the throughput for reducing the latency. Vas-
soler et al. [23] have used fast magneto-optical switches for
modifying the physical topology in server-centric datacenters.
Fujiwara et al. [9] have used free-space optics that transforms
a laser light in an optical cable to a laser beam in the air, and

vice versa on top of the cabinets to reduce both end-to-end
network latency and total cable length.

Related to SciApps, Takahashi et al. [18] have implemented
some SDN enhanced MPI primitives; they have developed an
MPI Bcast (broadcast) for eliminating duplicate packets in the
network and an MPI Allreduce that makes a communication
plan to forward the reducing through distinct paths. The MPI
directives were also modified to dynamically adjust the com-
puting resources based on the SciApp requirements [10]. Date
et at. [7] have discussed the integration of SDN with high-
performance computing (HPC) infrastructure, reporting some
specific HPC proposals for dealing with computing relocation,
bandwidth, and latency. Finally, in a previous work [19], we
studied the impacts of the SDN programmability on SciApps.

SciApps are usually implemented using kernels such as
Dense Linear Algebra, Sparse Linear Algebra, Structured
or Unstructured Grids, and Fast Fourier Transforms. These
kernels present well-behaved communication patterns used
for designing new chip-multiprocessors topologies, network-
on-chip, encompassing coherence protocols [3], thread map-
ping [8], and improving application performance [16], [5].

Our proposal differs from the existing works by using the
programmability introduced by SDN to dynamically adjusting
the SciApps communications on the network paths, consider-
ing their traffic patterns annotated with latency and bandwidth
constraints.

III. NETSA: NETWORK FOR SCIENTIFIC APPLICATIONS

NetSA is a framework to program the software-defined
Network for Scientific Applications. It uses the well-behaved
communication patterns expressed by SciApps as the basis
for balancing the applications flows through the available
network paths. It is composed of a Network Programming
Module (NPM), a Topology Information Module (TIM), a
Communication Pattern Database (CPD), and an Application
Programming Interface (API). Figure 1 shows the NetSA
framework components and their interactions.

A. Communication Patterns

The Communication Pattern Database (CPD) stores the
computing nodes communication as traffic matrices. Each
matrix cell keeps the amount of traffic (packets and bytes)
transmitted between every pair of ingress and egress nodes.
NetSA provides an option for measuring and recording the
communication patterns; in this operation, the switches flow
table statistics are collected and based on source and desti-
nation addresses, NetSA computes the number of transmitted
bytes and packets, storing this information in XML format.
The recording operation is performed only once per each
different traffic matrix; for all the upcoming executions, NetSA
uses the information stored in the CDP.

The traffic matrix may also keep, in each cell, the commu-
nication constraints, allowing the SciApp developer to inform
which communications are latency-sensitive or bandwidth-
intensive. This information may also be set through latency
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Fig. 1: NetSA Framework.

and bandwidth thresholds (in bytes per packet). NetSA clas-
sifies the cells as bandwidth-intensive if their average packet
size (APS) values ( total number of bytes

total number of packets ) are greater than
the defined bandwidth threshold; similarly, the cells with
APS values lower than the latency threshold are classified as
latency-sensitive.

<?xml version=“1.0” encoding=“UTF-8”?>
<traffic matrix>

<matrix id=“100” name=“MPI Allreduce”>
...
<src host>i9

<dst host>i1
<num bytes>42752734</num bytes>
<num packets>35346</num packets>
<bandwidth intensive=“true”></bandwidth>

</dst host>
<dst host>i2

<num bytes>9394</num bytes>
<num packets>81</num packets>
<latency max num hops=“2”></latency>

</dst host>
...
</src host>
...

</matrix>
</traffic matrix>

Fig. 2: MPI Allreduce XML traffic matrix containing latency
and bandwidth constraints.

We will use the MPI Allreduce primitive to explain NetSA;
this MPI function combines values from all nodes and dis-
tributes the result back to all nodes. Figure 2 shows an example
of XML, generated by NetSA, for storing the traffic matrix for
this primitive. The communication from i9 to i1 is classified as
bandwidth-intensive, so the NetSA should forward it through
bandwidth-intensive paths, while from computing node i9 to
node i2 the communication is classified as latency sensitive
and has to be allocated to a path with no more than two hops.

