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Abstract—While obtaining the channel state information (CSI)
required to perform Interference Alignment (IA) in a centralised
MIMO network is a challenge, this is compounded in unplanned
wireless networks that may be decentralised, not to mention
composed of devices with varying degrees of complexity and capa-
bility. This is of particular interest to heterogeneous networks and
the Internet of Things (IoT). The disparity in antennas caused by
this variation in capability can be taken advantage of, increasing
the sum rate of the network providing the users are aware of the
capabilities of their neighbours. This paper presents a method for
estimating with a high degree of certainty the number of antennas
each user possesses, endowing the receiver with the vital CSI
required before channel equalisation or estimation can take place.
The method is correlation based and so is not restricted to full
rank channels where the receiving device has an equal or greater
number of antennas than the transmitter. This permits the use
of the method in situations where the rank of the channel is
restricted, either by design or by nature (e.g. ‘keyhole’ channels).

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems offer the
opportunity to improve the sum rate of networks in many
ways; one such way is to exploit the spatial signatures
of the channels between unintended users (i.e. undesired
communications paths giving rise to interference) and pre-
coding transmissions such that they avoid said signatures,
thus limiting the interference caused and improving Signal
to Interference plus Noise (SINR) levels throughout the net-
work. A significant proportion of the literature on interference
management and alignment lies in the context of centralised
systems such as cellular networks, but this does not preclude
the possibility that such techniques could be applied to de-
centralised networks as well. In fact, it could be suggested
that dense unplanned networks such as those seen in rapidly
deployable networks (or ‘scatternets’) and the emerging IoT
have more to gain from alignment techniques; the potential
to limit interference in networks that can easily become con-
gested (becoming interference-limited, if not rendered totally
unusable) is a significant application advantage.

Considering the two-user MIMO Interference Channel (IC),
the network is composed of two user pairs; pair 1 consisting
of a transmitter and its intended receiver; pair 2 consisting of
its transmitter and intended receiver. Each user’s transmitters
and receivers are separate devices within the network. In order
to permit both transmitters to use the channel simultaneously,
each receiver will suffer a degree of interference from the other

user pair’s transmitter with a high degree of probability. Given
the interference received at each receiver is strong enough,
successive interference cancellation can be used to decode and
cancel out the interference, leaving the desired signal. The
simultaneous rate achievable by all users in the symmetric
Interference Channel using this approach can be characterised
by the ‘Generalised Degrees of Freedom’ (GDoF), which is
itself a measure normalised to the single-user AWGN channel
capacity for a given SNR [1]. [1] also introduces the ‘GDoF
W-curve’, which plots the symmetric GDoF achievable in
the two-user MIMO IC against α, the level of interference
as a function of SNR. The level of interference tolerable at
each receiver varies not only with the interference power,
but with the transmitted rates of both users; this means any
modulation and coding scheme (MCS) capable of sustaining
simultaneous transmission must have this side information in
order to prevent excessive interference.

Many transmission schemes assume that all receivers and
transmitters within the network have the same number of
antennas, or at least that the number of transmitters M and
receivers N is the same for all users during the transmission
period. However, this is unlikely to be the case in hetero-
geneous networks or networks comprised of many devices
created by different manufacturers and fulfilling different roles
(for instance in the IoT) - while all the devices are connected
to the same network, there is the possibility that additional
Degrees of Freedom accessible to better-equipped devices
can offer an improvement to the simultaneous rate of the
network. With no channel knowledge a transmitter cannot be
aware of these additional DoF available to it, so the number
of independent streams that the transmitter is able to send
is limited to the minimum of the receiving antennas, i.e.
dsym = min(Mi, Ni) ∀i ∈ K [2], aligned along a suitable
precoding vector.

