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Abstract—When analysing human activities using data min-
ing or machine learning techniques, it can be useful to infer
properties such as the gender or age of the people involved.
This paper focuses on the sub-problem of gender recognition,
which has been studied extensively in the literature, with two
main problems remaining unsolved: how to improve the accuracy
on real-world face images, and how to generalise the models to
perform well on new datasets. We address these problems by
collecting five million weakly labelled face images, and perform-
ing three different experiments, investigating: the performance
difference between convolutional neural networks (CNNs) of
differing depths and a support vector machine approach using
local binary pattern features on the same training data; the
effect of contextual information on classification accuracy; and
the ability of convolutional neural networks and large amounts
of training data to generalise to cross-database classification. We
report record-breaking results on both the Labeled Faces in the
Wild (LFW) dataset, achieving an accuracy of 98.90%, and the
Images of Groups (GROUPS) dataset, achieving an accuracy of
91.34% for cross-database gender classification.

Index Terms—Gender Classification; Deep Learning; Big Data;

I. INTRODUCTION

The classic task of face gender recognition has recently
attracted new attention, mostly due to the availability of large
sets of images collected “in the wild”. Applications are readily
found in many areas, for example in the analysis of gender bias
in news media content [1], [2]. The emphasis of this new phase
of research is on avoiding images collected under controlled
conditions (e.g. in background, pose or illumination), and
focusing efforts on the more challenging case of natural
images.

While significant results have been obtained with the tradi-
tional two-step procedure (feature extraction followed by sta-
tistical classifiers) [3], the introduction of CNNs has recently
led to further improvements in performance [4], [5]. CNNs
are capable of learning their own features, at the same time
as learning the classifier, but to do so they require the tuning
of an enormous number of free parameters, and hence the
availability of very large training sets to avoid over-fitting.

This leads to two separate challenges: the use of efficient
hardware, such as Graphics Processing Units (GPUs) to train
the networks, and the creation of very large sets of images, ob-
tained in uncontrolled conditions, that are labelled by gender.

As the required number of images can range into the millions,
the use of hand-applied labels is not an option. If these
problems can be solved, however, CNNs hold the promise
of leading to significant performance improvements [6], due
mostly to their capability to essentially design their own
features and their ability to generalise well to new scenarios.

The same situation can be seen in different image clas-
sification tasks, for example, in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [7], where millions
of images were used to train a deep classifier to solve a real-
world vision task. For face recognition, big data is also a key
factor in obtaining human-level performance [8].

In this paper, we investigate the effects of combining the
power of CNNs with the information contained in massive,
weakly labelled datasets, collected from the web. We collect
five million publicly available face images that are weakly
labelled using gender-specific queries derived from the Internet
Movie Database (IMDB), following the procedure in [3].
These images are used as our training data for three different
experiments, reporting performance on the LFW dataset [9]
and the GROUPS dataset [10] for comparability.

The first experiment is aimed at investigating the difference
in performance for varying depths of CNN, and comparing
directly with a Support Vector Machine (SVM) using Local
Binary Pattern (LBP) features approach using the same train-
ing and test sets. We show that convolutional neural networks
can outperform traditional approaches (e.g. [3]), while the use
of deeper networks allows for large sets of noiser training data
to be used to increase performance (e.g. deeper networks plus
weakly labelled data can improve on previously reported CNN
approaches [4]).

In the second experiment we investigate using a larger
bounding box for the face region, on exactly the same data
as the first experiment, and show that we can further increase
performance using the additional contextual information that
the larger bounding box contains. We show that this change
leads to an improvement of 0.65% over the best result in the
first experiment, with a record-breaking accuracy of 98.90%
on LFW.

Finally, in the third experiment, we use a recently proposed
face detector [11] to replace the Voila Jones (VJ) algorithm.
We apply this to the weakly labelled images collected from



the web, generating five million training images, and test our
performance on the unaligned version of the LFW dataset,
along with the GROUPS dataset. This introduces a more
difficult scenario, where the images are unaligned and in
a cross-database setting. We show that even in this more
difficult setting, we can achieve an accuracy of 98.69% on
the unaligned LFW and 91.34% on the GROUPS dataset.

To summarize our work, the contributions include:
• We directly compare CNNs of varying depth with pre-

vious work, showing that on the same training data
CNNs out-perform SVMs using LBP features, and that
increasing the depth of the network allows for large
sets of noiser training data to improve performance over
shallower networks.

• We show that including more contextual information
about the face region, by using a larger bounding box
for the face region will improve performance, leading to a
record-breaking accuracy of 98.90% on the LFW dataset.

