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Abstract: The Lasso is a shrinkage regression method that is widely used for variable selection in statisti-
cal genetics. Commonly, K-fold cross-validation is used to fit a Lasso model. This is sometimes followed by 
using bootstrap confidence intervals to improve precision in the resulting variable selections. Nesting cross- 
validation within bootstrapping could provide further improvements in precision, but this has not been inves-
tigated systematically. We performed simulation studies of Lasso variable selection precision (VSP) with and 
without nesting cross-validation within bootstrapping. Data were simulated to represent genomic data under 
a polygenic model as well as under a model with effect sizes representative of typical GWAS results. We com-
pared these approaches to each other as well as to software defaults for the Lasso. Nested cross-validation had 
the most precise variable selection at small effect sizes. At larger effect sizes, there was no advantage to nesting. 
We illustrated the nested approach with empirical data comprising SNPs and SNP-SNP interactions from the 
most significant SNPs in a GWAS of borderline personality symptoms. In the empirical example, we found that 
the default Lasso selected low-reliability SNPs and interactions which were excluded by bootstrapping.

Keywords: additive-by-additive epistasis; association; bootstrap; Lasso; polygenic model; variable selection.

1  Introduction
Multiple linear regression is most useful when it is applied to samples in which the number of predictors 
is small relative to the number of observations. However, if the number of predictors is large relative to the 
number of observations, there will be considerable sampling variability in the estimated coefficients. Under 
those conditions, the increased variability of coefficients can be managed by applying shrinkage methods. 
Shrinkage means estimating coefficients under a constraint that leads them to have reduced absolute values, 
drawing them toward 0, thus reducing sampling variability. There are many such constraints, hence many 
shrinkage methods. One of the most important shrinkage methods is the Lasso (Tibshirani, 2011).

When the Lasso is applied to a multiple regression problem, small-valued coefficient estimates are 
reduced to 0 and the remaining coefficient estimates are shrunk by a fixed amount (Tibshirani, 2013). Because 
of this property, the Lasso is often used for variable selection (Tibshirani, 1996). In Lasso variable selection, 
the predictors having nonzero coefficient estimates after shrinkage are selected into the regression model, 
and those that are shrunk to 0 are excluded from the model.

Variable selection with the Lasso is the task of deciding whether the predictor variables that could be 
included in a regression model are “unimportant” or as “important.” The unimportant, or “noise,” predictors 
are not associated with the outcome in the population, but could be strongly associated in a given sample 
because of sampling fluctuation. Important predictors are consistently associated with the outcome over 
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independent samples. Unimportant predictors should be excluded from the regression model (i.e. their coef-
ficient estimates shrunken to 0), while important predictors should be included in the model.

In practice, using the Lasso for variable selection translates to classifying the excluded predictors as 
unimportant and the included predictors as important. The accuracy of this claim has been studied in simu-
lation studies, and the Lasso has often been found to have low variable selection precision (VSP), meaning 
that among the included predictors, a relatively large proportion ( > 50%) were false positives (Devlin et al., 
2003; Ayers and Cordell, 2010; He and Lin, 2011). In this paper, we propose a method for controlling the 
Lasso’s VSP.

We build on a variety of research that has investigated how to control the Lasso’s VSP. A main current in 
this research has been to estimate standard errors (SEs) and confidence intervals (CIs) for Lasso coefficient 
estimates with the bootstrap (e.g. Chatterjee 2011; Minnier et al., 2011). Lasso SEs and CIs are used in a sec-
ondary variable selection step based on analogy with hypothesis testing (Freedman and Lane, 1983). The SEs 
are used to generate t-statistics; predictors having t-statistics below a user-set cutoff (e.g. |t|  ≤  2) are excluded. 
Similarly, predictors with CIs that contain 0 are excluded.

Successfully applying a second variable selection step requires knowledge of why the Lasso includes too 
many variables in the model during the first step. Lasso variable selection depends on its degree of shrinkage. 
The degree of shrinkage in a Lasso model is controlled by a user-set metaparameter called λ.

The shrinkage metaparameter λ is a scalar; its value determines the number of variables that the Lasso 
selects. The larger the value of λ, the more conservative the model. The choice of λ is thus related to the Lasso’s 
VSP. In general, each value of λ is associated with a single Lasso model. λ is commonly chosen through model-
comparison methods: the user proposes a set of candidate λs and chooses one based on, e.g. BIC or cross-
validation indices.

Of these common methods, using cross-validation to choose λ has been associated with overfit-
ting, leading to an excess of false positives and low VSP (James and Radchenko, 2009; Meinshausen and 
 Bühlmann, 2010). Fan et al. (2012) attribute this to the large sample correlations that can arise between noise 
predictors and the outcome. They demonstrate empirically that noise correlations increase in magnitude 
with increasing numbers of noise predictors. Further, when sample size N is less than number of predictors p, 
the largest noise correlation can easily exceed true correlations in magnitude. In cross-validation, the sample 
size used for model-fitting is always smaller than that in the entire sample, exacerbating the problems identi-
fied by Fan et al. (2012).

There has been little investigation into using bootstrap SEs and CIs to mitigate low VSP associated 
with cross-validated selection of λ. Asymptotic analyses have found that under bootstrap resampling, 
Lasso coefficients for noise predictors are expected to fluctuate between positive and negative values 
(Chatterjee, 2011; Camponovo, 2014). This should lead noise predictors to have larger bootstrap SEs and 
CIs than important predictors, which suggests that these statistics are useful for identifying false positive 
associations.