One such MCS that takes advantage of this antenna disparity
is the scheme proposed by Karmakar and Varanasi [3]. This
scheme uses the ‘null spaces’ created when one receiver
has fewer antennas than the transmitter to hide additional
streams of symbols in a subspace that causes no interfer-
ence to receivers that are not equipped to receive it. This
additional stream may be used simply for additional payload
data between users, or for side information that may facilitate
network operation (e.g. as in physical network coding). By
using this hidden stream for payload data, this approach



alters the sum GDoF achievable within the network; with
only one additional receive antenna introduced to the network
the GDoF ‘W-curve’ begins to appear more ‘V’ shaped (see
Figure 1). This simplifies the optimum transmission strategy
for the channel, yielding an improvement in symmetric GDoF
at marginal interference levels. [3] presents the achievable rate
region in GDoF achievable by such an MCS for an arbitrary
number of transmit and receive antennas at each user. In
[3] the achievable GDoF region is defined as a function of
six variables; the number of antennas at both receivers and
antennas, and the SNR/INR between the desired/undesired
users respectively. This GDoF region is easily determined
using Linear Goal Programming techniques, but in order to
do so these parameters must be estimated in the first instance.

The collection of CSI for IA is usually by means of a
training sequence; simple equalisation of a known training
sequence in the absence of interference is easily performed
by zero forcing, but is only possible when the channel matrix
is full-rank and well-conditioned. Crucial to the zero-forcing
approach is knowing the training sequence used; while the
length of a sequence might be inferred from inspection of
the time correlation over a number of sequences, the rank
of the signal (i.e. the number of individual streams) is a
more daunting task. In order for zero-forcing to be an option,
therefore, it is necessary to restrict the number of transmitted
streams to a known quantity. In a heterogeneous network or
network with wide variety of node capabilities this will be
limited to the smallest number of antennas a user is equipped
with, in order to permit rank estimation on this user. The ability
to determine the signal rank is also of use in channels where
the ‘keyhole’ effect causes rank deficiency (i.e. N < M ) [4].

In [5] the authors present an optimum training sequence for
correlated channels, but requires prior knowledge of the chan-
nel covariance. [6] addresses the problem of rank deficiency
with a chaos-based estimation method for rank-deficient chan-
nels, employing joint detection and sphere decoding.

In this paper a correlation-based approach is taken, which
exploits the properties imbued on the signal both by its
structure and the correlation between the antennas that make
up the arrays at either end of the channel.

II. SYSTEM MODEL

Consider again the two-user Interference Channel comprised
of two pairs of devices (hereafter referred to as ‘users’).
Each device takes a turn to transmit on the channel without
interference from any other device. As well as the transmitting
device, either or both receiving devices may possess more than
one antenna.

Channel coherence and multipath conditions are assumed
to be such that for the duration of training the channel is
frequency flat and invariant, allowing the full matrix between
the transmitter and receiver to be described in a complex-
valued N × M channel matrix, where N is the number of
receive antennas and M the number of transmit antennas.

As part of training the transmitter transmits independent
sequences of length L on each of its M antennas, represented
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Fig. 1. Additional transmit antenna permits increase in symmetric GDoF
(from [3])

by the matrix of column vectors S. The received baseband
sequence at the receiver can therefore be described by the
expression

Y =
√
SNRHST + W (1)

where T denotes the transpose of a matrix and W represents
the additive white Gaussian noise apparent at the receiver,
which has zero mean and unity power.

Several stochastic models for the channel entries in H exist;
in this paper the Kronecker Model [7] is adopted, which
models the channel matrix as the product of the two ‘one-
sided’ antenna correlation matrices at the receiver (Rr) and
transmitter (Rt)

H = R1/2
r HiidR

1/2
t (2)

where Hiid is a matrix whose elements are i.i.d. zero-mean
circular symmetric Gaussian random values with unity vari-
ance.

Using the vector operator a = vec(A) =
[a11 . . . am1 a12 . . . amn]T , the columns of

matrix A are stacked on top of each other. Applying the
identity vec(ABC) = (CT ⊗A)vec(B) to the channel matrix
h = vec(H) = (R

1/2
r ⊗R

1/2
t )hiid where hiid is a LN × 1

complex Gaussian random variable with unity variance. From
this the channel covariance matrix can be computed, i.e.
RH = E[hhH ], where ·H denotes the Hermitian transpose.
The channel covariance matrix therefore has the structure

RH = Rr ⊗Rt (3)

here ⊗ denotes the Kronecker product, hence the name of
the channel model. The defining feature of this model is
that correlations at either ‘end’ of the channel are taken into
account, but it is assumed that the correlations are separable,



and the channel exhibits no coupling between the scatterers
surrounding either side of the link.