• We introduce a more difficult setting, where the test data
is unaligned and in a cross-database setting, making it
more comparable with real-world images. We report the
best cross-database accuracy of 98.69% on the unaligned
LFW and 91.34% on the GROUPS dataset, showing that
our trained network can generalise to new settings.

The rest of the paper is organized as follows: Section II cov-
ers a literature review of face gender recognition; Section III
details the three experiments, their settings and our results;
while Section IV concludes the paper.

II. RELATED WORK

Face analysis under controlled conditions has been well
studied, but performing gender recognition in unconstrained
environments is still a difficult task in computer vision. Dif-
ferences in reported performances between testing in cross-
database (different sources for training and test data) and
within-database (same source) settings further highlights the
need for methods that generalise well across different datasets.

Shan [12] manually chose 7,443 face images from LFW
where difficult images, such as profile, rotated and baby faces,
were not considered. Multi-scale LBP features were extracted
before the 500 most discriminative bins were selected using
Adaboost. He achieved 94.81% on a subset of LFW using
SVM with 5-fold cross validation in a within-database setting.
Similarly, Ren [13] achieved 98% on a smaller subset of 6,840
faces from LFW, using three different types of features. Scale-
Invariant Feature Transform (SIFT), Histograms of Oriented
Gradients (HOG) and Gabor wavelet features were combined,
before applying RealAdaboost with a complexity penalty term
to choose useful features whilst easing the computational cost.
However, the results of Shan [12] and Ren [13] were both
reported on easy, subsamples of LFW.

For the GROUPS dataset [10] in a within-database setting,
Fazl-Ersi [14] combined SIFT, LBP and Colour Histogram
(CH) and achieved an accuracy of 91.59%. Bekios-Calfa
[15] proposed to recognize face gender using facial attribute
dependencies, such as age and pose, achieving 80.5% on

the subset of GROUPS without children. Han [16] used
biologically inspired features (BIF) and SVM on all the faces
from GROUPS and achieved an accuracy of 87.1%.

It is worth noting that there is a performance drop when
training and test on different datasets. In a cross-database
setting, where methods are trained on data from a different
source to the test set, Pablo Dago-Casas [17] reported an
accuracy of 81.02% on a subset of 14,760 face images
from the GROUPS dataset where low resolution faces had
been removed, along with randomly removing a number of
male faces to achieve an equal gender distribution. This was
achieved using raw pixel values, LBP and Gabor jets features
and then applying Principal Component Analysis (PCA) for
dimension reduction. They also reported 89.77% on the LFW
database in a cross-database test.

Mansanet [18] applied the Sobel filter and low-pass filter to
detect important patches from face images which were then
used to train a deep neural network. The best results they
achieved on GROUPS and LFW were 83.03% and 94.48%
respectively.

Jia [3] created an automatic gender classification system
using four million weakly labelled face images collected from
the web. They report an accuracy of 96.86% on 10,147 face
images detected using the VJ algorithm from LFW, obtained
with a large margin linear classifier using approximately
60,000 multi-scale LBP features.

Recently, Antipov [4] simplified the CNN architecture used
in object classification [19] for gender recognition. In their
work, they varied the depth of CNN and found that shallower
CNNs can be trained efficiently without much performance
loss. Their ensemble of CNNs gave an accuracy of 97.31%
on the same LFW test set used in [3], training on 494,414
faces images from the CASIA database [20].

Castrillon [5] combined CNNs with more types of vision
features from different facial regions. They achieved the high-
est accuracy on the LFW and GROUPS in a cross-database
setting, 98% and 90.14% respectively.

III. EXPERIMENTS

In this paper, we perform three different experiments to
investigate the difference in performance between CNNs of
varying depths and a SVM approach using LBP features [3]
on the same training and test datasets; the effect of contextual
information on classification accuracy by using a larger bound-
ing box; and the ability of CNNs trained with large amounts of
noisy data to generalise well in cross-database classification.

A. Weakly labelled data

For the training data in every experiment, we trained on
millions of publicly available images retrieved from the web.
To retrieve these images, we first generated a list of gender-
specific queries from IMDB. The list contained equal numbers
of male and female names, such as John (male) and Mary
(female). Using this list, we then queried search engines to
retrieve sets of images, following the protocol in [3]. Using
this approach, we collected a total of 6,727,509 images, using



TABLE I
RELATED WORK AND THEIR REPORTED ACCURACIES.