To investigate this expectation, we introduced and evaluated a bootstrap-based method with the goal of 
improving Lasso VSP by excluding false positive predictor selections under cross-validation. We investigated 
bootstrap SEs and CIs for the Lasso when cross-validated selection of λ is done before bootstrapping, which is 
the standard approach (e.g. D’Angelo et al. 2009; Sartori 2009). An alternative is to nest cross-validated selec-
tion of λ within each bootstrap replication, which could lead to larger SEs and wider CIs than in the standard 
approach (Buckland et al., 1997; Bühlmann et al., 2011). Such larger SEs and wider CIs lead to more con-
servative variable selection, and possibly to improved VSP. We compared the VSP resulting from the standard 
approach to bootstrapping to the VSP resulting from nested selection of λ.

We did this comparison in simulated and empirical data. The simulated data were generated to resem-
ble data observed in genetic association studies. The simulated data were high-dimensional, with a small 
number of weak predictors and a large number of noise predictors. The empirical data were drawn from a 
genome-wide association study (GWAS). We made this choice because of the prominence of genetics, in par-
ticular GWAS and the use of polygenic (risk) scores, as a context for the application and development of the 
Lasso (Waldron et al., 2011; Lange et al., 2014).
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2  Approach
Estimation of SEs and CIs for nonzero Lasso coefficient estimates may provide a way to control the Lasso’s 
VSP as well as to assess the relative importance of predictors. In general, Lasso SEs or CIs cannot be estimated 
using a closed form (Osborne et al., 2000). A large variety of approaches has been tried to estimate Lasso SEs 
and CIs: see review paragraphs in e.g. Bühlmann et al. (2014), Chatterjee (2011), Kyung et al. (2010). Bootstrap 
estimation has received substantial interest, but many issues remain less explored, most importantly, the 
effects of choosing λ through cross-validation when using the bootstrap.

Next, we briefly review the two most common approaches to bootstrapping Lasso SEs and CIs: vector 
bootstrapping and residual bootstrapping. We follow this with a selective review of applied and methodologi-
cal research using these approaches. We review both approaches to show that the behavior of the residual 
bootstrap has been studied in detail, but that comparatively little methodological research has been done 
on the vector bootstrap, despite its popularity in applied research. Hence, this paper focuses on the vector 
bootstrap.

2.1  Vector and residual bootstrapping

In nonparametric bootstrapping, samples are repeatedly drawn from observed sample data. The statistic 
of interest is calculated in each bootstrap sample. In this case, Lasso coefficient estimates are calculated, 
leading to an approximate sampling distribution. The approximate sampling distribution of Lasso coefficient 
estimates then permits calculation of SEs and CIs (Efron and Tibshirani, 1994).

We denote an estimate of the sampling distribution for the Lasso coefficient for predictor j as ˆˆ( ).jF β  
ˆˆ( )jF β  represents the marginal distribution of ˆ

jβ  values, as estimated using the nonparametric bootstrap. 
Two ways to use nonparametric bootstrapping to find ˆˆ( )jF β  are vector bootstrapping and residual bootstrap-
ping (Sartori, 2009).

2.1.1  The vector bootstrap

Vector bootstrapping begins with an observed sample of N observations measured on p predictors x1, …, 
xp and an outcome y. Each observation in the sample is considered as a row vector zi = (xi1, …, xip, yi), which 
consists of p predictor values xij and a single outcome value yi. A Lasso model can be fit to every bootstrap 
sample of N observations zi, yielding a set of Lasso coefficient estimates (Camponovo, 2014). ˆˆ( )jF β  is defined 
as the distribution of ˆ

jβ  values from each of all possible bootstrap samples of size N. The number of unique 
bootstrap samples increases faster than exponentially in N; to save computation time in practice, ˆˆ( )jF β  is 
estimated using Monte Carlo simulation. The Monte Carlo estimate of ˆˆ( )jF β  is written ˆˆ ( ).jF β∗

2.1.2  The residual bootstrap

Residual bootstrapping begins by fitting a linear regression model to a sample of N observations measured 
on p predictors x1, …, xp with outcome y, and generating the N residuals e. Residual bootstrapping uses the 
sampling distribution of residuals to simulate the distribution of y values about their conditional means Xβ. 
Importantly, this requires treating the observed predictor values x1, …, xp as fixed and assuming that only the 
correct predictors are in the model (Efron and Gong, 1983), likely an inappropriate assumption in the context 
of variable selection. The residuals are then resampled.

Each bootstrap sample of N residuals, stored in the vector e*, can be used to generate N outcomes y*, 
defined as ˆ .y eβ∗ ∗= +X  The y* values are regressed on X using the Lasso, yielding, as in vector bootstrapping, 
a set of Lasso coefficient estimates for each resample. This set of coefficient estimates is used to define ˆˆ( ),jF β  
which is typically approximated through Monte Carlo simulation, as ˆˆ ( ).jF β∗
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2.2  Previous research in bootstrapping the Lasso

2.2.1  Research with residual bootstrap

Residual bootstrapping of Lasso SEs and CIs has received more methodological research interest than has 
vector bootstrapping. Detailed investigations of the residual bootstrapped Lasso have been undertaken by 
Chatterjee (2011), Minnier et al. (2011), Kyung et al. (2010), and Knight and Fu (2000), among others, with the 
theoretical results in Chatterjee (2011) synthesizing much of the previous work.

By comparison, the behavior of Lasso SEs and CIs under vector bootstrapping has been under-studied, 
particularly with λ selected through cross-validation.

