Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

-% University of
OPEN (o) ACCESS BRISTOL

Salem, M. A., & Eder, K. I. (2016). Novel MC/DC Coverage Test Sets
Generation Algorithm, and MC/DC Design Fault Detection Strength Insights.
In 2015 16th International Workshop on Microprocessor and SOC Test and
Verification (MTV 2015): Proceedings of a meeting held 3-4 December
2015, Austin, Texas, USA. (pp. 32-37). [7548935] (Proceedings of the
International Workshop on Microprocessor and SOC Test and Verification
(MTV)). Institute of Electrical and Electronics Engineers (IEEE). DOI:
10.1109/MTV.2015.15

Peer reviewed version

Link to published version (if available):
10.1109/MTV.2015.15

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7548935/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published

version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

https://core.ac.uk/display/83929133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/MTV.2015.15
http://research-information.bristol.ac.uk/en/publications/novel-mcdc-coverage-test-sets-generation-algorithm-and-mcdc-design-fault-detection-strength-insights(993a67c5-e45a-4306-8d86-0fbe9d446edc).html
http://research-information.bristol.ac.uk/en/publications/novel-mcdc-coverage-test-sets-generation-algorithm-and-mcdc-design-fault-detection-strength-insights(993a67c5-e45a-4306-8d86-0fbe9d446edc).html

Novel MC/DC Coverage Test Sets Generation

Algorithm, and MC/DC Design Fault Detection
Strength Insights

Mohamed A. Salem
Computer Science Department, Faculty of Engineering
University of Bristol, UK
Email:csmams @my.bristol.ac.uk

Abstract—This paper introduces Modified Condition/Decision
Coverage (MC/DC), novel MC/DC coverage test sets generation
algorithm named OBSRV, and MC/DC design fault detection
strength. The paper presents an overview about MC/DC in terms
of the MC/DC definition, MC/DC types, and the conventional
MC/DC approaches. It introduces a novel algorithm, called OB-
SRV, for MC/DC coverage test sets generation. OBSRVresolves
MC/DC controllability and observability by using principles
found in the D-algorithm that is the foundation for state-of-the-art
ATPG. It thereby leverages hardware test principles to advance
MC/DC for software, and hardware structural coverage. The pa-
per presents an investigation of the introduced OBSRValgorithm
scalability, and complexity to prove its suitability for practical
designs. The paper investigates MC/DC functional design faults
detection strength, and analyzes empirical results conducted on
main design fault classes in microprocessors.

I. INTRODUCTION AND MOTIVATION

The main objective of the verification process is to identify
design faults that have been introduced during the transforma-
tion of design specification into implementation source code,
ie RTL. Coverage is a metric of verification progress versus the
verification plan objectives as functional coverage, and versus
the implementation source code as structural coverage.

Requirements coverage analysis determines the design im-
plementation compliance with the functional requirements,
and establishes traceability between the requirements, and the
functional tests. Structural coverage analysis aims to establish
how well the requirements-based test suite has exercised the
design implementation source code structure, and determines
code coverage gaps. In practice, especially for safety-critical
applications, requirements coverage analysis is combined with
structural coverage analysis to ensure high level of confidence
that the design implementation has no unintended functions.

MC/DC coverage is a structural coverage metric originally
used for the certification of critical software for avionics appli-
cations as required by RTCA/DO-178B [1]. MC/DC is a form
of expression coverage demonstrating that the implementation
has controllable and observable control flow logic [2]. MC/DC
introduces cost-effective coverage solution in terms of the
linear growth of the size of coverage test set to the exponential
growth that requires 2V tests, where N is the number of
conditions in a decision statement.