Authors Test set Features Classifiers Result Cross
Shan [12] LFW(7,443) Boosted LBP SVM 94.81% N

Ren [13] LFW(6,840)
HOG
SIFT
Gabor

SVM 98% N

Fazl-Ersi [14] GROUPS(14,760)
LBP
SIFT
CH

SVM 91.59% N

Bekios-Calfa [15] GROUPS(22,948) Pixel LDA 80.5% N
Han [16] GROUPS(28,231) BIF SVM 87.1% N

Dago-Casas [17] GROUPS(14,760)
LFW(13,088)

LBP
PCA LDA 81.02%

89.77%
Y

Mansanet [18] GROUPS(14,760)
LFW(13,233) DNN Class-posterior 83.03%

94.48%
Y

Jia [3] LFW(10,147) Multi-scale
LBP C-Pegasos 96.86% Y

Antipov [4] LFW(10,147) CNN Softmax
(Ensemble) 97.31% Y

Castrillon [5] GROUPS(28,231)
LFW(13,233)

LBP
HOG

LOSIB
CNN

SVM 90.14%
98.00%

Y

Ours LFW(10,147) CNN Softmax 98.90% Y
Ours LFW(13,061) CNN Softmax 98.69% Y
Ours GROUPS(24,743) CNN Softmax 96.10% Y
Ours GROUPS(28,163) CNN Softmax 91.34% Y

150,000 names from each gender class. Each of these images
is further processed to detect if it is a face image using
different approaches in each experiment.

B. Experiment 1: Effect of Network Depth

In Experiment 1, we investigated what effect the depth of
the convolutional neural network had on gender classification
accuracy using weakly labelled data, keeping a fixed training
and test set.

1) Training set: We used the VJ algorithm on the weakly
labelled data to first extract a facial bounding box, before de-
termining if a face was present by extracting facial landmarks,
resulting in 4,227,792 face images, following the procedure in
[3].

2) Network architectures: We used the deep learning li-
brary Caffe [21] to create three different networks of varying
depth by tuning the VGG-16 model suggested by Parkhi [22].
This network was first proposed by Simonyan [19] for object
classification, achieving state-of-the-art results in the ILSVRC.
Previously, in [4], they used a simplified version of the VGG
model with 13 layers as their starting CNN, before simplifying
it further to a 6-layer architecture.

We started from a similar 6-layer architecture to [4], which
has the same number of layers but with more filters at each
convolutional layer, which we name G6. This network was
trained from scratch using a batch size of 512. We trained for
300,000 iterations, such that the model was trained for 512×
300,000÷4,227,792 ≈ 36.33 epochs. The initial learning rate
was set to 0.01 and reduced by 10 times after every 100,000
iterations. The momentum coefficient was 0.9 and the weight
decay was 0.0005. The dropout rate was set to 0.5 and we

saved a snapshot of the model after every 10,000 iterations.
The model was trained on small face images of 40×40 pixels
before taking crops from the four corners and centre, for inputs
of size 32× 32.

Next, we add four and ten more convolutional layers to
the G6 architecture, creating the G10 and G16 networks
respectively, where the G16 has the same archteciture as VGG-
16 [19]. These two architectures were fine-tuned from the pre-
trained Parkhi model1 [22]. These were fine-tuned using larger
faces than the G6, with images of 256 × 256 pixels cropped
from the corners and centre to a size of 224 × 224 for the
input layer.

We set a mini-batch size of 128 for G10 and the training
iterations to 200,000, giving us 6.05 epochs. The learning rate
was 0.001 at the beginning, decreasing by 10 times after every
80,000 iterations. For the G16, the mini-batch size was further
reduced to 64 because of our GPU memory. We increased the
training iterations to 350,000, giving us around 5.3 epochs.
The learning rate reduced by 10 times after every 150,000
iterations.

The G16 is the deepest model used in our work due to
the memory size of available GPUs (NVIDIA Titan X, 12
gigabytes). Each of the network architectures used are detailed
in Table II where 64@3 × 3 denotes 64 convolutional filters
with a size of 3 by 3. Every convolutional and fully connected
layer is followed by a Rectified Linear Unit (ReLU). Dropout
layers are only used after each fully connected layer. Finally, a
fully connected layer with two neurons is added as the output
layer for binary classification.

1Available from: http://www.robots.ox.ac.uk/∼vgg/software/vgg face/



TABLE II
CNN ARCHITECTURES OF DEPTH 6, 10 AND 16.

