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Abstract A robust and accurate road model estima-

tion algorithm can greatly improve the performance of

many Advanced Driver Assistance Systems (ADAS) ap-

plications such as lane detection, obstacle detection and

road marking recognition. To estimate the road model,

the proposed algorithm employs a stereo vision camera

system. In this paper, local planar patches are efficiently

estimated in the disparity domain rather than conven-

tionally in the Euclidean domain. Then, the estimated

planar patch orientations are integrated to the fitting

stage and orientation differences are minimized along

with height differences. Moreover, patch orientation dif-

ferences are exploited for weighting data points. Thus,

outliers become insignificant in the fitting stage and the

road model is estimated robustly and accurately with-

out any prior knowledge of any extrinsic camera pa-
rameters. Experiments have been carried out for a free

space calculation application and the road is segmented

with a True Positive Rate (TPR) of 88%.

Keywords Road model estimation · ADAS · stereo

vision · Disparity map · Quadratic fitting

1 Introduction

Estimation of the road surface is an essential compo-

nent of many applications for intelligent vehicles such
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as lane detection, road marking recognition, free space

computation and obstacle detection. An obstacle can

be defined as any object which appears elevated from

the road surface. Thus, the estimated road model can

be used as a reference for obstacle detection.

For lane detection, traditionally, the vertical road

profile (distance (z) vs height (y)) is estimated by using

a single camera. Thus, to detect lanes, these algorithms

need to use many assumptions for robust results, such

as the known extrinsic camera parameters, a flat road

and parallel lanes [22]. In [2], first, road sides (road

boundaries or lane markings) are detected, then by as-

suming the road sides are parallel to each other, vertical

(distance vs height) and horizontal (distance vs lateral

offset) road profiles are estimated. In [4], the authors

demonstrated a robust algorithm that filters estimated

lanes and objects on the road (for instance the leading

vehicle) using a single filter. Since, leading vehicles are

likely to follow the lane, estimation of the lane geometry

can be improved. In [14], information from the Internal

Measurement Unit (IMU) and steering angle is also in-

tegrated. In [8], apart from lane markings and leading

vehicles, road barriers are also integrated to the filter-

ing. Despite the importance of the road slopes, in this

algorithm, the road is assumed to be planar. This as-

sumption could be tackled by a stereo vision based road

surface estimation algorithm. More recent lane detec-

tion algorithms, use the 3D map acquired from active

or passive sensors. Estimating the vertical road profile

from a 3D map eliminates many assumptions such as

the flat road and/or parallel lanes assumption and it is

more robust than using a 2D map. Furthermore, it is

possible to segment the feature map by segmenting the

road points from the obstacles, based on their height.

The v-disparity map is a a common approach for

the road surface modeling. The v-disparity map [11]
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Fig. 1 An example disparity map is shown on the left and
its estimated v-disparity map is shown on the right, where v-
disparity map is created by accumulating the disparity values
of the pixels for each row of the image.

is an accumulator with the axes of v (row number of

the image) vs. d (disparity value of the pixel). The v-

disparity map takes the disparity map as an input and

accumulates each pixel’s disparity value row by row (v).

This approach assumes the roll angle is zero and there

is no curvature in this axis. Thus, in each row, the dis-

parity values of the pixels on the road should have the

same disparity value. When moving the upper rows of

the image, the distance of the road gradually increases

(the disparity value is inversely proportional to the dis-

tance). Consequently, the road forms a line in the v-

disparity map as can be seen in Figure 1. In Figure 1,

on the left the input disparity map is shown, and on

the right its v-disparity map is shown. For the flat road

case (such as one in Figure 1), the disparity value of the

road at the horizon line is zero and its disparity value

increases linearly while going through the lower rows of

the disparity map. Thus, the road can be approximated

as a linear line in the v-disparity map (assuming the roll

angle of the camera is zero). For this reason, in [7], the

corresponding ground plane is modeled as a linear line

and its parameters are extracted by using the Hough

transform.