A graphical representation of the MPI Allreduce traffic
matrix is shown in Figure 3. In this figure, the bandwidth
threshold was configured to 1100 and the latency set to 120.
The bandwidth-intensive cells are shown in blue (dark gray
in B&W), the cells in green (light gray in B&W) are defined
as latency-sensitive, the gray ones have no constraints. The
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Fig. 3: MPI Allreduce traffic matrix Average Packet Size
(bytes/packet) graphical representation.

cells are normalized to the highest value; darker cells indicate
higher values and white cells no communication occurred.

B. Topology Information Module

The Topology Information Module (TIM) keeps the topol-
ogy information such as the network links, the computing
nodes locations, and network devices and ports. In this module,
the links can also be manually annotated as latency-sensitive
and bandwidth-intensive.

Although in the current version of NetSA the topology is
manually informed, it is possible to obtain and compute this
information through the SDN controller or the Link Layer
Discovery Protocol (LLDP)1.

C. NetSA API

NetSA provides a simple API allowing the developer to
inform which pattern the application is going to communicate.

1http://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf



This API includes a single function (int net set pattern(int
pattern id);) receiving the pattern id and returning 1 if the
network was successfully programmed or 0 on error.

...
if(net set pattern(100)){ // mpi allreduce

MPI Allreduce(sendbuf, recvbuf, size, MPI FLOAT, MPI SUM,
MPI COMM WORLD);

} else {
printf(“Error: could not program the network.”);

}
...

Fig. 4: Example of calling NetSA API.

Figure 4 shows an example where the API is called to
program the network for the MPI Allreduce communication
primitive (pattern id=100).

D. Network Programming Module

The Network Programming Module (NPM) is responsible
for interpreting the NetSA API calls and generating the SDN
messages for programming the network devices. This module
includes a Path Processor Module (PPM) and a SDN Rules
Generator Module (RGM).

Upon receiving an API call, the NPM uses the argument
pattern id to read the traffic matrix from CPD, identifying
which nodes have exchanged information, as well as their
latency and bandwidth constraints. The topology information
is acquired from TIM. With this information, NPM allocates
the nodes communications among the network paths and sends
messages for programming the network devices with these
forwarding rules. Due to the well-behaved communication
patterns expressed by the SciApps, and to avoid the time-
consuming task of continuously reading the network state,
NetSA uses the stored bandwidth and latency information.

PPM first generates low-priority rules for communicating
all-to-all computing nodes; preventing any pair of nodes to
be incommunicable. So, the higher-priority rules are created,
using Dijkstra weighted shortest-path [22] for allocating the
traffic matrix cells identified as bandwidth-intensive. Finally,
the latency-sensitive communications are accommodated, with
the highest priority, on the latency annotated links. Whenever a
communication is established in a path, its weight is increased.

After the communication being placed, the RGM creates the
OpenFlow messages for programming the network devices’
flow tables. In the implemented version, the switches are
directly programmed through OpenFlow protocol, but this
module can be modified for using any controller’s API.

For understanding how throughput and latency can be
affected by the network topology, we have analyzed the
communications for different message sizes, being exchanged
through paths presenting a different number of hops. This
investigation is presented in the next section.

IV. CHARACTERIZING THE IMPACT OF PATH LENGTH ON
COMMUNICATIONS

To understand the impact of network topology on through-
put and latency, we have studied the MPI point-to-point

communication primitives, using the OSU Micro-Benchmarks
(OMB)2 for observing the variations in latency and throughput
when the traffic was forwarded through paths varying from
one to six hops. We have chosen this maximum value because
the current datacenter network topologies are designed with a
maximum of six hops between any pair of nodes [25].

We have executed all point-to-point latency tests
(osu latency, osu latency mt, and osu multi lat), but
due to the similarity of the results, we only present the values
of osu latency test. This test is carried out in a ping-pong
fashion; the sender sends a message with a certain data size
to the receiver and waits for a reply from it. The receiver
receives the message from the sender and sends back a reply
with the same data size.

La
te

nc
y 

(u
s)

8
3

.2
6

8
3

.6
3

8
4

.9
2

8
8

.3
2

1
2

5
.6

7

3
3

1
.4

0

2
4

7
5

.4
4

1
8

2
3

9
.0

8

1 8 64 512 4096 32768 262144 2097152

Message Size (bytes)

(a) Latency measured for a single hop.