Shallow (G6) Medium (G10) Deep (G16)
Input: 32× 32 Input: 224× 224 Input: 224× 224

Conv: 64@3× 3 Conv: 64@3× 3 Conv: 64@3× 3
Conv: 64@3× 3 Maxpool: 2× 2 Conv: 64@3× 3
Maxpool: 2× 2 Conv: 128@3× 3 Maxpool: 2× 2

Conv: 128@3× 3 Maxpool: 2× 2 Conv: 128@3× 3
Conv: 128@3× 3 Conv: 256@3× 3 Conv: 128@3× 3
Maxpool: 2× 2 Maxpool: 2× 2 Maxpool: 2× 2

Conv: 512@3× 3 Conv: 256@3× 3
Conv: 512@3× 3 Conv: 256@3× 3
Maxpool: 2× 2 Conv: 256@3× 3

Conv: 512@3× 3 Maxpool: 2× 2
Conv: 512@3× 3 Conv: 512@3× 3
Maxpool: 2× 2 Conv: 512@3× 3

Conv: 512@3× 3
Maxpool: 2× 2

Conv: 512@3× 3
Conv: 512@3× 3
Conv: 512@3× 3
Maxpool: 2× 2

Fully connected:512 Fully connected:4096 Fully connected:4096
Fully connected:4096 Fully connected:4096

TABLE III
RESULTS FROM EXPERIMENT 1 AND 2, SHOWING THAT OUR G16

NETWORK SETS A NEW RECORD FOR ACCURACY ON THE SAME LFW
SUBSET USED IN [3], [4], AND THAT INCREASING THE BOUNDING BOX

SIZE IN EXPERIMENT 2 FURTHER IMPROVES PERFORMANCE.

G6 G10 G16 [3] [4]
Experiment 1 95.80% 96.94% 98.25% 96.86% 97.31%
Experiment 2 96.67% 97.79% 98.90% 96.86% 97.31%

3) Test set: Each of the networks in this experiment was
tested on the subset of 10,147 face images from LFW reported
in [3], [4], to allow for comparability. The subset of face
images is obtained by running the VJ algorithm on all images
in LFW and removing those that do not contain a face, or
any facial landmarks. The test set is further split into two
subsets, used as a validation and test set, which are then
reversed with the experiment conducted again, using the same
testing protocol as [3]. Accuracies are reported as the average
over the two-fold cross-validation. We ensure that there is
no subject intersection between the training and test set, or
the validation and test sets by removing near duplicates based
upon pixel-wise comparisons and their query names, following
the procedure in [8].

4) Results: In Table III, we compare our results from the
three varying depths of network with the results reported for
the same LFW test set in [3] and [4]. We can see that in
Experiment 1, as more layers are added, our accuracy on the
test set increases, achieving an accuracy of 98.25% using the
G16 network.

C. Experiment 2: Effect of Bounding Box Size

In Experiment 2, we investigated what effect the size of
the facial bounding box had on gender classification accuracy,
comparing all three architectures from Experiment 1 on the

same fixed training and test set. This was motivated by
research by Kumar [23] showing that humans can correctly
verify with an accuracy of 94.27% if two images contain the
same person even when a tightly cropped bounding box of the
face has been removed, suggesting that there may be additional
information we can use for gender classification by using a
larger bounding box (see Fig. 1).

1) Training set: We used the same VJ algorithm on the
weakly labelled data to first extract a facial bounding box,
before determining if a face was present by extracting facial
landmarks, resulting in 4,227,792 face images, following the
procedure in [3]. Further to this, we then increased the area
within the facial bounding box of each image by 1.5 times,
allowing for more of the contextual information around the
face to be included within our training images.

2) Network architectures: For this experiment, we used
exactly the same network architectures as detailed in Experi-
ment 1, changing only the size of the bounding boxes for the
training set. The size of the images to the input layers for each
network did not change, with each image being scaled down
and cropped to 32×32 for the G6 network, and 224×224 for
the G10 and G16 networks as before. All network parameters
were kept the same as Experiment 1.

3) Test set: We tested each of the three networks trained
on images with larger bounding box areas on the same set
of images as Experiment 1, with the larger bounding box
also used when extracting facial bounding boxes from the
test images. This setting remains directly comparable with
previous works [3], [4] on the same subset of LFW.

4) Results: In Table III, we also compare our results from
Experiment 2 for the three varying depths of network. The
accuracies reported are tested again on the same LFW test
set in [3] and [4]. We can see that similarly to Experiment
1, we find that as more layers are added, our accuracy on
the test set increases, achieving a record-breaking accuracy
of 98.90% using the G16 network, an improvement over the
same network with a smaller bounding box in Experiment 1.
This suggests that using a less tightly cropped face image for
training in gender classification can lead to small performance
improvements by incorporating more contextual information.