More robust algorithms require the extraction of

the road model accurately even for non-flat roads. In

[12], the authors assume that the road can be modeled

as piecewise linear and non-flat roads can be modeled

by a few linear lines (typically 3). In the optimization

stage, this paper also uses the Hough transform and

estimates the parameters of these linear lines. More

recently, many algorithms prefer to use the Euclidian

space rather than the disparity space. The Euclidian

space preserves the physical properties of the road and

is more suitable for the quadratic road models [19]. This

is due to the nonlinear transformation from the WCS

to the disparity space. A comparative study, published

by [20], suggests that fitting in the Euclidian space is

more accurate than applying the Hough transform to

the v-disparity map. In [16], similar to the v-disparity

map creation, the input 3D map (Euclidian space) is

reduced to a 2D map by accumulating all the points

into a histogram of height vs. distance. The algorithm,

first, estimates the near-field with a linear model (using

only the points from the near field) and, then, the road

curvature (1 parameter) based on parameters detected

from the near-field using only the points from the far

field. For more flexibility, [23] uses a height vs distance

histogram and models the road with a spline.

All of the methods discussed above assume the roll

angle is zero and the road towards the axis, which is

parallel to the roll angle, is flat. Thus, the estimation

of the 2D road model is reduced to estimating a 1D

model. To remove these assumptions and improve ac-

curacy, [17] applies a 2D quadratic surface fitting. This

model takes account of drainage gradients and is espe-

cially suitable for detecting curbs, potholes and small

objects on the road. For increased accuracy, outliers

are eliminated by checking the point densities on the

density map and applying RANSAC based fitting. A

similar road model (a 2D quadratic surface) is used in

our previous paper [26]. In this model, twisting of the

road surface (e.g. the left side of the road is higher in

the near field but the right side is higher in the far

field) can be represented by introducing one more pa-

rameter to the quadratic surface. This paper also in-

troduces a method to estimate the planar patches for

the Euclidian domain from the disparity map (working

in the 2D space is much less computationally complex

than working in the 3D space). Then, the estimated

patch parameters (both the position and normal vec-

tors) are exploited for eliminating outliers during road

fitting. The system described in [26] extracts and uti-

lizes valuable local information for global optimization

and demonstrates robust results. However, it has the

following drawbacks:

1. The system uses a 3D camera which is relatively

sensitive to the illumination source

2. Initial approximate extrinsic camera parameters

need to be known. Although these parameters do not

need to be accurate, a practical system should not need

such information as an input.

3. Outliers are thresholded and eliminated in a bi-

nary fashion. Even though, most of the outliers can be

eliminated with the described method, all the remain-

ing outliers contribute to the fitting stage as much as

the inliers do. For more accurate results, each point

should have its own weight

The algorithm that will be presented in this paper

manages to eliminate most of the assumptions and solve

the problems described above. In the proposed algo-

rithm, planar patch normals are efficiently extracted

from the disparity space and estimated patch normals

are directly integrated to the fitting stage in the Eu-

clidean space. Furthermore, robust fitting is achieved by
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Fig. 2 Overview of the road model estimation algorithm.

iteratively fitting a quadratic road model to the point

cloud data and calculating point weights using both es-

timated planar patch positions and normals. A block

diagram of the system is illustrated in Figure 2.

2 PROBLEM FORMULATION

The proposed algorithm, estimates a quadratic road
surface given the disparity map as an input. The used

quadratic road surface model is illustrated in Figure. 3,

and the road model used in this paper is defined as in

Eqn. 1.

Y (x, z) = a+ b · x+ c · z + d · x2 + e · z2 + f · x · z (1)

where [a, b, c, d, e, f ] are the parameters of the model,

and Y (x, z) is the predicted height of the road at lo-

cation [x, z]. In this paper, planar patch orientations

are efficiently estimated in the disparity domain and

exploited in the fitting stage. Thus, the effects of the

outliers, such as the points on the obstacles, are mini-

mized.

3 DISPARITY MAP ESTIMATION

In this paper, the input depth map is estimated by using

a stereo vision camera. Our stereo vision camera (see

(o.o.o)
z

y

xCamera

Fig. 3 An example quadratic road surface with respect to
the camera coordinate system.