III. ESTIMATION OF SIGNAL RANK

The covariance matrix of the training signal sent through
the channel can be found in a similar manner.

E[yyH ] = E[vec(Y)vec(Y)H ]

= E[vec(
√
SNRHST + w)vec(

√
SNRHST + w)H ]

= E[SNR(SR
1/2
t ⊗R1/2

r )hiidh
H
iid(R

1/2
t SH ⊗R1/2

r ) + I]

= E[SNR(SR
1/2
t R1/2

r SH)⊗ (R1/2
r R1/2

r ) + I]

= E[SNR(SRtS
H ⊗Rr) + I]

= SNR(Q⊗Rr) + I

where in the last equation the matrix Q represents the com-
bined temporal and spatial covariance matrix of the transmitted
signal once passed through the transmit antenna array.

Since the receive antenna array configuration is assumed to
be constant throughout the period of transmission (and likely
the device’s lifetime) it can be assumed that Rr is already
known or can be modelled depending on the MIMO array
structure employed.

Since Rr is known at the receiver, the Nearest Kronecker
Product (NKP) can be found by solving the least squares
problem shown in (4) [8].

Q̃ = minQ

(
‖

(
E
[
yyH

]
− I

SNR

)
− (Q⊗Rr) ‖2F

)
(4)

which is minimised by:

q̃ij =

Tr

((
E[yyH ]−I
SNR

)[ij]T

Rr

)
Tr(RT

r Rr)
(5)

where ·[ij] denotes the ijthN × M submatrix of the larger
matrix and ‖ · ‖F denotes the Frobenius norm.

The solution in (5) is applicable for real matrices, but since
the Frobenius norm operates in the same manner for both real
and complex matrices no extension to the decomposition is
required. This introduces a degree of error into the NKP result,
which is represented by ε for the rest of this paper.

The covariance matrix Q has the following structure [5]

Q =



M∑
i=j

N∑
j=1

Rij(0)ρij . . .
M∑
i=1

N∑
j=1

Rij(L− 1)ρij

...
. . .

...
M∑
i=1

N∑
j=1

Rij(L− 1)ρij . . .
M∑
i=1

N∑
j=1

Rij(0)ρij


where ρij is the i, jth element of the one-sided transmit
antenna correlation matrix Rt, i.e. the correlation coefficient
between antennas i and j of the array.

By selecting a suitable training sequence, the structure of
Q (and therefore its approximation Q̃) can be manipulated.
Using an orthogonal sequence that exhibits low autocorrelation
and cross-correlation the value of the main diagonal of the
covariance matrix can be expressed as

M∑
i=1

Rii(0)ρii +

M∑
i=1

N∑
j=1

i6=j

Rij(0)ρij + ε (6)

=

M∑
i=1

1 +

M∑
i=1

N∑
j=1

i 6=j

Rij(0)ρij + ε (7)

=M +

M∑
i=1

N∑
j=1

i 6=j

Rij(0)ρij + ε (8)

where ε is the error term introduced by the complex nature of
the original covariance matrix.

The main diagonal of the covariance matrix can therefore be
used to estimate the number of streams that were transmitted
through the channel; in the case of Gold sequences the values
of Rii(τ) τ 6= 0 and Rij(τ) ∀ τ have low (and deterministic)
values.

Figure 2 shows a histogram of the signal covariance matrix
and its approximation using (4) over 1000 instances of a 5×5
MIMO IC at SNR = 30 dB. The diagonal of the approximation
Q̃ can be observed to possess a similar mean value (equal to
the number of transmit antennas M = 5) but larger variance
than that of the original covariance matrix. From this it can be
inferred that ε is a random variable with normal distribution
and a small (< 0.05) mean value. The most appropriate
estimation of the signal rank is therefore the mean of the
covariance matrix’s diagonal, i.e.

M̂ = E[diag(Q̃)]. (9)

This estimate is independent of the number of receive an-
tennas (since Rr has already been removed from the equation
through the NKP process) and in the next section will be
demonstrated to work for various lengths of training sequence,
blocks lengths, signal powers, and MIMO channel dimensions.