2.2.2  Research with vector bootstrap

The vector-bootstrapped Lasso has often been applied in statistical genetics, sometimes with λ selected through 
cross-validation. Further, the vector-bootstrapped Lasso is closely related to several other prominent variable-
selection methods proposed in statistical genetics (Cho et al., 2010; Motyer et al., 2011; Valdar et al., 2012).

D’Angelo et al. (2009) proposed using vector resampling to estimate SEs of Lasso coefficients of SNP-SNP 
and gene-gene interaction terms. Sartori (2009) compared residual and vector bootstrapping of Lasso CIs 
and SEs in the context of statistical genetics, including the selection of λ through cross-validation before 
resampling. She found that: 1) residual and vector bootstrap SEs of Lasso coefficient estimates had similar 
degrees of bias in linear models; and 2) vector bootstrap CIs had superior coverage in linear and in logistic 
models. Camponovo (2014) used vector bootstrapping to generate simultaneous confidence regions in linear 
models with random predictors. He found poor coverage rates, and used an asymptotic argument to propose 
two modified vector bootstrapping procedures. The modified procedures generated confidence regions with 
adequate coverage.

The present study builds on the above research: in it, we compare the vector bootstrap with and without 
cross-validation nested within bootstrap replications. An important difference in the present study is that 
VSP, rather than coverage rate, is the criterion of comparison: if the CI for an important predictor excludes the 
true coefficient value but also excludes 0, the variable is correctly selected. Both versions of the bootstrapped 
Lasso are straightforward to implement in existing statistical software; e.g. R package glmnet, PLINK 1.9. 
(Friedman et al., 2010; Chang et al., 2014). This makes them attractive and approachable to applied research-
ers, who would benefit from understanding the trade-off in VSP involved in choosing one over the other.

2.2.3  Research with cross-validated selection of λ

Many methods have been proposed to increase the VSP of Lasso regression and related methods  (Chatterjee, 
2011; Fan et al., 2012; Lockhart et al., 2013). However, little methodological research has addressed the com-
bination of vector bootstrapping and cross-validated selection of λ that is used in practice (Sartori, 2009; 
Cho et al., 2010). Despite the suggestion, in a recent textbook, that cross-validated selection of λ should be 
nested within bootstrap samples when applying the Lasso (Bühlmann et al., 2011), little published work has 
evaluated this procedure (Okser et al., 2014) The goal of the present paper is to address this deficiency and to 
investigate the conditions in which nested selection of λ leads to improved VSP. In addition, we address the 
question whether bootstrapped t-statistics are useful for the identification of false positives.

2.3  Role of λ when fitting Lasso models

The metaparameter λ controls the bias and parsimony of a fitted Lasso model. Equation 1 gives the definition 
of a Lasso model for predictors X and outcome y when λ is known (Tibshirani, 1996).
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The value of λ determines the degree of shrinkage toward 0 and serves as a threshold for variable selec-
tion. A predictor is selected if the absolute value of its covariance with the outcome is larger than λ, and 
excluded otherwise (Efron et al., 2004). This thresholding property limits the useful range of values that λ can 
take. The minimum value that λ can take is 0, where the Lasso fit is the same as that of OLS regression. Such 
solutions are unbiased, but, because of the improbability of any OLS coefficients equaling 0 exactly, they are 
also unparsimonious.

The maximum value that λ can take depends on the largest sample covariance of any predictor with the 
outcome. More specifically, when λ is equal to or greater than that covariance, all coefficients are shrunk to 0, 
and the fitted model is intercept-only, thus parsimonious but biased (Friedman et al., 2007).

2.3.1  Selection of λ through K-fold cross-validation

In general, each value of λ is associated with a single Lasso model (Efron et al., 2004; Tibshirani, 2013).
K-fold cross-validation (Zhang, 1993) is often used to select the best-performing model. Lasso model 

fitting, λ selection, and K-fold cross-validation has been described in detail for its implementation in the R 
package glmnet (Friedman et al., 2010).

Following this procedure, the λ value that is associated with the best-performing model is selected. The 
best-performing model is the one having the minimum cross-validation index, which is computed as the sum 
of squared residuals averaged over the K cross-validations. The selected λ value is then used to fit a finalized 
model by solving Equation 1 in the entire sample. This produces a set of selected predictors that are then 
indexed in set s.

Different λ values might be selected in different samples from the same population due to the influence 
of noise correlations (Fan et al., 2012). In the next section, we interpret selection of λ as a source of variation 
in Lasso coefficient estimates.

2.3.2  Lasso variance estimates: contribution of λ selection

The variance of Lasso coefficient estimates depends on the joint distribution of the p predictor variables X 
and the outcome y, as well as on the value of λ (Pötscher and Leeb, 2009). The conditional distribution of 
estimates for a single predictor, denoted ˆ( | ),jg β λ  is the distribution of ˆ

jβ  coefficients at a fixed λ value. The 
marginal distribution, ˆ( ),jh β  is the distribution of ˆ

jβ  averaged over λ values.
The variance of ˆ

jβ  can be found using either gj or hj. Heuristically, hj treats the selected λ value as a reali-
zation of a random variable (Zhang, 1993; Bühlmann et al., 2014). We argue that using hj might improve VSP 
because using gj treats λ as fixed, which can underestimate the variance of coefficients.