Section 7.1 for more details) supplies synchronized (in

the time domain) and rectified images. When a point in

a world coordinate system is captured with two different

cameras, let P (uL, vL) be the projection of the point on

the left image, and let P (uR, vR) be the projection of

the point on the right image, where u is the horizontal

coordinate of the pixel, and v is the vertical coordinate

of the pixel. Then, in the rectified images, vL = vR,

and d = uL − uR., where d is the disparity between

the corresponding points. When the disparity values of

the pixels, instead of intensity values, are mapped to

an image, then that image is called disparity map.

With known focal length (f), and baseline (bs, the

distance between left and right cameras) a point in dis-

parity map [u, v, d] can be transformed into Euclidean

domain using Eqn. 2 [3].

z =
f.bs
d
, x =

u.z

f
, y =

v.z

f
(2)

There are many disparity map estimation algorithms
in the literature [13]. However, the selected algorithm

should be able to achieve good accuracy while working

in real-time, such as [5] and [9]. The disparity map es-

timation algorithm used in this paper is our previously

published algorithm [25]. The algorithm is selected due

to its good accuracy and high computational efficiency.

4 PLANAR PATCH CALCULATION

In our previous system [26], a novel planar patch extrac-

tion algorithm was proposed, which avoids the compu-

tational complexities involved with traditional 3D algo-

rithms [21], and it can be described as follows. A plane

in the disparity domain is parametrized as in Eq. (3)

where u (horizontal location), v (vertical location) and

d (disparity) are the known parameters of a point in

the disparity map and nu, nv, nd and ρd are the pa-

rameters of the plane which needs to be estimated. By

rearranging Eq. (3) as Eq. (4), partial derivatives with
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respect to u and v can be estimated as Eq. (5) and Eq.

(6).

nu.u+ nv.v + nd.d+ ρd = 0 (3)

d = −nu/nd.u− nv/nd.v − ρd/nd (4)

δd/δu = −nu/nd (5)

δd/δv = −nv/nd (6)

The plane equation in Eq. (3) can also be written

in the form as in Eq. (7) by dividing by nd. Replacing

nu/nd with −δd/δu and nv/nd with −δd/δv in Eq. (7)

yields Eq. (8), which represents the same plane.

nu/nd.u+ nv/nd.v + d+ ρd/nd = 0 (7)

−δd/δu.u− δd/δv.v + d+ ρD = 0 (8)

where ρD = ρd/nd. By applying a gradient filter on

the disparity image, δd/δu and δd/δv can be estimated

and, then, by rearranging Eq. (8), ρD can be calculated

as Eq. (9).

ρD = δd/δu.u+ δd/δv.v − d (9)

A point in the disparity domain [u, v, d] can be trans-

formed into the Euclidian domain [x, y, z] using Eq. (10)

[3], where f is the focal length and bs is the base-line

(the image origin is set to the image center). Thus, the

plane equation shown in Eq. (8) can be rewritten as

Eq. (11) by replacing [u, v, d] using Eq. (10). Then by

multiplying Eq. (11) with z and rearranging as Eq. (12)

yields a similar form of the plane equation in the Eu-

clidian space, as can be seen in Eq. (13).

u = f.
x

z
, v = f.

y

z
, d = f.

bs
z

(10)

−f.δd/δu.x/z − f.δd/δv.y/z + f.bs/z + ρD = 0 (11)

−f.δd/δu.x− f.δd/δv.y + ρD.z + f.bs = 0 (12)

When the plane equation is written in the form of

Eq. (13), nx, ny and nz can be calculated with the Eq.

(14) which yields the parameters of the local planar

patches.

nx.x+ ny.y + nz.z + ρ = 0 (13)

nx = −f.δd/δu, ny = −f.δd/δv, nz = ρD (14)

Thus, knowing the intrinsic camera parameters, the

parameters of the local planar patches can be estimated

by simply applying a gradient filter to the disparity

map.

5 INTEGRATED SURFACE FITTING

The first step of the quadratic surface fitting is to de-

fine the road model. The applied quadratic road model

is defined as in Eqn. 1. Then, for a point i, predicted

height by the road model is defined by Yi (see Eqn. 15).

