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Abstract

This paper presents a study into the occurrence of aeroelastic flutter in a high aspect ratio wing using
numerical continuation and a geometrically nonlinear beam model. This beam model comprises a continuous,
assumed-shape formulation and is coupled with strip theory aerodynamics. Out-of-plane, in-plane and
torsional stiffness properties are varied and their influences on the flutter point are observed. A nonlinear lift
curve is incorporated so as to illustrate the influence of stall effects. The occurrence of a subcritical Hopf
bifurcation is also demonstrated, indicating the possibility of oscillation at airspeeds below the flutter velocity,
given a sufficient wing perturbation.

I. Introduction

High aspect ratio wing designs are cur-
rently of significant interest in the
aerospace industry, due to the reduc-

tion in vortex-induced drag they provide [1].
Such designs are inherently more flexible and
can be subject to large deformations during
flight, leading to the re-orientation of aero-
dynamic force vectors, effective tip shorten-
ing (see Figure 1) and stall effects [2]. Con-
sequently, the linear approximations suitable
for more rigid wings are no longer appropri-
ate and treatment of these configurations must
fully account for nonlinear behaviour. Fully un-
derstanding the aeroelastic properties of these
designs is vital, as the flutter stability bound-
aries and gust/manoeuvre responses are likely
to differ from conventional aircraft configura-
tions.

Flutter is a dynamic aeroelastic instability
classically defined as the condition where small
disturbances to a stable wing do not decay to
a steady state. The presence of limit cycle oscil-
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Figure 1: High aspect ratio wing deformation showing
re-orientation of aerodynamic forces and effec-
tive tip shortening.

lations (LCOs) typically bound this instability,
limiting what would otherwise be exponential
growth. In this paper, the flutter velocity (de-
noted by VF) is defined as the lowest airspeed
at which this type of behaviour occurs, i.e. the
airspeed at which static stability is lost and any
perturbation results in an oscillatory response.

The aeroelastic characteristics of high aspect
ratio wings has been the subject of numerous
studies [3]. Patil et al. [5] used a geometrically
exact intrinsic nonlinear beam formulation cou-
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pled with finite-state unsteady aerodynamics
(with static stall) and observed that flutter ve-
locity decreased as the wing became more stat-
ically deformed. In this case, the deformed
shape was produced using a specified tip load.
Tang and Dowell [6] used similar beam equa-
tions with 3rd order geometric nonlinear terms
removed; deformed wing shapes in this study
were achieved by several means: a vertical tip
load, a manufactured wing curvature and a
nonzero angle of attack. Flutter velocities are
seen to decrease for all sources of deformation.

In most studies, the velocity at which flutter
occurs is typically determined via extensive
use of numerical integration; airspeed is grad-
ually increased and the long term response is
investigated for periodic behaviour. A more
direct approach is to use a technique common
in nonlinear dynamics analysis called numeri-
cal continuation; this method is an algorithmic
procedure for finding the steady states of a pa-
rameterised system of first order ODEs, such
as

ẋ = F(x, p) (1)

where x 2 Rn and p 2 Rm correspond to the
states and parameters of the system respec-
tively. The method effectively solves for the im-
plicit curve F(x, p) = 0 and thus illustrates how
equilibria (e.g. steady states) vary as system
parameters change. Periodic orbits may also be
computed using a variation of this technique.
Additional constraints are imposed in order
to detect bifurcations (i.e. topological changes
in the dynamical behaviour) that occur when
parameters cross certain thresholds. The exact-
ness and efficiency of this method provides a
distinct advantage over other techniques that
rely on exhaustive numerical integration.

Numerical continuation has historically seen
use in a few aerospace applications, for exam-
ple in the investigation of closed loop flight
controls of fighter aircraft and landing gear
shimmy of commercial aircraft. A useful indus-
trial perspective of the technique is provided
by Sharma et al [8].

The type of bifurcation associated with the
onset of nonlinear flutter is the Hopf bifurca-
tion. This bifurcation typically changes the sta-

bility of a steady state and produces some kind
of LCO response. Such a bifurcation occurs
when a complex conjugate pair of eigenvalues
of the system Jacobian crosses the imaginary
axis; in an aeroelastic system this corresponds
to the point where the damping of a mode of
vibration becomes zero.