To support this claim, consider the inequality:

 

ˆ ˆ ˆVar( ) {Var ( | )} Var { ( | )}
ˆVar ( | )

j j j

j

E E
λ β λ β

β

β β λ β λ

β λ

= +

≥
 

(2)

(Chatfield, 1995). If ˆ
jβ  and λ were independent, then ˆ ˆVar( ) Var ( | ),j jβ

β β λ=  and there would be little difference 
between the fixed and random λ approaches in practice. However, ˆ

jβ  and λ are not necessarily independent: 
the range of possible λ values is bounded by (0, rmax). Thus, although using gj (treating ˆ

jβ  and λ as independ-
ent) has the practical advantage of using fewer computational resources, it will only be acceptable if the 
resulting underestimate of the standard error of ˆ

jβ  is small.
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2.3.3  λ selection in bootstrapping

In practice, both gj, the conditional distribution of ˆ
jβ  given λ, and hj, the distribution of ˆ

jβ  averaged over all 
λs, are unknown. Both distributions can be estimated using the vector bootstrap.

Finding the bootstrap estimate of the conditional distribution, ˆ
jg
∗  is done by fitting Lasso models to 

resampled X and y values, given the λ value chosen through K-fold cross-validation in the original sample.
Finding the bootstrap estimate of the marginal distribution ˆ

jh
∗  requires treating the selected λ value as 

random. Nesting λ-selection within each bootstrap replication approximates the effect of sampling error on 
the value of λ selected.

Our simulations compared the fixed- and random-λ approaches with respect to VSP, and suggest effect 
sizes at which the increased computational burden of the random approach is worthwhile.

3  Methods
The purpose of the current paper is to propose and to evaluate the use of the vector bootstrap, with λ 
selected through K-fold cross-validation, as a method for estimating Lasso SEs and CIs. In particular, 
we compared three variants of this approach: a software default approach to variable selection using 
the Lasso (Method 1, see Figure  1); an approach involving selection of λ before resampling (Method 2, 
see Figure 2); and a third approach where λ-selection is nested within bootstrap samples (Method 3, see 
Figure 3). Our evaluation was in terms of VSP and of accuracy of ranking predictors by relative impor-
tance. Relative importance was calculated using coefficients of variation, (|t−1|, where t is a bootstrapped 
t-statistic).

In the first step of each variable selection method, a Lasso model is fit to the entire sample. This requires 
selection of λ, which is done through K-fold cross-validation. The initial model fit produces a set of selected 

l l

Figure 2: Method 2–vector bootstrap for improved Lasso variable selection precision with λ treated as fixed.

l

l
l

Figure 1: Method 1–default approach to Lasso variable selection using K-fold cross-validation.
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predictors, which are indexed in the set s. This step is the default application of the Lasso in the R packages 
glmnet and grpreg. We denote it Method 1.

Methods 2 and 3 differ from Method 1 by having a second variable selection step. In this step, further 
reduction of the set of selected predictors is done using bootstrap SEs or CIs. All predictors are used in vector 
bootstrap resampling, but, to save computational resources, SEs and CIs are not calculated for predictors that 
were excluded in the initial variable selection step.

Method 2 uses the same value of λ in every bootstrap sample.
Method 3 differs from Method 2 by re-selecting λ in each bootstrap sample. In both methods, after SEs or 

CIs are calculated, variables that: 1) include 0 in their confidence intervals; or that: 2) have a coefficient of 
variation greater than a certain cutoff; are excluded.

3.1  Lasso CIs and SEs: secondary selection or ranking

Bootstrap CI or SE estimates improve Lasso models through a second step of selecting or ranking predictors. 
CI and SE estimates are both directly related to the sampling variance of a Lasso coefficient estimate, dis-
cussed above. A 1–α CI for the coefficient estimate ˆ

jβ  is generated either using the ,
2
α  1

2
α−  quantiles of the 

bootstrap distribution ˆ ,jg
∗  or using an approximate inverted z-test, which gives the interval /2

ˆ ˆSE ( ),j jz
α

β β∗±  

where zα/2 is the 2
α

 quantile of a standard normal distribution and ˆSE ( )jβ∗  is the bootstrap estimate of the 

standard error of ˆ .jβ
Using either CI method, predictors that have CIs that contain 0 are excluded since this can be regarded as 

evidence that predictor xj is a false positive selection.
SEs can also be used to give information about the relative importance of predictors in addition to 

improved VSP. We propose the use of the coefficient of variation for each nonzero Lasso regression weight as 
an index of relative importance and to apply cutoffs to this statistic to exclude false positives. The coefficient 
of variation of a random variable X, denoted Cvar(X), is the ratio of its standard error to the absolute value of 
its mean.

This index is sensitive to small differences in mean values and thus may be better able to distinguish 
small true positives from false positives. We used the vector bootstrap to estimate Cvar for individual Lasso 
coefficients, denoted var

ˆ( ).jC β∗

4  Simulation studies
We first compared Methods 1–3 using a factorial simulation study. The simulation had two goals: first, evalu-
ating the Methods’ ability to distinguish signal from noise; second, evaluating their ability to correctly order 
signals of differing strengths.

l

Figure 3: Method 3–vector bootstrapping with metaparameter λ treated as random.
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The data generation models were as simple as possible while still representing two empirically interest-
ing scenarios based on statistical genetics: 1) a low probability of selecting important predictors at random; 
and 2) a spectrum of small true effect sizes. To this end, data were generated under two different linear 
models: first, a few-important-predictors model with under 5% of predictors having true effects, and with 
effect sizes (given in R2) representing 2.5% or less of outcome variance attributable to any important predic-
tor; and second, a polygenic model, in which there were thousands of predictors, each of which had an effect 
drawn from a normal distribution, all of which together accounted for 60% of the variance in the outcome.