Kerstin 1. Eder
Computer Science Department, Faculty of Engineering
University of Bristol, UK
Email:kerstin.eder @bristol.ac.uk

MC/DC test generation requirements are complex due to
the fact that there are mutual dependencies between tests.
Recently, model checkers have been utilized to construct
MC/DC coverage test sets from counter examples obtained by
presenting a model checker with properties that negate MC/DC
test requirements [3]. This paper takes a different angle to
MC/DC coverage test sets generation, and the novel algorithm
developed, called OBSRYV, is purely based on fulfillment of
the controllability and observability requirements of MC/DC
[4]. The implementation of the OBSRYV algorithm takes advan-
tage of the path-oriented test generation algorithms such as the
D-algorithm [5], [6], [7], and the PODEM algorithm [8] which
are well understood in the context of Automatic Test Pattern
Generation (ATPG), and also utilizes a greedy algorithm for
test case prioritising to target MC/DC coverage [9].

II. PAPER OUTLINE

This paper is organized as follows: Section III introduces
the paper definitions and notations, Section IV gives an
overview of MC/DC coverage metrics in terms of MC/DC
coverage definition, independence pairs, MC/DC coverage
types, and MC/DC conventional approaches. Section V in-
troduces the OBSRVusage model, D-algorithm overview,
OBSRVprocedures, a simple example elaborating the OB-
SRVusage model, and ends with an investigation of the
OBSRValgorithm scalability, and complexity. Section VI ex-
perimentally evaluates the MC/DC functional design fault
detection strength versus common design fault classes in mi-
croprocessors. Finally, Section VII summarizes and concludes
with an outlook on future research.

III. DEFINITIONS AND NOTATIONS

The following notational conventions are used throughout
the paper: boolean operators are denoted by and, or, xor,
not. Boolean conditions and decisions are denoted by bold
capitals such as A, B, C, etc. Truth values are written as either
true and false, or T and F. A test for a boolean function with
n inputs is denoted by V = (V1V,---V,,), where V; is T or
F. Test vectors can be represented by their equivalent decimal
value, ie the test V = (FTFT) is referred to as test 5.

IV. MODIFIED CONDITION DECISION COVERAGE
OVERVIEW

A. MC/DC Definition

The Modified Condition/Decision Coverage criterion was
developed to achieve many of the benefits of Multiple Con-
dition/Decision testing while retaining a linear growth in
required test cases [10]. The formal definition of MC/DC
requires that: every point of entry and exit in the design
description or software program has been invoked at least
once, every condition, and decision has taken all possible
values at least once, and each condition in a decision has
been shown to independently affect the decision outcome.
The independence requirement ensures that the effect of each
condition is tested relative to the other conditions [2].

B. MC/DC Independence Pairs

A condition independently affects a decision outcome if
that condition alone can determine the value of the decision
outcome. Two test cases that show the independent effect of a
condition within a decision are referred to as an independence
pair [11]. For example, test vectors (FT,TT), and (FETF) each
form an independence pair for a 2-input and gate, and a 2-
input or gate respectively due to the independent effect of the
changing condition on the output value.

C. Unique-Cause and Masking MC/DC Approaches

For Unique-Cause MC/DC, a condition is shown to in-
dependently affect a decision outcome by varying just that
condition while holding all other possible conditions fixed. For
Masking MC/DC, a condition is shown to independently affect
a decision outcome by applying principles of boolean logic to
assure that no other condition influences the outcome, though
more than one condition in the decision may change value.
The mathematical representation of the unique-cause MC/DC
independence pair implies that the boolean difference func-
tion 0F(c)/éc; = F(cq, ..., Ci,...Cn) ® F(cq, ..., Cy, ...Cq) 18
always frue such that F'(c) is an expression with n inputs [12].

For Masking MC/DC approach the equation will remain
valid taken into account that condition ¢; from j = (1,..,n) and
j # 1 might change its values but their influence are masked
by the logic under investigation. For example, a true input for
a 2-input or gate will mask the other input, and similarly a
false input will have a dominant effect on a 2-input and gate
and mask the other input. However, this requires analysis of
the decision statement logic structure [10]. NASA has a special
approach for evaluation of the MC/DC coverage fulfillment for
software code. It uses the requirements-based testing to check
for MC/DC as per software certification requirements in [1],
and elaborated in [2].