IV. SIMULATION RESULTS

In this section the performance of the estimator is assessed.
Estimation of the signal rank is made over a training sequence
composed of B blocks of Gold sequences L symbols in
length. The signal covariance matrix is formed by taking the
expectation of the received signal over the B blocks, yielding
an approximation of Q̃ of dimension L×L. For the time being
we define the MSE as

MSE(M̂) = E[(M̂ −M)2]. (10)

This allows us to predict the likelihood of an erroneous
decision, depending on the receiver’s approach to mapping
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Fig. 3. MIMO Channel during Training

the result to an integer. The channel model follows from the
analysis in Section II, where two known antenna correlation
matrices are used with an AWGN matrix to generate a time
invariant channel with Rayleigh fading that remains constant
for the duration of the training process. The antennas are
arranged in uniform linear arrays at both ends of the link (as
shown in Figure 3, and scatterers are assumed to be sufficiently
far away and distributed such that the correlation matrices may
be approximated using the Bessel function [9]

ρij = J0(2π∆ij) =
1

2π

∫ 2π

0

ej2π∆ij cos(φ)dφ (11)

where ∆ij is the distance between antennas i and j in
wavelengths and Γ() is the Gamma function. The training
sequences remained constant throughout the training process,
selected randomly from the 2L − 2 sequences that are not the
generating sequences.

Figure 4 shows the MSE achieved in a 5 × 5 MIMO
channel with ∆t = ∆r = 0.3λ. The results show that
the MSE drops to acceptable levels at an SNR of around
7 dB, but improvements past 10 dB yield no improvement
in performance. The estimator is invariant to the number of
blocks B or the the Gold sequence length L, providing that
L remains longer than the number of transmit antennas [10].
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Fig. 4. Comparison of MSEs obtained for different block sizes and training
sequence lengths

It can therefore be safely assumed that training time can be
restricted (leaving more time for payload) by using the shortest
possible sequences without affecting estimator performance.

Figure 5 shows the effect of antenna correlation on the esti-
mate; since the value of transmit antenna cross-correlation ρij
determines the contribution the signal cross-correlation makes
to the rank estimate, it follows that the MSE of the estimate
should improve as the antennas become less correlated (i.e. the
antennas move further away from the critical point of λ/2).
This is in line with common wisdom that antennas should
not be placed at critical intervals, causing greater correlation
within the array. As expected, the receive antenna correlation
makes no difference to the estimation error.

Figure 6 shows the MSE of the estimator against the MIMO
channel dimension over 1000 channel instances at SNR = 30
dB. This clearly demonstrates the ability of the estimator to
accurately estimate the signal rank for various numbers of both
transmit and receive antennas. Crucially there is no penalty
when the channel is rank-deficient. This estimation method is
therefore suitable for all types of MIMO channel.

V. CONCLUSION

An estimator for the rank of a signal transmitted through
a MIMO channel has been presented that is capable of
reasonable accuracy regardless of the number of antennas at
the receiver. It has been demonstrated that not only is this
possible but that the estimator is robust against low levels
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of noise (SNR> 10 dB) and can operate on relatively short
training signal lengths.

It is noted however that the channel model assumed in
this paper has its limitations; the Kronecker channel has been
demonstrated to underestimate the channel capacity of real
channels [11]. This is due to the assumption that the scattering
environment in which the channel resides is such that there
is no correlation between the paths taken from one group of
transmit antennas to any group of receive antennas. In real-life
scenarios this is not often the case, and physical objects in the
channel environment create ‘clusters’ which induce correlation
between the transmit and receive antennas.

This concept is introduced and modelled stochastically in
Weichselberger, et al. [11], from which the channel gets its
name, the Weichselberger Model. Clustered correlation is also
discussed and deterministic models for antenna correlations
presented in [12]. This additional correlation between antennas
will impact the estimator’s ability to estimate the signal rank,
as the transmit and receive antennas are no longer separable.
It remains an open question if this additional correlation
induced by clustering can be modelled and removed from the
covariance matrix to recover the signal rank.
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