This paper uses numerical continuation to
investigate the relationship between the occu-
rance of flutter and the stiffness properties of
a high aspect ratio, rectangular High Altitude,
High Endurance (HALE) wing. Specifically, it
investigates how the value of VF changes when
stiffnesses are varied about nominal values.
The study considers both linear and nonlinear
lift profiles so as to investigate the influence of
stall effects. Wing deformation is acheived by
using a nonzero root angle of attack (a0) and
by taking account of gravitational forces.

II. Model Description

The aeroelastic model used in this study is an
energy-based, reduced order structural formu-
lation coupled with strip theory aerodynamics,
as presented by Howcroft et al. [2][4]. The
deformation of the wing is expressed as a sum
of weighted continuous shape functions; these
describe the orientation of local span-wise ref-
erence vectors that remain aligned to the wing
as it undergoes deflection. Such an approach is
well suited to the formulation shown in Equa-
tion (1). Three degrees of motion are mod-
elled: out-of-plane (flapwise) bending, in-plane
(chordwise) bending and spanwise twist. The
wing considered in this study is a HALE wing
with constant spanwise properties (see Table
1), as used in [5]. Gravitational effects are as-
sumed to be present (unless otherwise stated)
and structural damping is assumed propor-
tional to stiffness properties. For the analyses
in this paper, a total of 12 Chebyshev polyno-
mials are used as shape functions.

Aerodynamic forces are accounted for by use
of a two dimensional, strip theory approach
and are modelled to follow the deformed wing.
Lift coefficient (CL) is a function of local angle
of attack (a) and is modelling using two differ-
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Table 1: Nominal wing parameters

Name

Name Value

Half-span 16 m
Chord 1 m
Mass 0.75 kgm�1

Moment of inertia 0.1 kgm
Elastic axis 50% chord
Centre of gravity 50% chord
Out-of-plane stiffness (EI1) 2 x 104 Nm2

In-plane stiffness (EI2) 4 x 106 Nm2

Torsional stiffness (GJ) 1 x 104 Nm2

Air density 0.0881 kg/m3

Root angle of attack (a0) 5�

Shape functions 12
System states 24

ent profiles: a linear case and a nonlinear case
(see Figure 2). The nonlinear case (B) exhibits
a static stall effect.
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Figure 2: CL functions for linear (non-stall) and nonlin-
ear (stall) cases. The nonlinear curve is fully
stalled at a ⇡ 17�.

III. Results

Figure 3 shows a bifurcation diagram illustrat-
ing how the equilibrium position of the wing
tip changes with velocity. It can be seen that
the magnitude of steady state tip displacement
increases as airspeed increases. In this first ex-
ample, the linear CL profile is used (Figure 2).

Flutter is indicated by the occurance of a Hopf
bifurcation at approximately 22.373 m/s; past
this velocity the equilibria curve is unstable
and thus the wing exhibits no stable static state.
Figure 4 shows time histories for both below
(V = 20 m/s) and above (V = 24 m/s) VF, illus-
trating the presence of an LCO post-flutter. In
the absence of stall effects, the existence of this
LCO is exclusively due to the geometric non-
linearites (e.g. re-orientation of aerodynamic
force vectors and effective tip shortening, see
Figure 1) present in the system. If these non-
linearities were to be neglected, flutter in this
case would comprise unbounded exponential
growth. Figure 5 shows the spanwise wing
deformation at V = 22 m/s; this steady de-
formation is relatively small, indicating that
geometric nonlinearities are not largely influ-
ential in the flutter mechanism itself in this
case.
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Figure 3: Variation of steady state tip displacement with
airspeed (linear CL). Hopf bifurcation (VF)
occurs at 22.373 m/s. Blue and red curves
indicate stable and unstable equilibria respec-
tively.

The nonlinear CL function is now used. Fig-
ure 6 shows that the introduction of this lift
profile increases the value of VF to 23.247 m/s.
This discrepancy is small because the wing is
minimally twisted as it approaches the flutter
condition; the combination of twist angle and
a0 is not sufficient for a large stalling influence.
This can be seen in Figure 7; near the flutter
point, the steady tip twist angle is ⇡ 2�, cor-
responding to an angle of attack ⇡ 7� (since
a0 = 5�). Figure 2 shows that stall effects are
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Figure 4: Time histories for V = 20 m/s and V = 25
m/s (linear CL), demonstrating behaviour be-
fore and after Hopf bifurcation.
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Figure 5: Spanwise wing deformation at airspeed before
flutter (V = 22 m/s).