V. MC/DC COVERAGE TEST SETS GENERATION
ALGORITHM: OBSRV

This section presents a novel MC/DC coverage test set gen-
eration algorithm, called OBSRV. The main goal of MC/DC
coverage is to show the independent effect of each input
condition on the value of the decision by controllability and
observability aspects as shown in [4], and [13]. Figure 1 shows
a complex gate structure comprised of and, or, xor, and

Input of Concern
A —
B

Control Input 1 (False) A
Control Input 2 (True)
c A
D True
Don't care 1 A

G
Input A Observed

at OQutput G

Control Input 3 (False)
E 4 False
F ¢4——

Don't care 2

Fig. 1: Controllability and Observability

shows how the value of primary input A can be propagated
to be observable at the final output G. The foundation of the
OBSRValgorithm is based on the path-oriented test generation
algorithms that have been used in the hardware fault detection
test generation such as D-algorithm 1 [5], D-algorithm II [6], or
PODEM [8] algorithm. Subsection V-A provides an overview
about the OBSRVusage model, and Subsection V-B provides
an overview about the D-algorithm which is the basis of
OBSRV. OBSRVoperates as per the procedure flow shown
in Figure 2, and elaborated in Subsections V-C, V-D, V-E
respectively.

A. OBSRV Usage Model

OBSRVmain objective is to generate MC/DC coverage test
sets for a single decision statement of control flow logic within
the design code structure. The control flow logic analysis based
on controllability, and observability aspects is the foundation
of OBSRYV. This analysis combined with unique, and masking
MC/DC concepts enable the determination of all possible
test vectors that fulfill the observability requirements for the
decision statement input conditions. This process guarantees
that OBSRVwill generate the maximal number of MC/DC
coverage test sets, and the minimal number of tests per particu-
lar generated MC/DC coverage test sets. The maximal MC/DC
generated test sets will enable an efficient MC/DC coverage
closure by the functional regression suite, and determination of
the MC/DC coverage gaps. The minimal number of tests per
MC/DC test set provides an optimal MC/DC coverage closure.
Hence, OBSRVusage model has a potential added value to
the efficiency, and the optimization of the MC/DC coverage
closure process.

B. D-Algorithm Overview

The D-algorithm is developed to generate tests for fault
detection for digital circuits, and this subsection will briefly
provide an overview with details found in [5], [6], and [7]. D
represents a generic truth value, and the D-cube is a collapsed
truth table version of a particular logic operator using D. The
D-algorithm starts with representation of the expression by
gate level schematic showing the primary input/output, and
internal nodes. The next step will be to choose a primary
output, determine a path to this output, and propagate the
fault to the output using the propagation D-cubes (PDC) of the
logic gates of this path. This path is called the D-chain, and
the propagation D-cubes (PDC) will enable the propagation of
the fault in terms of the logic gate types, and input conditions
values. The singular cover is defined as the truth table structure
for all the gates that construct the logic circuit. The final step

is called the consistency operation, and this step determines
consistent values of the unassigned nodes within the logic
structure. The consistency is relative to being consistent with
the implications of the singular cover.

C. Conditions Observability Computation

The graph representation of the decision statement as netlist
structure is the entry point to the algorithm. This OBSRVphase
uses the D-algorithm to define the D-chain(s) of each primary
input D value propagation. Each primary input D-chain con-
sists of a listing of all those gates whose primitive D-cube
intersections do not lead to inconsistent line assignments [6].
These consistent D-intersections will lead to defining the
assignments of the nodes at each gate of the D-chain that will
drive the selected primary input D value propagation to the
decision output node. The assignment through a particular gate
to propagate the D value represents an imposed implication of
other nodes assignment across the logic. For example, a D
propagation through an and gate will require a frue input,
and a false input through an or gate. This phase is completed
by the consistency operation which is the completion of the
resultant D-cube by D-intersection with the singular cover [5].