Yi = a+ b · xi + c · zi + d · x2i + e · z2i + f · xi · zi (15)

where, [xi, yi, zi] is the location of the point in the

point cloud, and [a, b, c, d, e, f ] are the parameters of the

road surface. The objective of the fitting is to minimize

the error. Traditionally, this error term (S) is defined

as the sum of the squared differences (for the height

difference). Thus, the S term can be defined as:

S =

n∑
i=1

(yi − Yi)
2 (16)

Then, by substituting Eqn. 15, into Eqn. 16, Eqn 17

can be obtained.

S =

n∑
i=1

(yi−(a+b·xi+c·zi+d·x2i +e·z2i +f ·xi·zi))2 (17)

For a minimum S, the partial derivatives of S with

respect to the model parameters should be 0. Thus, 6

equations with 6 unknowns are obtained:

dS

da
= 0,

dS

db
= 0,

dS

dc
= 0,

dS

dd
= 0,

dS

de
= 0,

dS

df
= 0

(18)

Arranging these equations as a matrix yields the

following matrix:



N Sx Sz Sxx Szz Sxz

Sx Sxx Sxz Sxxx Sxzz Sxxz

Sz Sxz Szz Sxxz Szzz Sxzz

Sxx Sxxx Sxxz Sxxxx Sxxzz Sxxxz

Szz Sxzz Szzz Sxxzz Szzzz Sxzzz

Sxz Sxxz Sxzz Sxxxz Sxzzz Sxxzz





a

b

c

d

e

f

 =



Sy

Sxy

Syz

Sxxy

Syzz

Sxyz


(19)

where N is the total number of points and S stands

for the summation of the terms. For example, Sxy is

defined as

Sxy =

n∑
i=1

xi · yi (20)

Although some parts of the obstacle have a simi-

lar height to the road plane, in a regular road scene, a
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Fig. 4 A typical road scene: example planar patches are de-
picted by orange ellipses and the directions of their surface
normals are illustrated by the arrows pointing out from them.
It can be seen that the direction of a surface normal from the
road (i.e. ns) and the direction of a surface normal from the
obstacle (i.e. no1 and no2) are typically perpendicular to each
other.

point on an obstacle has an almost perpendicular sur-

face orientation to the road, as illustrated in Figure 4.

Thus, to minimize the effect of the outliers, both the

distances and the surface orientations of the points are

minimized.

In [18], it is shown that the least squares line fitting

can be improved by incorporating gradient orientations

along with the point locations from the edges. In a road

model estimation application, the selected road model

is a 2D quadratic surface and this model needs to be

fitted to the planar patches with known gradients.

For a given point i, the gradient of its planar patch

and the gradient of the quadratic road surface model

should be the same for the location of point i([xi, zi]).

The parameters of the planar patches [nx, ny, nz] are

already calculated in section 4 and the gradients of a

patch can be estimated as mg = δy/δx = −nx/ny and

ng = δy/δz = −nz/ny. Then, the gradients of the road

model (Mg, and Ng) can be calculated as in Eq. (21)

and Eq. (22).

Mg =
dY

dx
= b+ 2 · d · x+ f · z (21)

Ng =
dY

dz
= c+ 2 · e · z + f · x (22)

To minimize the gradient differences along with the

height, Eq. (17) is modified as Eq. (23).

S =

n∑
i=1

(yi − (Yi))
2 +G · [

n∑
i=1

(mgi − (Mgi))
2

+

n∑
i=1

(ngi − (Ngi))
2] (23)

where G is a constant (i.e. 1). Replacing Y , Mg,

and Ng with Eq. (15), Eq. (21), and Eq. (22) in Eq.

(23) yields Eq. (24).

S =

n∑
i=1

(yi− (a+b ·xi +c ·zi +d ·x2i +e ·z2i +f ·xi ·zi))2

+G · [

n∑
i=1

(mgi − (b+ 2 · d · xi + f · zi))2

+

n∑
i=1

(ngi − (c+ 2 · e · zi + f · xi))2] (24)

For a minimum S, the partial derivatives of S with

respect to the model parameters should be 0 (see equa-

tion Eq. (18)). Thus, 6 equations with 6 unknowns are

obtained. Arranging these equations as a matrix yields

Eq. (25) (on page 6). In equation Eq. (25) compared to

equation Eq. (19) new terms are depicted in red.

Solving Eq. (25) yields all the parameters for the

road surface model.

