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Abstract Vagueness is an extremely common feature of natural language, but does

it actually play a positive, efficiency enhancing, role in communication? Adopting a

probabilistic interpretation of vague terms, we propose that vagueness might act as a

source of randomness when deciding what to assert. In this context we investigate

the efficacy of multiple sender channels in which senders choose assertions

stochastically according to vague definitions of the relevant words, and a receiver

then aggregates the different signals. These vague channels are then compared with

Boolean channels in which assertions are selected deterministically based on clas-

sical (crisp) definitions. We show that given a sufficient number of senders, a linear

stochastic channel outperforms Boolean channels when performance is measured by

the expected squared error between the actual value described by the senders and

the receiver’s estimate of it based on the signals they receive. The number of

senders required for vague channels to be at least as accurate as Boolean channels is

shown to be a decreasing function of the size of the language i.e. the number of

description labels available to the senders. Vague channels are then shown to be

robust to transmission error provided the error rate is not too large. In addition, we

investigate the behaviour of both Boolean and vague channels for a parametrised

family of distributions on the input values. Finally, we consider optimal vague

channels assuming a fixed number of senders and show that, provided there are

more than two senders, a vague channel can be found that outperforms the optimal

Boolean channel. In this context, we show that for channels with relatively low

numbers of senders S-curve production functions are optimal.
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1 Introduction

Vagueness is ubiquitous in natural language, but it is unclear what practical role, if

any, it plays in our communication. For example, is the vagueness of adjective

definitions an efficiency enhancing feature of the way in which we represent

concepts, or is it an unfortunate, if perhaps inevitable, side-effect of the way in

which language is acquired, or has evolved (O’Connor 2013)? A fundamental

difficulty encountered by any general attack on this problem relates to the breadth of

the concept of vagueness itself. Vagueness is a multi-faceted phenomenon and

although it is clearly different from ambiguity and imprecision there are still

differing opinions as to exactly what linguistic phenomena come under its umbrella.

Keefe and Smith (2002) identify three interrelated properties of vague predicates;

(1) borderline cases (2) blurred boundaries and (3) susceptibility to sorites

paradoxes. There is a subtle but important distinction between (1) and (2) which

suggests that we may need to look at different aspects of communication in order to

understand the possible utility of these different properties of vagueness. Explicit

borderline cases are those which are neither members of a given category nor of its

complement. Proposed models of this characteristic either permit truth gaps (Fine

1975), i.e. statements which are neither true nor false, or introduce a third truth-

value to represent ‘borderline’ (Kleene 1952). van Deemter (2009a) has identified a

number of communication scenarios in which vagueness can play a positive role

including, for example, by mitigating the risk associated with making predictions or

promises. Lawry and Tang (2012) suggested that borderline cases may indeed have

a positive role to play in this form of risk management. The underlying intuition is

that the presence of borderline cases provides additional flexibility within a payoff

model when there is uncertainty about the possible outcomes. For instance, we

might assume that the payoff from making a forecast that turns out to be borderline

will lie somewhere between the payoffs from a forecast which turn out to be false

and one which turns out to be true respectively. This extra flexibility allows agents

to balance the vagueness of assertions against their uncertainty so as to maximise

the expected payoff from making a forecast or a promise. Blurred boundaries on the

other hand arise from a type of uncertainty about where exactly the boundary of a

category lies, and we will argue below that this can be modelled probabilistically. In

this paper we focus on the utility of blurred boundaries and, by adopting a

probabilistic interpretation, we attempt to describe a communication scenario in

which stochastic behaviour, resulting from vague definitions of adjectives along a

continuous scale, is on average better than the optimal Boolean, i.e. non-vague,

alternative.