Masking MC/DC enables possibilities during the consis-
tency operation. For example, if an output of an and gate
is false, there is three possibilities of the input D-coordinates
as (FEFT,TF). Bimodal decision is defined as an expression
with D-chains that can observe D which is the negated value
of D as well as the D absolute value. The bimodal decisions
D-chains must contain at least one negating or inverting logic
operator.

i~ -

;"1‘~ Select PI from
‘L Graph Entry

D-Chain(s)
Determination

Particular
D-chain
l Selection

Compute

Possible -

pattern by
Logic Analysis

D-chain PDC r -

D-Inter:
and Imposed
Implications

Consistency

Operation

PI D-chain(s)
Processing Done?

All PlIs Processing Done

Construct

OBSRV Matrix
-

Compute D or
D Independence
Pairs Only

[Compute D and |
D Independence
Pairs Separately

Bimaodal
Expression?

Mo

Yes

Clompute
All MC/DC
Coverage
Combinations

e
MC,/DC Ranking

with Greedy
Algorithm

Fig. 2: OBSRV Algorithm Flowchart
D. Observability Matrix, and Independence Pairs Inference

The second phase of OBSRVis the construction of the
observability matrix. This matrix states all the possible in-

put patterns (D test vectors) that result from each primary
input observability through all possible D-chains, and the
corresponding observed value at the output whether D or D.
OBSRVwill check from the matrix about the possibility of
bimodal exhibited processing for a particular primary input if it
can be observed as negated and non-negated (D and D) through
different D-chains. In case of bimodal processing of a primary
input the computation of the independence pairs for the non-
negated D-chains must be done separately from the negated D-
chains. OBSRVwill compute the possible independence pairs
for an input in two steps; the first will be unique-cause by
replacing D by true, and false for a certain observability
pattern. The masking independence pairs are computed by
combining a pattern for frue value observation and another
pattern for false value observation in the matrix such that
both patterns were leading to the same D observation whether
negated or non-negated.

E. MC/DC Test Sets Combinations, and Prioritization

OBSRVwill generate all possible MC/DC coverage test
sets by combining one independence pair for each condition
(primary input) in the logic expression. The combined inde-
pendence pairs test vectors will formulate the required MC/DC
coverage test set. The ranking of the coverage test sets will be
accomplished using a greedy algorithm to rank the coverage
set in an ascending order of their test vectors count [9], [14].

FE. OBSRV Example

This section presents a manual example of MC/DC
coverage test sets generation using the OBSRValgorithm.
The example used is the same used in [5] as shown
in Figure 3. The primary output function is G, and

G = (((A and B) or C)xor A)nand(not ((A and B) or C) or E)

The possible D-chains for each primary input will be
determined by the D-cube intersections, and the patterns that
will lead to observability at the output will be completed
by the imposed implications, and the consistency operation
as explained in Subsection V-C. The observability matrix is
constructed as shown in Table I. The primary input C exhibits
bimodal expression processing as the observed primary output
could be non-negated as D, or negated as D.

\
— c
A
B
C
E

Fig. 3: OBSRV Example

The full list of possible independence pairs from unique-
cause, and masking MC/DC will be computed by replacing D
by true, and false values, and taking into account the bimodal
combination of the C primary input. C independence pairs
should be computed based on the patterns that results in D or
D values at the primary output separately as explained in Sub-
section V-D. The full list of MC/DC coverage sets will be 512.
The greedy algorithm will be used to rank the coverage sets
in an ascending order in terms of the number of tests per each

coverage set as explained in V-E. For example, the coverage set
(2,3,8,11,12) has 5 tests, which is one of the optimal MC/DC
coverage test sets for this example. An elaborated empirical
MC/DC study using the OBSRValgorithm, and an associated
set of novel MC/DC insights have been deduced [15].

