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ABSTRACT

Optical binding occurs in systems of both dielectric and metal particles and results in the formation of clusters
and coupled dynamical behaviour. Optical binding between spherical particles has been long studied, but
comparatively little work has appeared describing binding in lower symmetry systems. In this paper we discuss
recent theoretical work and computer simulations of optical binding between nanowires in linearly polarised
counter propagating beams.
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1. INTRODUCTION

The phenomenon of optical binding was first observed over twenty-five years ago.1 The optical binding effect
results from the optical forces that arise between particles as a result of multiple scattering. Optical binding
forces can result in a number of consequences including arranging matter into regular, crystalline arrays2 and
the production of complex, non-conservative, quasi-periodic motion.3 Most studies of optical binding have been
performed using moderately scattering dielectric spheres (e.g. silica),4–6 although there have been some recent
departures from this trend including ultra-strongly bound nanoparticles,7,8 plasmonic silver bipyramids9 and
carbon nanotubes.10 The reduction of particle symmetry introduces extra complexity. For example, torques
can be applied to non-spherical objects by the external field, as well as by the scattered field from neighbouring
particles. This may be expected to have consequences for the organizational properties of these systems.

In addition to fundamental considerations, there is increasing interest in practical techniques for organising
nanostructures.11,12 While optical tweezers have been successfully applied to the task of nanoparticle manipu-
lation,13–17 the application of optical binding has been focused, to a great extent, on the behaviour of spherical
particles. Here we study the behaviour of dielectric nanowires held in linearly-polarised counter-propagating
plane waves. From previous computer simulations we have shown that nanowires orient with the polarisation of
such plane waves, and have the tendency to form ladder-like structures, with the rungs of the ladder separated
by approximately the wavelength of light in the surrounding medium.18 In the present paper, we consider the
influence of the nanowire geometry (length and diameter) on the stability of the ladder-like bound states.

2. METHODS

2.1 Computational model

Optical binding experiments are often performed with particles immersed in a viscous medium, such as water. The
subsequent motion of the bound particles is therefore determined by their hydrodynamic interactions, including
stochastic, Brownian forces, as well as by any position-dependent optical forces. In the present computer model,
we include all optical and hydrodynamic interactions, including fluctuations, using a coarse-grained approach.
The nanowires are represented by rigid lines of small spheres, which act as the centres for both the hydrodynamic
and optical calculations. Although, at the outset, this may appear to be a crude approximation, the basic scheme
may be extended, arbitrarily, to improve the accuracy and realism of the results.
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The system consists of Nns identical nano-wires, each comprising nb beads, giving a total of Nb = nbNns

beads in the system. The force on the beads is given by a vector of length 3Nb, consisting of a list of the force
components on each bead in turn:
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Similarly, the bead velocities are given by:
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These quantities are re-expressed in terms of the rigid-body motions of the nanowires alone. These latter
quantities are represented by vectors of length 6Ns, for the forces (including torques) and velocities (including
rotations):

F = (F1,T1,F2,T2, ...FNns
,TNns

) = (F1,x, F1,y, F1,z, T1,x, T1,y, T1,z, ...., TNns,z) (3)

V = (V1,Ω1,V2,Ω2, ...,ΩNns
) = (V1,x, V1,y, V1,z,Ω1,x,Ω1,y,Ω1,z, ....,ΩNns,z) (4)

An important aspect to the approach is the mapping between the individual beads and the nanowires. This
is achieved by demanding that the beads comprising a particular nanowire move as a rigid body. The body
forces and torques on the nth nanowire are therefore given by:

Fn =
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Conversely, the mapping of linear and angular velocities of a particular nanowire into the velocities of its con-
stituent beads is given by:

vi
n = Vn + (Rn − rni )×Ωn (7)

2.2 Optical Interactions

The optical interactions are calculated using the coupled dipole method (CDM).4,19–21 The system (here a col-
lection of nano-wires) is decomposed into a collection of dipolar cells, each associated with a point polarizability.
Each cell is polarized by a linear superposition of the external field and the electric field scattered by every other
cell in the simulation. This interaction term is carried by the dipole interaction tensor. A set of coupled linear
equations for the polarization of each cell is obtained which can be solved iteratively. Once the polarization on
each cell has been acquired, the force on each cell is obtained from the Lorentz force law,4 in the form:
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)
(8)

Equation (8) is a general expression for the ith component of the force, fi, on a small sphere. pj is the jth
component of its polarization, and Ej the jth component of the electric field. The force and torque on each
nanowire is found by summing the forces on the cells using Eqs. (5,6).