(b) Relative latency increase.

N
um

be
r 

of
 H

op
s 2 5.0 4.6 6.0 9.7 5.2 14.1 2.4 0.1

3 10.5 10.1 12.9 20.1 8.6 17.6 4.1 1.0

4 15.6 15.1 19.1 30.3 19.7 18.7 2.9 1.1

5 20.1 19.6 24.9 39.8 45.7 23.0 4.6 1.6

6 25.1 24.6 31.3 49.8 57.0 28.0 4.8 0.1

1 8 64 512 4096 32768 262144 2097152

Message Size (bytes)

(c) Percentage increase in latency.

Fig. 5: Latency for different hop count and message size.

Figure 5a shows the latency values (in micro-seconds) for
the different tested message sizes when the communication is
performed through a single hop (only one switch). Figure 5b
shows the relative increase in latency, compared to the single
hop value, varying the number of hops from two to six.

Figure 5c shows the percentage increase in latency, where
the cells in red represent an increment higher than 10%.
This figure facilitates the increased latency visualization; for
example, considering an application with latency-sensitive
communication, tolerating an increase up to 10% in latency,
and transmitting messages with 512 bytes. In this case, the
application traffic MUST be forwarded through a path with a
maximum of two hops.

2http://mvapich.cse.ohio-state.edu/benchmarks/



Just as happened with the latency tests, the values obtained
for all OMB bandwidth tests were similar, so we show only the
results of osu bw. This test has a sender sending out a fixed
number of back-to-back messages and waiting for a reply from
a receiver. The receiver sends the reply only after receiving
all these messages. The bandwidth is calculated based on the
elapsed time and the number of bytes sent by the sender.
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Fig. 6: Throughput for different hop count and message size.

Figure 6a shows the measured throughput (GB/s) for trans-
mitting the different messages size through one hop and Fig-
ure 6b plots relative decrease in throughput for hop variation.
Figure 6c present the percentage increase compared to the
single hop values. For messages larger than 4096 bytes, the
link becomes saturated, and throughput stops decreasing. We
can also see that for messages larger than 2048 bytes, the
throughput percentage increase is lower than 10%, even if
they are forwarded through six hops. Thus, we conclude that
the number of hops does not significantly affect bandwidth-
intensive communications.

We have also executed the OMB Multiple Bandwidth /
Message Rate test (osu mbw mr); this test evaluates the
aggregate bandwidth and message rate between multiple pairs
of processes. Each of the sending processes sends a fixed
number of messages back-to-back to the paired receiving
process before waiting for a reply from the receiver.

In Figure 7a, it can be seen the message rate (msg/sec)
for different message size forwarded through a single hop.
There is a large variability on the throughput for small
messages [1, 8, 64, 512], varying from [2.4, 19, 151, 559] Mbps
respectively, as expected. Whereas for larger messages (≥
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Fig. 7: Message rate for different hop count and message size.

4096 bytes), it achieves the capacity of the link, decreasing the
message rate variation. Figure 7b shows that the message rate
falls sharply when small messages (≥ 64 bytes) are forwarded
through a higher number of hops. It is possible to see that for
these messages, through one hop, the message rate is around
300,000 msg/sec; however, when the test is performed via six
hops, this rate decreases to less than 200,000 msg/sec. Thus,
if the SciApp depends on exchanging a huge number of small
messages, then it is mandatory to send them along paths with
the least number of hops.

V. EVALUATION

For evaluating our proposal, we have performed three differ-
ent experiments. In the first experiment, we have used NetSA
for improving the MPI collective primitives by balancing their
communications through the network paths. In the second
experiment, our approach is applied for reducing the execution
time of NAS Parallel Benchmarks (NPB) [13], and in the
third experiment, we have optimized the network for SciApps
implemented using the OpenLB library [11]. In order to obtain
meaningful and realistic results, the experiments were executed
in a real testbed, described in the next section.

As a baseline, we have measured all experiments with a sin-
gle hop topology, meaning that all computers were connected
to a single switch. We have also measured the experiments
with network devices configured with Link Aggregation Con-
trol Protocol (LACP) for aggregating the Ethernet interfaces
into a single logic interface. Lastly, the switches were pro-
grammed with NetSA.