[[A[BICIE]G]
[DJOo[T[T]D
At o
[T [Dlo[0]D
e s b |
T[0][DJO] D
c 0 0| D 1 D
T [0 D [T D
0 1 D 1 D
R EREE

TABLE I: Observability Matrix

(3,11), (3,15), (7,15), (7,11)
(8,12), (8,13), (9,13), (9,12)
(8,10), (8,11), (9,11), (9,10), (1,3), (1,7), (5,7), (5,3)
(2,3), (2,7), (6,7), (6,3)

TABLE II: Independence Pairs

| O W] >

G. OBSRV Scalability and Complexity Analysis

This subsection studies the scalability analysis of the
OBSRYV algorithm, the various types of introduced scalability
or complexities, the investigation of the advantages, and limi-
tations. It provides statistical empirical results for the compu-
tational run-time, memory usage, and debugging information
changes versus the scalability of a particular design under test.

1) Horizontal and Vertical Design Scalability: The hori-
zontal scalability defines as the growth of the number of condi-
tions in a particular decision statement. The vertical scalability
defines as the growth of the number of decision statements in
a particular design under test. The research work has adopted
the path oriented test generation while the development of the
OBSRYV algorithm. The complexity of the path sensitization
methods have been investigated by Bushnell, and Agrawal
[16]. The analysis has shown that the complexity is exponential
in circuit size. The PODEM algorithm has exponential com-
plexity, but it has an advantage of several orders faster than
the D-algorithm. The D-algorithm considers propagation of an
internal fault node within the logic structure of the circuit. The
PODEM algorithm takes into account the propagation of the
primary circuit inputs only. OBSRV algorithm studies only the
propagation of a primary input, such that the controllability and
observability requirements can be achieved for each condition
or primary input of the circuit. Hence, it takes advantage of
the faster performance feature. Table III states the statistics
of the number of conditions, and the corresponding number of
expressions as found in avionics systems which are intensively
complex. The exponential algorithm complexity with respect
to its asymptotic behavior versus the expression size will not
have a considerable practical impact as shown by the data. The
number of conditions that can influence the complexity does
not occur in practical Boolean expressions typically found in
avionics systems as shown in this example data [2].

2) Operand Chain Effect: The operand chain effect defines
as the number of logic operands/operators per a particular
decision statement. The extreme case of the chain effect is
represented by chip end-to-end. This is the cascaded logic

(nn [T [2 [3 [45

[610 [11-15 | 1620 | 2135 | 36-76

[Exp. | 16491 | 2262 | 685 | 391 | 131 | 219 [35 | 36 | 4

l

2

|
|

TABLE III: Avionics complexity: Expressions versus inputs

levels from the chip primary input to the chip primary output.
OBSRV generates MC/DC coverage test sets per decision
statement, and checks for MC/DC fulfillment versus the stim-
ulus generation from the requirements-based tests. It is not
applicable to check a complete design from end-to-end. The
growth of logic levels per a single decision statement is
proportional to the growth of the conditions, and decisions
as in horizontal, and vertical scalability case stated in V-GI.

3) D-drive Options Scalability: The D-drive options scal-
ability defines as the growth of the D-propagation paths per a
particular condition of the decision statement. The alternative
logic paths or D-drives or D-fronts or D-propagation paths are
mainly due to the contribution of the same unique condition
or primary input to the various operands or the gates at the
different logic levels. This results in the optional different paths
to propagate that specific unique input to the output node. This
type of scalability does not result in an exponential complexity
growth. This results in multiple iterations of the algorithm
procedures to address all the Primitive D-cube intersections
for each primary input path until they are all exhausted or
completed. This scalability will add advantages as the number
of generated observability objectives tests will increase. It will
enable scalability of the generated MC/DC coverage test sets.