2.3 Hydrodynamic Interactions

The diffusion matrix for the system of constituent beads is written down to first order using the Oseen tensor
or, to next highest order, using the Rotne-Prager tensor. For greater accuracy, more higher-order terms (or
reflections) may be included.22 The diffusion matrix for the system of nanowires then needs to be derived. To
achieve this, first the bead diffusion matrix is inverted, to give a friction matrix for the system of beads. Next,
the individual nanowires are considered as discrete entities and unitary translational and rotational velocities
applied to each wire in turn. Using the friction matrix for the system of beads, the force on all beads in the
system can be evaluated. These forces are then reduced to the body forces and torques experienced by each wire
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Figure 1. Schematic showing the axes used throughout this paper. The x-axis corresponds to the direction of the
counterpropagating plane waves, and the y-axis represents the polarisation direction. In (a), the two nanowires form a
ladder-like structure, with the rungs of the ladder separated by approximately the wavelength of the incident light field
in the z-direction. Both nanowires are in the same standing-wave maximum of the light field. In (b) the two nanowires
are in adjacent bright maxima, half a wavelength apart.

using Eqs. (5,6). Thus, a friction matrix for the system of nanowires is developed, inversion of which yields the
diffusion matrix for the nanowire system. This matrix allows dynamical simulations to be performed.

In the case of cylindrically symmetric structures, such as nanowires, the friction matrix for the system of
wires becomes singular and cannot be inverted. To overcome this problem, the degree of freedom associated with
rotations about the wire axis, needs to be dispensed with prior to inversion.

2.4 Brownian Dynamics

The availability of the optical forces experienced by each nanowire, and the acquisition of the diffusion matrix,
permits integration of the Langevin equation for the system of nanowires. This has been presented elsewhere,
for systems of spheres.23 However, the derivation is not explicitly restricted to spherical particles and can be
extended to arbitrary structures.24 The resulting displacements of the nanowires are given by:

∆ = DF∆t+∇ ·D∆t+ R(∆t) (9)

where, ∆ = (δr1, δθ1, δr2, δθ2, ...δθNns) with δrn being the displacement of the centre of mass of the nth wire
and δθn a rotation that acts on the orientation of the structure. D is the diffusion matrix for the system of
nanowires. The total displacement, ∆ consists of three terms. The first is a displacement resulting from the
applied forces F and the second is proportional to the divergence of the diffusion matrix. The effect of the
divergence term is found to be negligible in the regime in which we are working, and it may be safely ignored.
R is a vector of translational and rotational displacements drawn from a multivariate normal distribution such
that 〈R⊗R〉 = 2kBTD.

2.5 Model Parameters

The simulations consist of a pair of nanowires, arranged as shown in Fig. 1. The nanowires consist of beads of
diameter between 50 nm and 100 nm. The lengths of the nanowires range from 0.3µm to 3.0µm, and a nominal
refractive index of 2.6 is used throughout. The wavelength of the incident counterpropagating waves (incident
parallel to the ±x-axes) is 800 nm, and the medium is taken as water. The polarisation direction is parallel
to the y-axis. We consider the geometry and stability of pairs of nanowires arranged either as a ladder in the
z-direction (Fig. 1(a)) or stacked in the x-direction (Fig. 1(b)).
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Figure 2. The spacing between two nanowires arranged as in Fig. 1 as a function of nanowire length, for different
diameters: (a) the z separation for two nanowires in the same bright fringe and (b) the x-separation between two
nanowires in adjacent bright fringes.

3. RESULTS

3.1 Equilibrium Nanowire Separation

As is well known, the orientation of an extended object in an optical field is sensitive to both the electric
polarization and to inhomogeneities in the intensity of an incident optical field. In the present case, this means
that the nanowires tend to lie in the bright fringes of the counterpropagating waves, and orient themselves with
the polarisation direction (y-axis). As previously noted,18 strong optical binding interactions cause the nanowires
to form stacks either in the propagation direction (x-axis), in which case the centres of the wires will correspond
to the positions of the bright fringes, or perpendicular to the propagation direction (z-axis) in which case the
separation is nominally a whole number of wavelengths of the incident light in the medium.

The equilibrium separation between such nanowire pairs is examined in Fig. 2, for a range of nanowire lengths
and diameters. Figure 2(a) shows the influence of nanowire length on the separation of two nanowires arranged in
the z direction. It is apparent that the separation quickly decreases from the nominal one-wavelength separation
(600 nm) for nanowires greater than 1µm in length, and appears to be reaching a plateau at around 525 nm for
longer wires. Interestingly the diameter of the nanowires does not appear to influence the z-spacing.

It is a different story, however, when the nanowires are arranged in adjacent bright fringes (Fig. 2(b)). The
separation of bright fringes is 300 nm, but only the shortest and narrowest nanowires, i.e. those with the weakest
binding interactions, come close to this separation. Otherwise, it is found that the increase in length leads to
a greater attraction between the wires that is acting against the incident intensity distribution. The effect is
substantially greater for the wider nanowires: those of 100 nm diameter have an equilibrium separation of only
around 240 nm for wires over 1µm in length.