D. Experiment 3: A More Challenging Setting

In Experiment 3, we wished to test how well our networks
perform in a more challenging setting, where the face images
in the test set are not aligned, and with more challenging faces
being kept (e.g. we do not require facial landmarks to be
present), resulting in a larger, more difficult test set. Addi-
tionally, we wished to test our performance on the GROUPS
dataset [10], a set of 28,231 faces annotated with age, gender
and location information from a collection of 5,080 group
photos. For this experiment, we used the best settings we had
found from the previous two experiments, namely we used the
G16 network with larger bounding box areas.

1) Training set: For this experiment, we used the recently
proposed face detector [11] on the weakly labelled data,
replacing the VJ algorithm used in the first two experiments.
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Fig. 1. An example of a tightly cropped face from the LFW dataset, along with the additional information we can capture by using a larger bounding box.
(left, each face image is resized to 40 by 40 and 256 by 256 pixels for different experiment settings)

This was performed since the new face detector has been
shown to outperform the VJ algorithm, increasing the number
of face detections on the weakly labelled data, therefore
allowing for more images to be kept in the training set. In
total, we used 5,286,130 face images from the original weakly
labelled data in Section III-A for training our networks in this
experiment.

2) Network architecture: We wished to only apply our
best architecture found in the previous experiments to the
new, more challenging problem setting. As such, we used the
G16 architecture detailed in Experiment 1 trained using the
weakly labelled data with a different face detector applied,
and the larger bounding boxes from Experiment 2. All other
configurations for the network were kept fixed.

3) Test set: In this experiment, we tested our trained
network on two different datasets, the unaligned version of
the LFW dataset, and the GROUPS dataset. For the unaligned
version of LFW, we applied the new face detector [11] to the
test images, obtaining a test set of 13,061 loosely cropped
face images, containing more difficult samples than usually
reported. For the publicly available GROUPS dataset, we first
identified all the faces from the images using the given eye
coordinates, resulting in 28,231 face images, the full dataset
as reported in the literature (GROUPS-all). When testing on
each of these test sets, we used the other test set as a validation
set (i.e. LFW was used as a validation set when testing on
GROUPS-all, and vice versa). We further considered two
different subsets of the GROUPS data reported in the literature
to allow us to compare with previously published results,
namely all face images with an interocular distance greater

TABLE IV
RESULTS FOR EXPERIMENT 3 IN THE MORE CHALLENGING SETTING,

USING THE UNALIGNED LFW AND GROUPS TEST SETS IN A
CROSS-DATABASE SETTING.

Test set G16 [5] [18] [15]
Unaligned LFW 98.69% 98.00% -
GROUPS-all 91.34% 90.14% - -
GROUPS-A 91.80% - 83.03% -
GROUPS-B 96.10% - - 80.53%

than or equal to 20 pixels (GROUPS-A, 16,368 images), and
all face images where the person was annotated as being older
than 12 (GROUPS-B, 24,743 images).

4) Results: Table IV shows the performance of our G16
network in the new, more challenging setting we propose,
alongside a comparison with the previous best results in the
literature, to the best of our knowledge. We can see that in this
cross-database setting, we significantly out-perform previous
methods on the GROUPS-A and GROUPS-B test sets, with
slightly increased performance over the current best result for
the Unaligned LFW and GROUPS-all test sets. It should be
noted that the result from [5] is reported on the entire LFW
dataset, so is not directly comparable, although it is the closest
result we have found to the new, more challenging setting.

IV. CONCLUSIONS

The task of automatically classifying the gender of a person,
based on an image of their face, has been investigated under
different conditions. In this study, we conducted several exper-
iments to determine the effects that different design choices



can have on the performance of a gender classification system
working on images taken under uncontrolled conditions.

Among our contributions has been to show the effect of
training a deep convolutional network on a vast, weakly la-
belled training set, formed of millions of face images, collected
from the web. Our results are compared with previous studies
on the same test sets, which were either performed with
simpler algorithms on similar training sets, or with similar
algorithms on smaller training sets. We achieved the best
performance ever reported on the LFW test set used in [3], [4],
moving the best attainable accuracy from 97.31% to 98.90%.

More importantly, we have investigated the effect of net-
work depth on the classification performance, finding that for
our experiments using weakly labelled data, a deeper CNN
out-performed a shallower one with the same training data;
that using a larger bounding box for the face region can
improve performance; and that our proposed CNN generalises
well to other test sets, achieving a state-of-the-art performance
of 91.34% on the GROUPS-all test set. In this setting, we
demonstrate that while we achieve further improvements over
those previously reported, that there is still space for increasing
the accuracy in face gender classification tasks.
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