Two thousand five hundred Monte Carlo (MC) replications were used in each cell of the few-important-
predictors design. This number of replications was chosen based on pilot studies, in which at least 2500 rep-
lications were required in order to generate relatively smooth empirical distributions of coefficient estimates 
(see also Sartori 2009). However, only 250 MC replications were used when data were simulated under the 
polygenic model due to the substantial use of computational resources needed to bootstrap such data.

B = 1000 bootstrap replications were used within each MC replication. The average performances of the 
three methods across samples were compared; within each MC replication, each method was employed on 
an independent sample drawn from the population distribution. This was done in order to avoid creating 
dependence among results that might arise from fitting the methods to the same data.

4.1  Simulation design

Three factors were manipulated in the simulations: method, data-generating model, and effect size.
As described above, the methods compared were the fixed- (Method 2) and random-λ (Method 3) variants 

of the vector bootstrapped Lasso, with the default application, Method 1.
The second factor manipulated in the simulation study was the data-generating model. Three data-gen-

erating models were used: a single important predictor and 99 noise predictors; a five important predictors 
and 99 noise predictors, with the important predictors having different R2 values, enabling us to rank them; 
and a polygenic model with 3000 predictors with effect sizes drawn from a N (0, 0.60) distribution–the three 
predictors with the largest (absolute) effects were treated as the important predictors.

Each data generating model was a linear regression model having a standard normal outcome and bino-
mial (2, 0.5) distributed predictors; N = 2500 was used as the sample size. This was chosen as a rough approxi-
mation of the sample size and predictor structure of smaller genome-wide association studies of quantitative 
phenotypes (Balding, 2006).

The third factor manipulated in the simulation study was effect size. Effect sizes of r2 = 0.01, 0.0033, 0.001 
were used in the single-important-predictor analyses. In the five-important-predictors analyses, each impor-
tant predictor had a different effect size: the set R2 = 0.01, 0.0067, 0.0033, 0.0022, 0.001 was used. In the poly-
genic model, the three strongest predictors were expected to account for 5.1% of phenotypic variance together. 
This estimate is based on treating the largest simulated-SNP effects as being drawn from a truncated normal 
distribution representing the upper 0.15% tail area of the  N (0, 0.60), and then treating the strongest negative 
effects as being drawn independently from the corresponding part of the lower tail (Barr and Sherrill, 1999).

We manipulated the effect size of important predictors for two reasons: we used effect size as a measure 
of the “difficulty” of correctly selecting important predictors, giving us a way to use the data to influence the 
methods’ VSP; and because previous simulation studies (e.g. Leng et al., 2006; Meinshausen and Bühlmann, 
2010; Tibshirani, 2011), used effect sizes that are now considered to be unrealistically large in the context of 
statistical genetics (Stefansson et al., 2009; Park et al., 2011).

In the next section, we describe the evaluation criteria.

4.2  Evaluation criteria

The main question asked in this paper is: when does nested selection of λ lead to improved VSP over other 
approaches? A subsidiary question is: can varC∗ -statistics give information about the relative importance of 
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predictors that might be used to identify false positives? Addressing these questions requires quantifying the 
performance of the different methods. We used VSP to quantify the methods’ performance and additionally 
used the False Negative Rate (FNR) to identify the risk that each method might be over-conservative.

#Important predictors selected #True positivesVSP is .
#Selected predictors #Positives

=

VSP is set to 0 if there are no positives. Thus, in each replication of the few-important-predictors simula-

tion, VSP ranged from 
1 1 10, , ,  ,  ,  1,

104 103 2
…  while in the polygenic model, the denominator was 3000. FNR 

is the proportion of truly important predictors that have been classified as unimportant by a variable selec-
tion method (Fawcett, 2006).

A positive in the vector bootstrap Lasso (Methods 2 and 3) was defined as a predictor for which the 
 (1–α) × 100% bootstrap percentile confidence interval (Efron and Tibshirani, 1994) excluded 0. Confidence 
level (α) was set to 0.05, and intervals were symmetric. In sensitivity analyses, confidence levels of 0.02, 0.10 
and 0.20 were also used.

A positive in the default Lasso (Method 1) was defined as a predictor having a coefficient in the finalized 
Lasso model (i.e. a predictor indexed in s).

To quantify the performance of varC∗  as an importance measure, we used the median rank and median 
absolute deviation of ranks of each predictor’s varC∗  over MC replications. We chose this measure to obtain 
both a typical rank and the variability of rankings for important and for noise predictors. This importance 
measure was not used with data that had been simulated under a polygenic model because the randomness 
of the effects meant that there was no consistent mapping between a predictor’s index and its effect size.

4.3  Simulation results

4.3.1  Improved variable selection precision

Use of the vector bootstrap (Methods 2 and 3) was associated with increased VSP at all effect sizes, but also 
with increased FNR at all effect sizes. This is shown in Table 1, for nominal α = 0.05 and percentile bootstrap 
confidence intervals; normal-theory bootstrap confidence intervals are not shown because their performance 
was similar to, but slightly worse than that of the percentile intervals. At the smaller effect sizes, the increased 
precision was only apparent with random λ, and, at the smallest effect size, the magnitude of this advantage 
was small. The increased FNR suggests that this pattern was due to the bootstrapping procedures being more 
conservative than Method 1.

Table 1: Variable selection precisions and false negative rates of default Lasso vs. bootstrapped percentile CI.