3.2 Ladder Stability

We examine the relative stability of nanowire pairs, arranged either one above the other in a single bright fringe
(Fig. 1(a)) or side-by-side in adjacent bright fringes (Fig. 1(b)). In each case we examine the thermal motion in
the equilibrium configurations that are established. We define an effective stiffness using:

Keff
q =

kBT

〈Var(∆q)〉
. (10)
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Figure 3. The displacement stiffness acting between two nanowires in a ladder configuration, as a function of nanowire
length for diameters of (a) 50 nm, (b) 60 nm, (c) 75 nm and (d) 100 nm.

where 〈Var(∆q)〉 is the variance of the difference in x, y or z coordinates of the nanowires. Low values of stiffness
equate to a lack of thermal stability. We do not consider the angular stiffnesses, as these are dominated by the
orienting effects of the linear polarisation and the fringe intensity.

Figure 3 shows the effect of nanowire length and diameter on the displacement stiffnesses of two nanowires
arranged as a ladder in the z direction. In all cases Kxx dominates, which indicates the nanowires being confined
by the bright fringe intensity. Kzz is a measure of the stability to pulling the nanowires apart along the z axis.
This shows a relatively low value for the 50 nm diameter wires ( 1×10−5) but increases by an order of magnitude
when the diameter is doubled to 100 nm. Both Kxx and Kzz increase approximately linearly with the nanowire
length. Interestingly, Kyy, which corresponds to a shearing of the nanowires parallel to the polarisation direction,
is very low in all cases, indicating that the ladder arrangement is least stable to this type of deformation.

A similar set of graphs for two nanowires, placed in adjacent fringes, is shown in Fig. 4. As with the previous
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Figure 4. The displacement stiffness acting between two nanowires in adjacent bright fringes, as a function of nanowire
length for diameters of (a) 50 nm, (b) 60 nm, (c) 75 nm and (d) 100 nm.



arrangement, Kxx dominates, due to the bright intensity fringes. However, this value now refers to the separation
between the nanowires. Interestingly, for the 50 nm nanowires, there appears little difference between Kxx for
the two arrangements studied i.e. in both cases, the stiffness has a value of around 7 × 10−5 for the longest
wires studied. However, differences occur as the nanowire diameter increases and, for the largest diameter
considered (100 nm) Kxx is approximately double in the x configuration compared with the value found in the
z configuration.

The perpendicular stiffness, Kzz remains comparatively small for all nanowire geometries and, as previously,
the shearing stiffness Kyy is the smallest, and appears little influenced by with the nanowire length or diameter.

4. DISCUSSION

We have examined the thermal stability of pairs of nanowires, optically bound in a ladder-like arrangement,
in two configurations in counterpropagating beams. As expected, the nanowire pairs assume two equilibrium
configurations, as indicated in Fig. 1. In the z configuration, the nanowires are separated in the z direction, per-
pendicular to the propagation direction. The spacing of the nanowires decreases from nominally one wavelength
(600 nm) for the shortest wires, to around 85 % of this figure for the longest wires examined. The lack of any
influence from the nanowire diameter is a little surprising. However, the stiffness Kzz shows a marked increase
with diameter—an order of magnitude increase in Kzz for a doubling of nanowire diameter—which shows that
while the equilibrium separation is insensitive to diameter, the effective well-depth is not. Other simulation
results, not shown here, suggest that the equilibrium separation is sensitive to refractive index, decreasing as the
refractive index increases.25 In this configuration, Kxx relates to displacements relative to the bright fringes.
Kxx increases with the diameter of the nanowires, while both Kxx and Kzz increase with their length. The
longitudinal stiffness, Kyy, corresponds to shear deformations of the nanowire pair. It takes very small values
and is relatively insensitive to the geometry of the particles.

For two nanowires in the x configuration, the particle separation is expected to be set by the separation of
the bright fringes. However, it is found to decrease significantly from this value, especially for the larger (longer
and wider) nanoparticles. This has intriguing consequences for the stability of larger stacks of wires in this
configuration.25 The interparticle stiffness, Kxx, is large than the corresponding values for the z configuration,
presumably due to the contribution from the bright fringes. As with the z configuration, the shear stiffness,
Kyy is relatively small, suggesting that the designation of “ladder-like” structure should perhaps be modified to
“rope-ladder”.

The model employed has computed the full optical and hydrodynamic interactions, allowing the dynamics
to be followed by implementing a Brownian dynamics simulation. The method employed is to represent the
nanowires by a set of spheres, which act as the centres of interaction for both the hydrodynamic and optical
calculations. The nanowires are minimally represented by a single line of spheres, constrained to move as rigid
bodies. Consequently, the nanowire diameters correspond to the sphere diameters employed.

This geometric rendering of the nanowires is quite crude, necessitated, in part, by the computational burden
of increasing the number of beads, or cells. The optical computations could be eased using techniques described
elsewhere.4 However, while there is no immediately obvious way of improving the hydrodynamic calculations,
the hydrodynamic system does not suffer too badly when the geometric resolution is poor. This is a consequence,
in part, of the containment theorems of low Reynolds number hydrodynamics,26 which prevent coarse grained
calculations from becoming wildly innaccurate. A possible route to improved realism may be to use different
resolutions; a fine discretization for the optical problem, which could be tackled iteratively as shown in Ref.,4

and a coarser approach could be employed for the hydrodynamic problem. This is the subject of future efforts.
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