6 SURFACE FITTING WITH BI-SQUARE

UPDATE

The least-squares fitting is a robust approach for curve

fitting. However, as their residuals are squared, it is

sensitive to extreme outliers. To minimize the effect of

extreme outliers, fitting is applied iteratively with a bi-

square update. However, in this paper along with the

difference in height, the difference in patch-normals are

also minimized (using Eq. (25)). Furthermore, weight-

ing updates are estimated by considering both the dif-

ference in height and the difference in patch-normals.

It can be simplified to the following steps, and iterated

until it converges.

1. Fit the Euclidean road candidates to the road

model using Eq. 25.

2. Calculate the bi-square weighting with Eq. (26)

for each data point.

wi =
1

∆y2i +∆n2i +∆m2
i

(26)

where, for point i, xi, yi and zi are its known world

coordinate system. ni and mi are already calculated

from the 2D disparity map and ∆yi, ∆ni and ∆mi are

defined as follows (the required parameters for Y , Ng

and Mg are estimated in step 1):

∆yi = yi − Y (xi, zi) (27)

∆ni = ngi −Ng(xi, zi) (28)

∆mi = mgi −Mg(xi, zi) (29)

3. Rerun step 1 with bi-square weightings applied

to each term, thus reducing the effects of the outliers.
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N Sx Sz Sxx Szz Sxz
Sx Sxx+G · N Sxz Sxxx+2 · G · Sx Sxzz Sxxz+G · Sz
Sz Sxz Szz+G · N Sxxz Szzz+2 · G · Sz Sxzz+G · Sx
Sxx Sxxx+2 · G · Sx Sxxz Sxxxx+4 · G · Sxx Sxxzz Sxxxz+2 · G · Sxz
Szz Sxzz Szzz+2 · G · Sz Sxxzz Szzzz+4 · G · Szz Sxzzz+2 · G · Sxz
Sxz Sxxz+G · Sz Sxzz+G · Sx Sxxxz+2 · G · Sxz Sxzzz+2 · G · Sxz Sxxzz+G · (Szz + Sxx)




a
b
c
d
e
f

 =



Sy
Sxy+G.Sm
Syz+G.Sn

Sxxy+2.G.Smx
Syzz+2G.Snz

Sxyz+G.(Sxz + Snx)

 (25)

Fig. 5 Example experimental set up, where two point grey
cameras synchronized by a PWM signal generated by an Ar-
duino board is shown on the left, and example output dis-
parity map with marked noise sources, where example error
sources include saturation in the image and occluded areas is
shown on the right.

7 EXPERIMENTAL RESULTS

7.1 Experimental set-up

The algorithm proposed in this paper uses a dense dis-

parity map as input. For our stereovision camera rig,

two point grey Flea3 (FL3-GE-13S2C-CS) cameras have

been used and these cameras are synchronized by a

PWM signal generated by an Arduino board. The base-

line of the cameras is set to 34 cm. The constructed

camera rig is, then, simply placed on the vehicle with

air suction pads, without concern about any external

camera parameters since the proposed algorithm does

not need any input external camera parameters, for in-

stance pitch, yaw or roll angle. An example hardware

set-up and an example output disparity map are shown

in Figure 5.

7.2 Quantitative results

In this paper, the road is modeled with a quadratic

model, and the parameters of this model are estimated.

The used road surface model is defined in Eqn. 1, where

[a,b,c,d,e,f] are the parameters of the model. To quan-

tify and compare this algorithm, ideally these parame-

ters needs to be known. However, selecting these values

manually is not possible, and the ground truth of these

values are not available. For this reason, first, we have

manually selected the ground truth road area, in a se-

quence of 1084 frames, in the image domain. Thus, it

is known that, whether a point belongs to the road or

not. Then, the road is labeled using the estimated road

model. This is done by thresholding a pixel (i) based

on its distance to the road model (Yi − yi < T ), where

Yi is defined in Eqn, 15, and yi is the height of the pixel

and T is the threshold (i.e. 5 cm). Then, if the distance

is smaller than the threshold, that point is labeled as a

road point. Otherwise, the point is labeled as a non-road

point. When the road model fits well to the road, most

of the points which belong to the road would be labeled

as a road point by the algorithm. Thus, we would like

to estimate the ratio between the correctly labeled road

points by the algorithm, and the total number of the

ground truth road points. This ratio is called the True

Positive Rate (TPR), which is also known as Recall.