  R2\Method  Default   Fixed λ   Random λ

VSP  Ranks   0.3646  0.9529  0.8956
  0.01   0.3720  0.8304  0.8528
  0.0033   0.2049  0.1536  0.3372
  0.001   0.0503  0.0096  0.0507
  Polygenic   0.0096  0.1154  0.0990

FNR   Ranks   0.2008  0.5784  0.4594
  0.01   0.0084  0.1500  0.0408
  0.0033   0.3776  0.8420  0.6088
  0.001   0.7928  0.9888  0.9404
  Polygenic   0.1343  0.8804  0.8372

Bold text indicates the largest VSP/smallest FNR in each row. Nominal α = 0.05.
The random- λ bootstrap CI (Method 3) is more precise than the default at each effect size, but improvement is marginal for the 
very smallest effects. In all cases, the default approach showed low false-negative rates.
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In sensitivity analyses, we found that the nominal coverage rate α chosen for confidence intervals inter-
acted with the bootstrapping method used. For example, at R2 = 0.0033, the random approach (Method 3) is more 
precise than the fixed approach (Method 2) at α = 0.01, 0.05 (Table 1), but less precise at α = 0.10 (not shown).

The bootstrapped coefficient of variation ( varC∗ ) was in general much larger for false positives than for 
true positives. Bootstrap means for noise predictors were never 0, preventing the occurrence of division-by-0 
errors in computing varC∗  values. These observations support the use of a varC∗  cutoff as a way of increasing 
Lasso VSP. However, varC∗  cutoffs did not increase VSP to the extent that CIs did. They offered no improvement 
over the default Method 1 at effect sizes R2 = 0.0033, 0.01 or in multiple-predictor models.

4.3.2  Ranking predictors

The usefulness of varC∗  to rank predictors by relative importance depended on the effect size as well as the 
number of true predictors. At R2 = 0.0033, 0.01 or with multiple true predictors, using varC∗  to rank predictors 
by relative importance yielded no improvement over ranking predictors by the absolute value of their non-
bootstrapped coefficients. This is shown in Table 2. Additionally, true predictor ranks were identical regard-
less of whether λ was treated as random or as fixed.

For a single true predictor with R2 = 0.001, ranking by varC∗  led to better discrimination of the true predictor 
than did ranking by non-bootstrapped coefficients. The true predictor did not always have the smallest var ,C∗  
but that it was within the top six predictors at least half the time. Without bootstrapping, the true predictor 
was often selected out of the model. Overall, it was in the top 50% of predictors close to half the time but that 
it was not frequently among the highest ranks.

4.3.3  Variability of coefficients under different methods

Treating the metapararameter λ as random was associated with greater variability of coefficient estimates, 
as illustrated in Table 3 by larger standard deviations, and wider confidence intervals for Method 3 when 

Table 2: Median and MAD of ranks of five important predictors out of 104 total.

R2\Method   Default (1)  Bootstrapped ( varC ) (2 and 3)

0.01   1 (0)  1 (0)
0.0067   2 (0)  1 (0)
0.0033   3 (0)  3 (0)
0.0022   4 (1.48)  4 (1.48)
0.001   5 (2.97)  6 (4.48)

Bootstrapping resulted in no improvement of predictor ranks. Both bootstrapping methods (2 and 3) showed identical 
performance.

Table 3: Standard deviations and confidence interval lengths of Lasso estimates of important predictors.

Model   Method   SD  qCI Length  ntCI Length

Ranks   2 (Fixed λ)   0.0099  0.0351  0.0405
  3 (Nested λ)  0.0177  0.0693  0.0692

Single/R2 = 0.0033   2 (Fixed λ)   0.00637  0.02060  0.02500
  3 (Nested λ)  0.0167  0.0650  0.0656

polygenic   2 (Fixed λ)   0.0172  0.0604  0.0674
  3 (Nested λ)  0.0239  0.0860  0.0857

SD, Standard deviation; qCI, bootstrap quantile confidence interval; ntCI, bootstrapped normal approximation confidence 
interval; nominal α = 0.05.
Measures of the variability of coefficient estimates for important predictors, averaged over MC replications, showed that Method 
3 had increased variability compared to Method 2.
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 compared to Method 2. Table 3 presents summaries for important predictors only; results for noise predictors 
were very similar (results in the table are averages over MC replications and are not conditional on the impor-
tant predictors being selected into the model). Confidence interval lengths were similar between quantile-
based bootstrap CIs and normal-theory bootstrap CIs.

These results are consistent with inequality (2), which suggests that the increased variability is attribut-
able to the variance in expected coefficient values with respect to the distribution of λ. Table 4 compares five-
number summaries of the distribution of λ from Method 1 to those from Method 3. The results for Method 1 are 
five-number summaries of the λ values that were selected across replications, while those for Method 3 are 
the averages across replications of the five-number-summary of λ values. Selection of λ via Method 3 (cross-
validation nested within bootstrap replications) tends to produce lower values of λ (distribution shifted left) 
which are also less-variable (smaller IQR). The smaller median λ means that Method 3 performed less regular-
ization than did Method 1, hence had coefficients with larger values and may have included more predictors 
in each bootstrap replication. Thus, bootstrap CIs from Method 3 would have been relatively wide, leading to 
increased VSP because of liberal variable selection within each bootstrap replication.

The results of the simulation studies quantified the methods’ relative performance in idealized data. For 
a more critical evaluation of their practical utility, we applied them in a GWAS data set, using them to select 
pairwise interactions as well as main effects.