relatively small at this angle. The influence
of stall is more observable when considering
post-flutter behaviour; Figure 8 shows that the
LCO produced at the post-flutter velocity has a
considerably smaller amplitude than that pre-
viously produced with the linear CL profile
(Figure 4). This discrepancy is explained when
the corresponding tip twist time histories are
compared (see Figure 9); the inclusion of the
stall effect serves to significantly reduce the
angles of attack achieved by the wing.

i. Effect of stiffness variation on VF

The effect of varying the stiffness parameters
about the nominal values shown in Table 1 is
now considered. Figures 10, 11 and 12 illus-
trate how the value of VF changes when the
uncoupled stiffness properties of the wing are
varied independently. Here, EI1 corresponds to
out-of-plane (flapwise) bending stiffness, EI2
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Figure 6: Variation of steady state tip displacement with
airspeed (nonlinear CL). Hopf bifurcation (VF)
occurs at 23.247 m/s.
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Figure 7: Variation of steady state tip twst with airspeed
(nonlinear CL). Hopf bifurcation (VF) occurs
at 23.247 m/s.
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Figure 8: Time histories for V = 20 m/s and V = 25
m/s (nonlinear CL), demonstrating behaviour
before and after Hopf bifurcation.

corresponds to in-plane (chord-wise) bending
stiffness and GJ corresponds to torsional stiff-
ness. In each case, stiffness is expressed as
a % of the appropriate nominal value shown
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Figure 9: Time histories for V = 25 m/s (linear CL and
nonlinear CL respectively).

in Table 1. Results produced using the lin-
ear CL are represented by solid lines, whereas
results produced using nonlinear CL are repre-
sented by dashed lines. Since the value of VF
strictly corresponds to the lowest airspeed at
which a Hopf bifurcation occurs, these figures
do not correspond to smooth Hopf-point con-
tinuations which can display multiple solutions
for ranges of stiffness values. This explains the
apparent discontinuity in Figures 10 and 12.

It can be seen that in all cases, increasing
stiffness increases VF and the inclusion of the
nonlinear CL profile is beneficial in that it fur-
ther delays VF. It can be observed from Figure
11 that the variation of EI2 has little influence.
Figure 10 shows that varying EI1 is similarly
ineffectual, provided that it is above a thresh-
old of ⇡ 45%. Below this threshold, VF drops
off significantly as EI1 is reduced. This drop-
off is related to the inclusion of gravitational
forces in the model; reduced EI1 means that
the wing is subject to significant downwards
out-of-plane deformation due to self weight.

Figure 13 illustrates the static spanwise wing
deformation at stiffnesses below and above this
threshold; the increased deformation observed
at 30% is more favourable for the flutter mech-
anism. When gravitational effects are removed
from the model, the rapid drop-off in VF when
reducing EI1 is no longer present (see Figure
14). It can also be observed from this figure
that removing gravity has a detrimental effect
as a whole, as the

The influence of stall is most affected when
GJ is varied, as shown by the discrepancy be-
tween the two curves in Figure 12. This is to be
expected, as the variation of GJ directly relates
to the angles of attack along the wing. There is
a clear discrepancy between the linear and non-
linear (stall) results for values below ⇡ 30%;
here the torsional stiffness is sufficiently low
so as to permit stalling angles of attack at low
airspeeds.
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Figure 10: Variation of flutter velocity with out-of-plane
bending stiffness (solid = linear CL , dashed
= nonlinear CL).

Figure 15 illustrates the variation of VF when
EI1 and GJ are varied simultaneously. This sur-
face plot shows that the behaviour is generally
dominated by the lowest stiffness parameter
and that VF remains low if the threshold iden-
tified from Figure 10 for EI1 is not met (regard-
less of the the value of GJ).

ii. Subcritical LCOs

The Hopf bifurcation that occurs at the flutter
velocity (VF) may be one of two types; it may
be subcritical or supercritical (see Figure 16).
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Figure 11: Variation of flutter velocity with in-plane
bending stiffness (solid = linear CL , dashed
= nonlinear CL).
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Figure 12: Variation of flutter velocity with torsional
stiffness (solid = linear CL , dashed = nonlin-
ear CL).
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Figure 13: Spanwise wing deformation at low airspeed
(V = 8 m/s) for out-of-plane stiffness above
and below threshold.