The equation of TPR is defined in Eqn. 30.

TPR =
Tp

Tp+ Fn
(30)

where True Positive (Tp) is the total number of cor-

rectly selected road points, and False Negative (Fn) is

the total number of road points that are incorrectly se-

lected as non-road points. Thus, Tp + Fn is equal to

total number of ground truth road points available.

TPR (using a range of thresholds, from 5cm to

50cm) is estimated for a total number of 1084 frames

(the ground truth free space is manually labeled with

the help of a script). The results of the proposed method

in this paper, and the algorithm described in [11] are

illustrated in Figure 6. From Figure 6, it can be seen

that the proposed method can estimate the road model

accurately, even if a low threshold is applied (i.e. for

small obstacles).

The accuracy of the algorithm with respect to depth

is limited with the stereo vision input. The theoretical

depth accuracy δz against depth z attainable for the

stereo vision input can be calculated using Eqn. 31 [6],

where δd is the accuracy in disparity. In this work, in

order to maintain accurate segmentation of the road,

a depth threshold in cm from the modeled road to the

point cloud is used. Due to the squared increase in the

standard deviation from the source data, the theoreti-

cal upper bound of the maximum distance can be cal-

culated using Eqn. 31. Although a dynamic threshold

can be applied following the squared rule, allowing the

inclusion of far-field data points, we are more interested

in a consistently accurate fitting results throughout.

δz =
z2

f · bs
· δd (31)
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Fig. 6 Estimated TPR for the method described in this pa-
per (shown with the blue line) and TPR for the algorithm
described in [11] (shown with the red line).

Left Image Right Image

Estimated Road Surface

Fig. 7 The input and the output of the algorithm, where
the algorithm uses stereo image pairs supplied by the stereo
vision camera and estimates the road surface using a road
model

In Figure 7, the input (left and right images from

the stereo vision camera) and the output (estimated

road surface model) of the algorithm are demonstrated.

Sample experimental results are illustrated in Figure

8, where the estimated road area is highlighted with

green. Also, a sample video sequence, where the input

disparity map, segmented road area, and overlaid road

model are illustrated, is publicly available at [1].

The proposed algorithm has been implemented in

C. In Table 1, the detailed run time for each opera-

tion using a single thread on an Intel i7 − 870 CPU

is shown, where the described algorithm is suitable for

parallel processing. For instance, the test CPU can run

8 threads in parallel and ideally 8 times improvement in

run time is expected. In future, GPU implementation

of the algorithm is also planned.

Fig. 8 Sample experimental results (segmented for ±10cm).
In these images, pixels with an unknown disparity value such
as for occluded areas (i.e. the left hand side of the cars) are
also segmented as non-road areas.

Table 1 Run time of the operations

Operation Run time
Disparity map to WCS conversion 7 ms

Surface normal estimation 26 ms
Quadratic fitting 13 ms

Weighted quadratic surface fitting 25 ms

8 CONCLUSION

In this paper, a novel road model estimation algorithm

is described. An accurately, estimated road model, is

important for many ADAS applications such as lane

detection, obstacle detection and road marking recogni-

tion. The proposed algorithm utilizes the efficiently es-

timated planar patches and exploits patch orientations

to minimize the effects of outliers in the road model esti-

mation stage. The described algorithm integrates patch

orientations to the fitting stage. Fitting has been per-

formed iteratively and, in each iteration, based on the

patch orientation and the road model orientation for a

given point, a weight is calculated for all the points on

the 3D map. Thus, the effect of outliers is minimized

for accurate road model estimation. To demonstrate ro-

bustness of the system, the road is segmented based on

an estimated road model (±10 cm) and TPR is cal-

culated as 88%. It should be noted that, the proposed

method does not need any extrinsic camera parame-

ters and the stereo camera-rig is simply plugged on to

a vehicle without any concern about the extrinsic cam-

era parameters. Future work includes tracking the road

model parameters for more robust results.
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