4) Experimental Scalability Investigation: This experiment
has been conducted in order to study the scalability aspects
of the OBSRV algorithm under its current implementation.
The results indicate no considerable negative impact on the
scalability of the OBSRV algorithm implementation under the
practical spectrum of the number of conditions, and decisions
in a specific design under test. The experiment has formulated
an incremental growth of the complexity by adding complex
concurrent decision statements from the unimodal type, and the
bimodal type. The scalability magnitude of order was measured
by the quantitative absolute number of logic operands under
processing by the MC/DC algorithm implementation. The
machine used has quad-core with 16 GB memory size under
Linux. The unimodal expression has incrementally grown to
a scalability order of magnitude to X1000 times the original
design. The elapsed time from the transcript evaluates to
zero seconds which is in magnitude of fraction of seconds.
The memory, and the debugging information complexity has
been growing to S00MB order. The experiment has been
conducted using bimodal decision statements. The incremental
complexity has been growing until reaching X4000 absolute
value of complexity growth. The measured elapsed time is
zero, which implies an actual execution run time in the order of
fractions of seconds. The memory usage has no limited impact
or consumption of the memory resources. The debugging infor-
mation size from the transcript, and log files grow significantly
from 14KB to 1300KB. The experimental investigation shows
that the execution run times under a practical number of
conditions are manageable. It will not reach the limits that
will represent an obstacle to complete the computation of the
algorithm. The main impact is represented by the growth of the
size of the debugging information represented by the coverage
reports, the transcripts, and the debugging log files.

=D

B %
E
Fig. 4: Design Fault Case Study Expression

VI. MC/DC DESIGN FAULT DETECTION STRENGTH

This section investigates the MC/DC design fault detection
strength in terms of the main design fault classes in micropro-
cessors as stated in [17], and [18]. The experimental investiga-
tion conducted on a diverse logic expressions from industrial
designs with unimodal, and bimodal expression types, using
main logic operators, and variant number of input conditions.
The concluded results are elaborated using the case study ex-
pression I = (A and D) or (not A and C) or (B and E)
of [17], and shown in Figure 4. The MC/DC coverage test
sets have been generated using OBSRVprocedures stated
in Section V, and sample of the generated test sets are
(1,2,3,4,8,16,24),(1,2,4,8,16,19,25). The experiment procedure
requires each design fault type to be applied to the expression,
and the MC/DC coverage results and the functional output of
the expression will be evaluated for all fault types as shown
in the following Subsections VI-A, VI-B, VI-C, VI-D VI-E,
VI-F, VI-G, VI-H, VI-I, VI-]J. Questa 10.0 FEC is used for
checking MC/DC coverage fulfillment.

A. Expression Negation Fault: ENF

I = not [(A and D) or (not A and C) or (B and E)]
represents the expression with ENF design fault applied.
MC/DC full coverage has been achieved while exercising
the expression using the MC/DC test set of the original
expression. The logic analysis shows that the logic structure
has an additional inverter gate introduced before the primary
output node. The expression with full ENF is still controllable,
and observable due to the transparent path to the output node.
The only difference is the inversion of the output value.
MC/DC targets controllability and observability of the input
conditions by having an independent effect on the decision,
and still this will be applicable. The fault is easily detected as
the full ENF type enable transparent propagation of the fault
to the output, which will be detected by comparison of the
functional output truth value of the original expression which
will be negated.

B. Subexpression Negation Fault

I = not ((A and D) or (not A and C)) or (B and E)
represents the expression with partial ENF applied to the
first, and second term. The MC/DC coverage test set does
not fulfill MC/DC in this fault. The experiment FEC results
indicated MC/DC coverage gaps for B;, and FEj; the frue
values of B, and E respectively. The logic analysis indicates
a logical structure change which implies a change in the

controllability, and observability requirements of the decision
statement. The observation of Bp, and F; will be masked
by a true value on the other input to the output or gate in
Figure 4. The MC/DC test set for the original expression
must enable observability of B, and F by false input to the
or gate, and this was negated by introduction of an inverter
after the or at the second logic level. The MC/DC test set
detects the introduced fault by presenting MC/DC coverage
gaps in the FEC results.

C. Term Negation Fault: TNF

I = not (A and D) or (not A and C) or (B and E)
represents the expression with TNF fault applied to the first
term. The experiment FEC results indicated MC/DC coverage
gaps for By, Ey, E1. MC/DC test set enables detection of the
fault, and the logic analysis indicates a change of the logic
structure of the expression that impacts the controllability,
and observability requirements for input conditions.