In the supercritical case, the emanating limit
cycle is stable and is only observable beyond
the bifurcation point, i.e. at airspeeds that ex-
ceed VF. The variation in system response is
also reversible in that the oscillation can be
removed smoothly by simply reducing the air-
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Figure 14: Variation of VF with EI1 with gravitational
effect excluded (linear CL = solid, nonlinear
CL = dashed).

Figure 15: Variation of flutter velocity with out-of-plane
stiffness and torsional stiffness (nonlinear
CL).

speed down to the bifurcation point. In the
subcritical case, the limit cycle is unstable be-
low the bifurcation point and typically folds
back and changes stability; this gives rise to
a hysteresis loop where the velocity must be
reduced further than the bifurcation point to
remove the LCO. At this point, the LCO would
disappear suddenly as opposed to smoothly.

The occurrence of a subcritical Hopf bifurca-
tion is significant in aeroelastic applications, as
it essentially means that oscillatory behaviour
is possible at airspeeds below the known flutter
boundary (given a sufficient disturbance to the
wing). Such a response is clearly undesirable
for safety and fatigue reasons, so it follows that
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determining the nature of the Hopf bifurcation
is important. Tang and Dowell [6] and Patil et
al. [7] observed subcritical behaviour in an ex-
perimental wind tunnel study and theoretical
studies.

Supercritical

Subcritical

Flutter point (VF

V

LC
O

 a
m

pl
itu

de

)

Figure 16: Diagram showing LCO amplitude vs. ve-
locity for the two generic Hopf bifurcations.
Subcritical case shows LCO below VF. Super-
critical case is reversible whereas subcritical
case exhibits hysteresis loop.

With all nominal wing parameters restored
(Table 1), numerical integration of the system
reveals small LCOs at velocities slightly below
VF for both linear and nonlinear CL, given a
finite perturbation (the initial conditions are
zero and thus the system is perturbed from
the nonzero equilibrium). Figure 17 shows an
example time history using nonlinear CL for
V = 23.24 (where VF = 23.247). This result
indicates that a subcritical Hopf occurs at the
flutter point.

The numerical continuation technique used
in the previous section is now modified so as to
solve for periodic solutions. Figure 18 (upper)
shows a trace of the maxima and minima of
the limit cycle emanating from the bifurcation
point as airspeed varies; this plot confirms the
existence of the subcritical case as per Figure
16. Subcritical behaviour is similarly observed
for the case where stall effects are excluded
and the linear CL is used (Figure 18, lower),
thus confirming that the geometric nonlinearity
alone is sufficient for the phenomenon in this
case. In both diagrams, it is observed that the
limit cycles undergo further bifurcations; these
are not explored here.

For different wing parameters, the magni-
tude of this behaviour may vary. For example,

different stiffness properties may exaggerate
the subcritical nature of the Hopf bifurcation
and may permit LCOs at airspeeds significantly
lower than the bifurcation point. Conversely,
there may be parameters that tailor the system
to produce the more favourable supercritical
case (see Figure 16), which typically only per-
mits LCOs post-flutter. Investigation of these
possibilities is the focus of ongoing work; the
primary objective being to understand the fun-
damental mechanisms that determine the na-
ture of the Hopf bifurcation.
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Figure 17: Time history for V = 23.24 m/s (nonlinear
CL), showing LCO observable below the flut-
ter velocity. This indicates the occurrence of a
subcritical Hopf bifurcation. Note: the lower
plot is a magnification of the upper plot.

IV. Conclusions

This paper used numerical continuation tech-
niques to investigate the occurrence of aeroelas-
tic flutter in a high aspect ratio wing. Stiffness
properties were varied about nominal values
and it was observed that in-plane bending stiff-
ness is not influentual on the flutter speed. It
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Figure 18: Variation of steady state tip displacement
with airspeed (nonlinear and linear CL; up-
per and lower respectively), showing max-
ima (circle) and minima (cross) of periodic
solution emanating from Hopf bifurcation.
Presence of solution below VF is indicative of
subcritical behaviour in both cases.

was found that out-of-plane bending stiffness
is not important, provided that it is sufficient
to prevent large deformation due to self weight.
Torsional stiffness variation does have a notable
influence on the onset of flutter. The inclusion
of a static stall effect was observed to delay
the onset of flutter in all cases when compared
to a linear lift profile. Subcritical behaviour
was identified using both numerical integra-
tion and continuation and therefore warrants
further study in this area.
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