A. Testbed

Our testbed is composed of 16 Lenovo PCs with processor
Intel quad-core 3.2Ghz, 8GB RAM, 1TB HD, 1 Gigabit Eth-
ernet, running Linux Debian 8.2, and MPI mpich-3.2. Three
Pica8 P-3290 OpenFlow switches running the operating sys-
tem PicOS v2.6.4. Each switch has 48 Gigabit Ethernet ports,
four 10 Gigabit optical SFP+ ports, supporting OpenFlow 1.4



through Open vSwitch v2.0 integration (http://openvswitch.
org/ ). The experiments were performed using OSU Micro-
Benchmarks (OMB) v5.3, NAS Parallel Benchmarks v3.3.1,
and OpenLB v1.0.

latency-sensitive
link

ToR switch

spine switch

i1 .. i8
Pod 0

i9 .. i16
Pod 1

   ToR switch

bandwidth-intensive links 

Fig. 8: Testbed topology annotated with bandwidth and latency
information.

The testbed topology is shown in Figure 8; it is composed
of one spine and two top-of-rack (ToR) switches. The sixteen
computing nodes (i1..i16) are divided between the two ToR
switches. The spine switch is connected to the ToR through
four links, annotated as bandwidth-intensive (identified in
blue). The topology also includes a link connecting the ToR
switches; this link is annotated as latency-intensive (in green).

B. Collective Communications

MPI collective primitives are used in most applications,
being responsible for a significant fraction of the communica-
tion time [15]. We have selected the three OMB benchmarks
that most exchanged data through the network to conduct this
experiment (MPI Allgather, MPI Allreduce, and MPI Bcast).
These benchmarks measure the average latency of collective
operations across their processes, for various message lengths,
over a large number of iterations. They were executed in our
evaluation testbed using 16 processes (one process per com-
puter). For increasing the amount of traffic transmitted through
the spine switch, when evaluating the primitive MPI Allgather,
the computing nodes were informed in a random order.

Before running NetSA, we have measured and stored
these benchmarks traffic matrices, annotating some cells as
bandwidth-intensive and latency-sensitive, as shown in Fig-
ure 3, Figure 9a, and Figure 9b.

We have tested different thresholds, choosing those that pro-
vided the lowest average latency for each test. The allocation
of bandwidth-intensive traffic (in blue) had a significant impact
on results, meaning that, when they were properly balanced,
the benchmarks have achieved a latency time close to the
baseline. However, for the evaluated MPI primitives, allocating
the latency-sensitive communications on the latency link (in
green) did not influence the result significantly. This happened
because these communications are dependent on bandwidth-
intensive messages.

Figure 10a shows the OSU MPI Allreduce latency test
normalized to the baseline. It is possible to see that, when
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(a) MPI Allgather (random).
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Fig. 9: MPI collective primitives traffic matrices with cells
annotated with bandwidth and latency constraints.

(a) MPI Allreduce latency test relative increase.

(b) MPI Allgather latency test relative increase.

(c) MPI Bcast latency test relative increase.

Fig. 10: OMB MPI collective latency tests.

the network was configured using LACP, for messages larger
than 8192 bytes, there is a significant increase in the average
latency, taking nearly 200% longer than the baseline for the
largest message. When the network devices were programmed
with NetSA, in the worst case, the average latency took 25%
more than the baseline.

The Figure 10b and Figure 10c present the relative latency
increase for MPI Allgather and MPI Bcast respectively. Both
charts show a considerable increase for message larger than
8192 bytes. In both tests, in the worst case, LACP has



increased latency time more than twice, while NetSA has
increased 57% and 17% for MPI Allgather and MPI Bcast.

These results show that a proper allocation of communica-
tion is fundamental for reducing the latency, and consequently,
reducing the overall execution time of MPI operations.

C. Parallel Benchmarks

We have modified four tests from NAS Parallel Benchmarks
(NPB), including calls to NetSA API, for programming the
network according to their communication patterns. NPB are
set of programs designed to help evaluate the performance of
parallel supercomputers, consisting of five kernels and three
pseudo-applications. For this experiment, we have also used
the topology described in Section V-A.