D. Term Omission Fault: TOF

I= (not A and C) or (B and E) represents the expres-
sion with TOF fault applied to the first term. The experiment
FEC results indicated MC/DC coverage gaps for A;. The logic
analysis indicates that the omission of the first term resulted
in a change of the logic structure such that the expression
changed to be a unimodal expression. The original expression
is a bimodal expression as it has an inverting and non-inverting
path to the output node for the input condition A. The omission
of the term (A and D) removed the non-inverting observability
path of the input A. MC/DC test set detects the TOF fault by
showing the FEC coverage gaps in the results.

E. Literal Omission Fault: LOF

I =D or (not A and C) or (B and E) represents the
expression with LOF fault applied to first literal A of the first
term (A and D) by omission of A. The MC/DC test set shows
coverage gap in FEC for A;. The logical analysis shows an
introduced logic structure change as the D input condition will
bypass an and gate and directly pass to the or gate. This will
change controllability, and observability requirements of A that
was shown by the MC/DC FEC coverage gap.

F. Literal Insertion Fault: LIF

I = (A and D and B) or (not A and C) or (B and E)
represents the expression with LIF applied to the first term by
adding B to the first and gate. The MC/DC test set detects
the introduced fault by showing FEC coverage gaps Aj,
Dy, D;. The logic analysis implies a logic structure change
that impacts the controllability, and observability requirements
for MC/DC.

G. Literal Negation Fault: LNF

I = (not A and D) or (not A and C) or (B and E)
represents the expression with LNF applied to the literal A
of the first term. The MC/DC test set achieves FEC coverage
for the expression. The logic analysis shows that there is
no substantial change to the expression logic structure, as
adding an inverter gate after the primary input A does not

impact the controllability, and observability requirements for
MC/DC. The functional coverage suite detects a change in the
output truth values of the expression compared to the original
expression which enables a detection of an introduced fault.

H. Literal Reference Fault: LRF

I = (B and D) or (not A and C) or (B and E) rep-
resents the expression with LRF applied to the literal A of
the first term by replacing it by the input condition B. MC/DC
test set detects the fault by showing FEC coverage gaps for
Ay, and D;. Logic analysis shows that a logic structure change
is introduced by LRF due to a change of one primary input
by another, which impacts the controllability, and observability
requirements for the original expression MC/DC fulfillment.

1. Disjunctive Operator Reference Fault: ORF(+)

I = (A and D) and (not A and C) or (B and E)
represents the expression with ORF(+) fault by changing the
or gate to an and gate at the second logic level. MC/DC test
set detects the fault by showing coverage gaps for primary
inputs A, C, and D. The logic analysis shows a major change
in the logic structure of the expression as it will be simplified
to only an and gate between B, and E. MC/DC shows that A,
C, and D are redundant inputs by showing these inputs as Not
Testable in the FEC report. The logic structure change has an
impact on the controllability, and observability requirements
of MC/DC, which leads to the fault detection.

J. Conjunctive Operator Reference Fault: ORF{(.)

I =(A or D) or (not A and C) or (B and E) repre-
sents the expression with ORF(.) fault by replacing the and
gate by or gate for inputs A, and D at the first logic level.
MC/DC test set detects the fault by showing coverage gaps for
primary inputs B, and E. The MC/DC FEC coverage results
shows gaps for By, and F; The logic analysis shows a change
in the logic structure of the expression which has an impact on
the controllability, and observability requirements for MC/DC,
which leads to the fault detection.

VII. SUMMARY AND CONCLUSION

This paper promotes the adoption of MC/DC in hardware
verification as a structural coverage metrics. The hardware
verification requirement for an efficient structural coverage
metrics, the success of MC/DC in critical software applica-
tions, the description of hardware using HDL and the MC/DC
computation dependency on logic analysis have been potential
motivational factors for this research. The paper has provided
an overview about the MC/DC types as unique-cause and
masking MC/DC with an explanation of the main concepts of
MC/DC represented by the controllability and the observability
aspects. The research work has produced OBSRV, which is
a novel algorithm for MC/DC coverage test sets generation.
The main steps in the procedural computation of OBSRVhave
been outlined with detailed example. The example presents a
manual implementation of OBSRVon selected logic function
to enable clear understanding of the algorithm technique.
OBSRVis based on path-oriented test generation algorithms as
D-algorithm 1, 11 which established the fundamental work of
48 years of state-of-the-art in the application of hardware fault