5  Empirical illustration
We used data gathered for a genome-wide association study (GWAS) of Borderline Personality Disorder fea-
tures to compare the vector bootstrap with λ-selection nested within bootstrap samples to the standard Lasso. 
This comparison serves as a representative analysis for possible applications of Method 3. The original GWAS 
was based on a sample of N = 7124 individuals who participated in a twin-family study of mental and somatic 
health (Boomsma et al., 2006; Willemsen et al., 2013); see Willemsen et al. for detailed methods including 
IRB approval, genotyping, and quality control procedures. Responses to a psychiatric inventory measuring 
Borderline Personality features were used as outcomes because they have shown a promising signal that was 
replicated in an independent sample (Lubke et al., 2014).

Borderline features were measured using total scores on the PAI-BOR inventory, a 24-item test (Morey, 
1991). More specifically, the outcome we used in this study was the residual of PAI-BOR score after OLS regres-
sion on age, gender, and their interaction, as well as a principal component score representing ancestry 
(Price et al., 2010; Abdellaoui et al., 2013). Following up on D’Angelo et al. (2009)’s proposal, we fit Lasso 
multiple regressions of Borderline features on SNP main effects and SNP-SNP interactions. To control the 
computational resources required, we limited the analysis to pairwise interactions and main effects of the 125 
SNPs having the strongest univariate association with the Borderline features phenotype, as listed in Lubke 
et al. 2014. R’s memory limitations limit the application of bootstrapping to interactions between 1500 or 

Table 4: Five-number summaries of the distribution of λ values in different simulations.

Model   Method   Min  1Q  Med  3Q  Max

Ranks   1 (CV only)   0.0154  0.0282  0.0324  0.0367  0.0582
  3 (Nested λ)  0.00753  0.01410  0.01640  0.01910  0.04030

Single/R2 = 0.0033   1 (CV only)   0.0196  0.0365  0.0446  0.0505  0.0685
  3 (Nested λ)  0.00812  0.01540  0.01820  0.02190  0.06020

Polygenic   1 (CV only)   0.00796  0.01320  0.01490  0.01680  0.03180
  3 (Nested λ)  0.00182  0.00463  0.00543  0.00625  0.00968

Summaries of the distribution of λ values suggest that Method 3 (selection nested within bootstrap samples) produces a less-
variable, left-shifted distribution.
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fewer variables (15002 × 1000 bootstrap samples ≈231 objects) (R Core Team, 2013). To avoid multicollinearity, 
these 125 were then pruned to the set of 77 SNPs that had pairwise correlations of less than r = 0.6 among each 
other. From these, 2926 pairwise interaction terms were calculated, resulting in a total p = 3003, and hence up 
to 3003 Lasso partial regression weights needing CIs and var .C∗

The primary purpose of this analysis was to compare the different methods for lasso variable selection in 
a data set with SNPs having different allele frequencies and unknown effects on the outcome. The secondary 
purpose was an exploratory analysis of epistatic effects between SNPs as predictors of borderline personal-
ity symptoms, generating hypotheses that can be tested in independent samples. We did not emphasize the 
need for the selected models to be biologically plausible; that is, we did not group SNPs for selection by gene 
or pathway. We did not rule out models of pure interaction in the absence of main effects (Cordell, 2009). 
Accordingly, we did not force selection of hierarchical models: that is,it was not the case that any interaction 
terms considered for selection must have had main effects in the model. Because of this and because of the 
bias caused by Lasso estimation, the values of the coefficients for (pure) interaction terms cannot be inter-
preted straightforwardly as magnitudes of effect modifications.

Results from applying the vector bootstrap with random λ (Method 3) were compared to those from the 
default Lasso (Method 1). Method 3 was used to generate percentile CIs and var .C∗  The resulting variable selec-
tions and rankings were compared to Method 1’s selections and to ranking coefficient estimates from the 
finalized model by absolute value.

5.1  Empirical illustration: results

The empirical illustration concerned the application of the bootstrapped Lasso to pairwise interaction 
effects. The bootstrapped Lasso produced different variable selections and importance rankings than did the 
default Lasso. The bootstrapped Lasso tended to select better quality predictors than did the default Lasso. 
The default Lasso selected predictors with low minor allele frequency (MAF), hence had very large standard 
error estimates. This suggests that the default Lasso can ignore important aspects of the data.

Figure 4 and Table 3 present comparisons of the default Lasso and the approach using vector bootstrap-
ping. Figure 4 plots bootstrap mean estimates on the horizontal axis and bootstrap standard error estimates 
on the vertical axis. Points falling outside of the dark gray V have varC∗  values less than 0.5 (bootstrapped 
t-statistics greater than 2). Predictors that were selected by the default Lasso are plotted as light gray dia-
monds. There is no obvious relationship between default Lasso selection of a predictor and its bootstrap 

Figure 4: Bootstrap means and SEs of 77 SNPs, 2926 pairwise interactions; light gray diamonds represent predictors selected 
without bootstrapping. The lines represent mean ∗=± × ˆ2 :SE  points and diamonds ouside the V-shape (i.e. in lower corners) are 
promising signals. A cube-root transformation was used on both axes.
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moments. dbSNP lookup of the predictors in Table 5 showed that the bootstrapped Lasso was less prone to 
selecting interactions between SNPs having low MAF than was the default Lasso. The default Lasso, in select-
ing these interactions, was in effect including interactions between binomial predictors that have low success 
probabilities. These interactions tended to have large bootstrap standard errors, hence are excluded when a 

varC∗  cutoff is used. Interestingly, the low-MAF SNPs involved these interactions tended to have moderately 
strong main effects in the conventional GWAS analyses.