We have selected the benchmarks that most exchanged
information among their computation nodes: bt, cg, ft, and
lu. The bt is a pseudo application used to compute block
tridiagonal matrices; cg is a Sparse Linear Algebra kernel used
to compute an approximation to the smallest eigenvalue of a
large, sparse, symmetric positive definite matrix. The ft kernel
solves a 3-D partial differential equation using Fast Fourier
Transform, and lu is a pseudo application that uses iterative
methods for solving linear systems.
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(a) NPB bt pseudo application.
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(b) NPB ft parallel kernel.
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(c) NPB cg parallel kernel.
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(d) NPB lu pseudo application.

Fig. 11: NAS Parallel Benchmarks execution times.

These benchmarks were executed 30 times and their exe-
cution times were recorded; these values are shown in Fig-
ure 11. For Figure 11 and Figure 12, the baseline comprises
the computation time coupled with the communication time
through a single hop. The overhead imposed by the topology
and the manner the communications are balanced on the links
by LACP and NetSA are displayed on the top of each bar.

For cg and lu, the execution time using NetSA was close to
the baseline; the increment for bt and ft was respectively 4%
and 36%. When the flows were distributed through LACP, the
baseline times for bt, cg, ft, and lu incremented respectively
14%, 52%, 161%, and 8%.

To confirm that the LACP was not equally dividing the
communications among the paths, we analyzed the switch

ports statistics when running the ft kernel and we realized that
three ports had transmitted approximately 3 Gigabytes and the
other port forwarded merely 2.6 Megabytes. With NetSA, all
ports have transmitted around 2.2 Gigabytes.

D. Scientific Applications

In addition to the experiments on NPB, we have modified
two scientific applications, including calls to NetSA API, for
amending the forwarding according to their communication
patterns. The first application examines a steady flow past
a 3D cylinder placed in a channel. The cylinder is offset
somewhat from the center of the flow to make the steady-
state symmetrical flow unstable [17]. The second application
implements a backward facing step, being used to simulate
flows through rough-walled rock fractures [4]. Both applica-
tions were implemented using the OpenLB library [11].
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(a) 3D cylinder.
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(b) 3D backward facing step.

Fig. 12: Scientific applications execution times.

The 3D cylinder application had a 8% increase in the exe-
cution time when the flows were placed with NetSA and 17%
with LACP. By examining the ports of switches, we realize that
again LACP did not balance the communications; some ports
have transmitted about 11 Gigabytes, while other ports only
3.7 Gigabytes. The execution time of the second application
has increased about 27% when the communications were
placed with LACP, comparing with NetSA.

For these applications, as well as for the ft kernel, even
when NetSA properly distributed the communications on the
existing links, the overhead was considerable. This happened
because the amount of information exchanged between the
two Pods was higher than the capacity of existing links. This
problem could be mitigated by including new bandwidth links
from ToR switches to the spine switch.

We have also measured the overhead introduced by NetSA
API calls. Among the tested applications, the time for pro-
gramming the switch flow tables, on average, was 0.47 sec-
onds. This overhead is slightly higher for applications that
need to install more rules. For instance, the bt application
demanded the installation of 48 rules, which is twice the
number of rules compared to other applications. The average
time for programming the rules for bt was around 0.54
seconds.

These experiments have shown that even in the case of
extremely simple topology, SciApps performance is highly
affected by unequal loads in the network paths. However,
NetSA provides a way to program the network to meet



the pattern communications to be suitably balanced through
network paths. Moreover, NetSA allows more agility for
setting up routes/flows on the underlying physical network
topology, exploring the existing redundant paths for flows that
are throughput oriented or providing shortest paths for those
that need low latency guarantees.

VI. CONCLUSION

This paper presents NetSA, a framework for placing the
scientific applications communications through the network
available paths. Our approach relies on (i) storing the appli-
cation traffic matrices and annotating them with bandwidth
and latency constraints; (ii) providing an API to enable the
scientific application developer easily modify the network
forwarding for his needs, and (iii) using this information for
balancing the communications on the network available paths.
These points allowed NetSA to allocate flows with the SDN
centralized logical view, improving SciApps performance.

The experiments demonstrate the effectiveness of our ap-
proach in a real testbed by improving the MPI collective
operations and accelerating up to 27% the execution time of
scientific applications.

As future work, we intend to provide a scheme for detecting
the communication patterns and automatically optimize the
network for them. We also plan to enable NetSA for running
(or scheduling) multiple concurrent applications, as well as,
propose a strategy for optimizing the computing nodes place-
ment, based on these patterns.
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