detection test generation. OBSRVrepresents a potential bridge
to portability of this technology advancement to be applied to
MC/DC coverage for software, and hardware. The paper has
presented an investigation of the OBSRValgorithm scalability,
and complexity analysis. The horizontal, and vertical design
scalability, operand chain effect, D-drive options scalability,
and an experimental scalability investigation have been in-
troduced. The paper has investigated the MC/DC functional
design faults detection strength, and the empirical results
conducted on the main design fault classes in microprocessors
demonstrated sufficient MC/DC detection capability of the
various introduced design faults. The paper research results
will enable continuity of research in terms of MC/DC adoption
as main metric for functional verification coverage closure.

REFERENCES

[11 DO-178B: Software Considerations in Airborne Systems and Equipment
Certification, Radio Technical Commission for Aeronautics (RTCA)
Std., 1982.

[2] K. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson. (2001)
A Practical Tutorial on Modified Condition/Decision Coverage.

[3] S. Rayadurgam and M. Heimdahl, “Generating mc/dc adequate test
sequences through model checking,” in Software Engineering Workshop,
2003. Proceedings. 28th Annual NASA Goddard, dec. 2003.

[4] M. Abramovici, A. Friedman, and M. Breuer, Digital Systems Testing
and Testable Design. 1EEE, 1999.

[5] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM Journal of Research and Development, vol. 10, no. 4, pp. 278
—291, july 1966.

[6] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed
algorithms to compute tests to detect and distinguish between failures
in logic circuits,” IEEE Transactions on Electronics Computers, vol.
EC-16, no. 20, pp. 567 -580, oct. 1967.

[71 W. Bouricius, E. Hsieh, G. Putzolu, J. Roth, P. Schneider, and C. Tan,
“Algorithms for detection of faults in logic circuits,” IEEE Transactions
on Computers, vol. C-20, no. 11, pp. 1258 — 1264, nov. 1971.

[8] P. Goel, “An implicit enumeration algorithm to generate tests for
combinational logic circuits,” Computers, IEEE Transactions on, vol.
C-30, no. 3, pp. 215 -222, march 1981.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[10] J. Chilenski and S. Miller, “Applicability of modified condition/decision
coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, pp. 193 =200, sep 1994.

[11] C. A. S. Team, “Rationale for accepting masking mcdc in certification
projects,” Position Paper 6, Tech. Rep., August 2001.

[12] Z. Kohavi, Switching and finite automata theory, ser. McGraw-Hill
computer science series. McGraw-Hill, 1978.

[13] S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code
coverage metric for functional simulation,” Computer-Aided Design,
International Conference on, vol. 0, p. 418, 1996.

[14] J. Jones and M. Harrold, “Test-suite reduction and prioritization for
modified condition/decision coverage,” in Software Maintenance, 2001.
Proceedings. IEEE International Conference on, 2001, pp. 92 —101.

[15] M. A. Salem and K. I. Eder, “Modified Condition Decision Coverage: A
Hardware Verification Perspective,” in IEEE 14th Microprocessor Test
and Verification (MTV), December 2013, pp. 8-13.

[16] M. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-signal VLSI Circuits. Springer, 2000,
vol. 17.

[17] D. A. Mathaikutty, S. K. Shukla, S. V. Kodakara, D. Lilja, and
A. Dingankar, “Design fault directed test generation for microprocessor
validation,” in Proceedings of the conference on Design, automation and
test in Europe, ser. DATE °07. EDA Consortium, 2007, pp. 761-766.

[18] M. F. Lau and Y. T. Yu, “An extended fault class hierarchy for
specification-based testing,” ACM Trans. Softw. Eng. Methodol., vol. 14,
no. 3, pp. 247-276, Jul. 2005.

