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ABSTRACT 

The present paper investigates the updating of numerical models based on nonlinear normal modes (NNMs) extracted using 
phase separation. The proposed model updating procedure comprises three steps. First, a broadband excitation signal is applied 
to the structure of interest and input-output data are collected. Second, NNMs are identified by integrating a nonlinear subspace 
identification method and numerical continuation in a phase separation approach. Third, model parameters are updated by 
minimizing the difference between numerically-predicted and experimentally-estimated NNMs calculated at multiple energy 
levels. A numerical cantilever beam with geometrical nonlinearity is exploited herein for demonstration purposes. Synthetic 
vibration data are generated under a white-noise excitation. The performance of the model updating procedure is verified versus 
NNM identification issues, like noise perturbations. 

Benchmark Structure and Data Simulation 

The benchmark structure was developed during the European COST Action F3 [1] and consists of a clamped beam with a local 
nonlinearity due to a thin beam bolted at one end, as shown in Figure 1(a). Based on the dynamic charateristics of the nonlinear 
beam, the structure is modeled as follows: the main beam is discretized into 14 beam elements; the left end of the main beam 
is perfectly fixed in translation but not in rotation, a rotational spring (114,700 N/rad) is considered as the constraint; the seven 
accelerometers are modeled as lumped masses (2.1 g each); the bolt connection of the two beams is modeled as a lumped mass 
(11.15 g) and a rotational spring (42.2 N/rad); the thin beam is discretized into 3 beam elements; the right end of the thin beam 
is perfectly fixed in translation, but the rotational constraint is modeled as a rotational spring (40 N/rad); the local nonlinearity 
is modeled as a combination of cubic spring and a quadratic spring with nonlinear coefficients c1 and c2 respectively. Figure 
1(b) shows the finite element model of the nonlinear beam. Table 1 shows the mechanical properties of the nonlinear beam. 

               
 (a) (b) 

Figure 1. (a) The nonlinear beam (ULg set up) [1], (b) FE model of the nonlinear beam. 

Table 1. Mechanical properties of the nonlinear beam [2]. 

Young’s modulus (N/m2) Density (kg/m3) c1(N/m3) c2(N/m2) 

2.05×1011 7800 8×109 -1.05×107 



The FE model is used to simulate the response of the beam. A broadband excitation signal is applied to the nonlinear beam and 
acceleration response at the location of seven accelerometers shown in Figure 1(a) are simulated. The measurements are 
polluted with Gaussian white noise signals to represent realistic noisy data.  

Model Updating 

The NNMs are identified from noisy input-output data using the phase separation method developed in [2]. A separate model 
with similar model assumptions but unknown parameters (Young’s modulus, c1 and c2) is also created for the model updating 
study. The created model is considered to be in the same model class as the one used for numerical simulation, so no modeling 
error is considered in this study. The three updating parameters are estimated by minimizing the difference between model-
predicted and identified NNMs at multiple energy levels. The model predicted NNMs can be produced using a numerical 
continuation algorithm proposed by [3]. Figure 2 shows the algorithm of the proposed nonlinear model updating method. 

 
Figure 2. Block diagram of the nonlinear model updating method 

To study the effects of measurement noise on model updating resuls, three levels of noise are added to the simulated data: 1%, 
2% and 5% in root-mean-square. Figure 3 shows a sample identified first NNM with 1%, 2% and 5% level of noise in the 
output signal. 

 

Figure 3. First NNM of the nonlinear beam (identified with 1%, 2% and 5% of noise in output signal). 
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The optimal model parameters θ are achieved by minimizing the objective function which is defined as the square sum of the 
difference of periods and mode shapes between model-predicted NNMs and system identified ones. The objective function f(θ) 
is defined as: 

3

1 1

( )
( ) ( ) ( )

( )

Periodn
Period NNM T m

m m NNM
m i m

r i
f r i i

i= =

 
 =   

 
∑∑θ r

r
  (1) 

where                                     
model measured

measured

( ) ( )
( )

( )
Period m m

m
m

T i T i
r i

T i
−

= ,          
model measured

measured

( ) ( )
( )

( )
NNM m m

m
m

i i
i

i
−

=
z z

r
z

                                (2) 

In this equation, Tm(i) and zm(i) are period and mode shape of the mth mode at energy level (i). The superscript “model” and 
“measured” refer to model-computed and identified modes. Period

mr  and NNM
mr  are recidual period and mode shape of mode m. 

The total number of points on the NNM branch at different energy levels which are included in objective function is defined 
by n.  

Figure 4 illustrates the sensitivity of the first NNM with respect to the updating parameters. The plot shows the first NNM 
corresponding to three values of the parameter vector θ shown in Table 2. It can be seen that slight variation in each of the 
updating parameters cause observable changes in the NNMs. 

 
Figure 4. First NNMs predicted by FEA model with different parameters. 

Table 2 Considered parameters in Figure 4 (the values of θ are ratios to the exact values shown in Table 1) 

 Young’s modulus  c1 c2 
(1)θ  (exact) 1 1 1 

(2)θ  0.99 1.01 0.99 

(3)θ  1.01 0.99 1.01 

To study the accuracy of updating results, 20 model updating cases will be performed at each level of considered measurement 
noise. The statistical properties of updated model parameters will be reported and compared to the exact values.  
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