Using vector bootstrapping of Lasso coefficients (CI or varC∗  cutoff of 0.5) suggested a single interaction 
for followup.

6  Conclusion
Using vector bootstrap CIs on Lasso regression coefficients offers a valid way to distinguish false positive 
selections from true positives. Percentile CIs were associated with increased precision of variable selection 
at all effect sizes. At the smallest effect sizes, including those in a polygenic model, gains were only achieved 
when using Method 3, which treated the metaparameter λ as random. Additionally, the bootstrapped methods 
were more conservative in variable selection than was Method 1, the default Lasso. This suggests that, if 
several small effects are expected and if avoiding false positives is more important than avoiding false nega-
tives, treating λ as random justifies increased computational cost.

The (bootstrapped) coefficient of variation, varC∗  does measure the relative importance of Lasso predic-
tors, but offers little to recommend it over using the absolute value of Lasso coefficients.

We observed a “rising tide lifts all boats” effect for all methods, where a predictor having a given small 
effect size was more likely to be selected when the data were generated to have other important predictors. 
This was despite the predictors and their effects being independent of one another. The more complex models 
tended to have lower (more lenient) thresholds λ selected by cross-validation, regardless of the method used. 
A possible explanation is that a λ causing inclusion of a solitary small effect might not be able to consistently 
decrease the residual sum of squares in different cross-validation subsamples, but that a λ that admits mul-
tiple small effects could.

The low degree of overlap in the distributions of λ estimated by Methods 1 and 3 suggests a need for 
explanation. The two distributions should have the same mean value, because the bootstrap distribution of a 
statistic should approximate the distribution of a statistic across repeated independent samples.

In the empirical analysis, the vector-bootstrapped Lasso excluded unreliable predictors that had been 
selected by the default Lasso. However, it is possible that residual bootstrapping could have led to better per-
formance with low MAF predictors. Under vector bootstrapping, “monoallelic” SNPs are possible within the 
bootstrap samples. The result would be inflation of the intercept term in the regression model, which would 
affecting model-fitting through cross-validation. Further, VSP is dependent on the base rates of positives and 
negatives, and would have been skewed if important SNPs tended to have low MAFs and noise SNPs high 
MAFs, or vice-versa, which limits the generalizability of the simulation results to empirical data.

Three follow-up studies are suggested by this result: a simulation study comparing the two Lasso methods 
after manipulating the reliability of predictors; an attempt to replicate the promising interaction between 

Table 5: Promising SNP-SNP interactions.

Chrs   rsIDs   MAFs  varC   CI

16, 1  rs118160379 × rs59194015   0.05, 0.27  0.49  (–0.078, –0.002)

Selected by default but rejected by bootstrap
9, 4   rs112188788 × rs139344595  0.02, 0.01  0.73  (0, 501)
6, 1   rs117666484 × rs73008417   0.01, 0.01  0.94  (0, 562)
9, 1   rs112188788 × rs73008417   0.02, 0.01  1.17  (–2.904, 0)
12, 9  rs117256451 × rs112188788  0.02, 0.02  1.57  (–0.056, 451)
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rs118160379 and rs59194015; and a comparison of VSP from Method 3 to that from other Lasso confidence 
intervals, e.g. those in Camponovo (2014).

In addition, both our empirical and our simulation results are also relevant to research that uses poly-
genic scores to predict complex traits and to investigate the polygenic architecture of closely related traits. 
Lasso regression has recently been implemented in PLINK 1.9, a software package that is very widely used 
in the analysis of complex traits. In consequence, Lasso variable selections are being used to construct poly-
genic scores, but have not yielded significant improvements over conventional methods (Warren et al., 2014).

Our simulation results suggest that vector bootstrapping (with nested selection of λ) may be able to 
yield polygenic scores with greater predictive accuracy, but will require relatively large sample sizes to avoid 
excluding important variants from the score. Large samples are relatively common in the GWAS context, 
however using this approach efficiently will require careful application and data management.

There were several limitations to this study. The data generating model had predictors that were inde-
pendently and identically distributed as well as a normally distributed outcome. These attributes are unlikely 
to hold in empirical data. We plan to extend the current simulations with correlated and differently scaled 
predictors as well as skewed outcomes. Second, the simulated effect sizes, while small, were still somewhat 
larger than those that are typically observed in the statistical genetics of complex traits (Stefansson et al., 
2009). The phenotypic variance explained by the polygenic model was consistent with a highly heritable 
trait, e.g. height, and is larger than would that expected for most complex traits of interest. The number 
of important predictors used was also much smaller than the number of genetic loci expected to influence 
complex phenotypes (Sivakumaran et  al., 2011). Similarly, our results suggest that bootstrapping is most 
useful when there are many predictors to consider, to be reduced to a relatively small number of important 
ones, and that the single-important predictor case (tested here) is perhaps suboptimal for evaluating the pre-
cision and conservatism of the bootstrap methods. Finally, the argument used to justify nesting λ-selection 
within bootstrapping was intuitive. A more rigorous argument might be able to identify specific conditions 
on X or y that would lead to Method 3 consistently outperforming Method 2, or vice-versa. On the other hand, 
simulations could be used to estimate the components of bootstrapped variance due to the individual terms 
in Equation (2).

Vector bootstrapping CIs of Lasso coefficients led to increased VSP, especially at small effect sizes. Our 
illustration with empirical data showed that this is also an effective approach to select important interactions 
between predictors. In consequence, vector bootstrapping CIs is a very promising approach for identifying 
sets of SNP-SNP and SNP-environment interactions.
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