Signalling games (Lewis 1969) have provided a common formalism in which to

study the utility of vagueness, and in particular blurred boundaries, in communi-

cation [see van Deemter (2009b) for an overview of recent work]. Such games

typically involve two agents, a sender and receiver, with a shared vocabulary

consisting of a finite set of words, used to describe an underlying reality of which

the sender but not the receiver has direct knowledge. Each agent then adopts

transmission and interpretation strategies so as to maximize their respective utilities.
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For example, De Jaegher (2003) investigates the role of vagueness in signalling

games in which the sender and receiver have different and possibly conflicting

utilities. From an alternative perspective Franke et al. (2011) suggest that vagueness

is a natural property for boundedly rational agents. In particular, they consider the

cases in which agents have bounded rationality due to memory limitations and also

due to random error i.e. noise. Perhaps the most compelling study of vagueness in

communication, however, is the still unpublished work of Lipman (2009) in which

signalling is studied assuming the Gricean maxim (1975) that both sender and

receiver aim to communicate as effectively as possible. Lipman’s result shows that

for rational agents, using vague definitions is always sub-optimal in comparison to a

Boolean alternative. More specifically, vagueness is associated with the use of

mixed strategies; these being probability distributions over pure strategies.1

Informally stated, Lipman’s main result is that no non-trivial mixed strategy is

ever strictly better performing than any of the pure strategies to which it allocates

non-zero probability. In other words, strict Nash equilibria will only contain pure

strategies. One feature which is common to all of these studies is that in any

signalling game there is only one sender. This immediately rules out the possibility

of any form of information aggregation on the part of the receiver. We will now

argue that it is exactly as part of such an aggregation process that labels with blurred

boundaries may have some utility. We begin by considering a simple example.

There has been a street robbery in central Bristol. Around midday, a robber has

approached a member of the public and stolen some money and their mobile phone.

Due to the location and time at which the robbery took place, there are many

witnesses, each able to provide a good description of the robber. The police officer

in charge of the investigation takes formal statements in which the witnesses are

asked to describe different characteristics of the robber including about their height.

Now we have a clear intuition that the police officer benefits from having multiple

statements, and to some extent, the more the better. This is no doubt partly because

the different witnesses bring different perspectives, fill in the gaps left by others, and

hence together provide a more complete overall picture of events. However, in

addition, we suggest that an element of randomness on the part of witnesses in their

choice of words can also provide the police officer with additional information.

Furthermore, we suggest that the blurred boundaries or gradedness of vague words

can be a natural source of this type of stochasticity. Suppose for simplicity that

height is only describable using the two labels, short and tall, then if all witnesses

describe the robber as short, then the police officer might infer that they are likely to

be a prototypical short person. On the other hand, a 50–50 split between those

witnesses who say short and those who say tall is more likely to suggest a person of

intermediate height. Now notice that if instead of making stochastic assertions based

on some form of graded concept definition, the witnesses were simply applying

Boolean definitions of short and tall, then inference of this form would not be

possible. To see this, suppose that all the witnesses share the same Boolean

definitions of short and tall, according to which all heights less than a threshold h

1 Pure strategies correspond to deterministic functions mapping from inputs to words sent, and from

words received to actions.
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are classified as short, and all heights greater than h as tall. In this case, if we

assume a noise free model in which everyone receives the same information, then

no matter what the robber’s height, either all the witnesses would describe him as

short or all as tall. Of course, in practice the witnesses are likely to differ, even in

the case that they all adopt the same Boolean model. For example, there would be

natural variation in their perceptions and in the conditions and locations where they

each saw the robbery take place e.g. witnessing it from different angles and in

different light. However, we suggest that in addition to this natural variation there

can be a positive role to play for stochasticity directly induced by the blurred

boundaries of vague categories.

2 The Uncertain Threshold Model of Vagueness

Probabilistic approaches to vagueness have a history dating back to Black (1937),

and include work by Loginov (1966), Hisdal (1988), Edgington (1997) and more

recently Lawry (2008) and Lassiter (2011). These models tend to be strongly

interrelated, see Dubois and Prade (1997), and for graded adjectives a common

formulation is in terms of an uncertain threshold value defined on a particular

measurement scale (Cresswell 1976). Consider, for example, the adjective short

defined on a height scale corresponding to the positive real numbers. As outlined in

Sect. 1, a simple Boolean model is characterised by a threshold value h, all heights
below which are classified as being short. In the case of vague concepts it is then

proposed that blurred category boundaries result from uncertainty about the exact

value of h. Lawry (2008) refers to this as semantic uncertainty and argues that it can

be naturally quantified in terms of subjective probabilities. Both Lawry (2008) and

Lassiter (2011) suggest that semantic uncertainty is a likely consequence of the

empirical way in which language is acquired. In this paper we propose that it may

also underlie stochastic assertion decisions which can play a positive role in

communication scenarios where some form of aggregation is involved. For instance,

suppose that for a witness in our robbery example her uncertainty about the

threshold h, defining the adjective short, is quantified by the probability density f.2

The probability that this witness would classify a robber of height x metres as being

short, then corresponds to the probability that the threshold value h is at least x. This
provides a natural definition for the membership degree of x in the category short as

follows:

lshortðxÞ ¼ Pðh� xÞ ¼
Z1

x

f ðhÞ dh ¼ 1� FðxÞ

where F is the cumulative distribution function of f. Applying a stochastic assertion

model the witness would then describe the robber as being short with probability

2 A number of recent studies have conducted experiments into how well different parameterised models

for f fit with data relating to adjective use in natural language. See for example Lassiter and Goodman

(2013) and Qing and Franke (2014).
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lshortðxÞ and as being tall with probability ltallðxÞ ¼ 1� lshortðxÞ. In the following

section we propose a simple stochastic communication channel involving vague

labels defined in terms of uncertain thresholds. We show that in such a channel, by

aggregating the varying signals from sufficiently many stochastic senders, a receiver

can on average obtain a better estimate of the input being described, than by using

an optimal Boolean model.

The uncertain threshold model has clear similarities to the epistemic theory of

vagueness as expounded by Williamson (1992, 1994), although there are also subtle

but important differences. Williamson proposes that there is a precise but unknown,

and possibly unknowable, boundary between the extension of a vague concept and

that of its negation. From this perspective vagueness can be captured within the

framework of classical logic, with properties such as the law of excluded middle and

the law of non-contradiction being preserved. The model we propose, though

sharing with the epistemic theory the basic premise that vagueness can be

understood in terms of precise but uncertain boundaries, makes a fundamentally

different assumption regarding the nature of these boundaries and how the

uncertainty about them arises. In particular, the epistemic theory would seem to

assume the existence of some objectively correct boundary threshold between, for

example, short and not short. This assumption lies at the heart of one of the main

criticisms of epistemicism in the literature, that it does not provide a satisfactory

account of the relationship between the semantics and the use of language (Keefe

and Smith 2002; Smith 2008). That is, it seems clear that the meaning of vague

concepts are in large part determined by their use over time by a diverse population

of communicators. But the role of the individual within the epistemic theory appears

to be that of learning the meaning of already fixed boundaries, a task at which,

according to Williamson (1994), they can only hope to have at best partial success.

In contrast, following Lawry (2008) and D’Odorico and Bennett (2013), we propose

a model in which individuals adopt an epistemic stance by assuming the existence of

precise boundary thresholds about which they are uncertain, and where they

quantify this uncertainty using probability. However, the epistemic stance is

understood to be a modelling assumption on the part of language users, and there is

no implication that precise thresholds have an independent existence beyond the

models. From this perspective there is a clear account of how language use

determines semantics through an emergent process resulting from multiple

interactions between individuals, each adopting the epistemic stance and updating

their semantics by conditioning within a probabilistic representational model as

outlined above. Indeed there is a growing literature on agent-based simulation

studies in which simple probabilistic models of concepts are shown to converge

across a population (Steels 1997; Steels and Belpaeme 2005; Eyre and Lawry 2014).

Nonetheless, one might ask of such approach, why do individuals choose to adopt

the epistemic stance, as opposed to an alternative representational model, given that,

as admitted, there is no claim as to the objective existence of precise boundaries? A

pragmatic response would be to claim that, faced with the challenge of deciding

what to assert and of interpreting the assertions of others in a variety of contexts,

individuals simply find it useful as part of a decision making and learning strategy to

assume that there is a clear divide between those labels which are and those which
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are not appropriate to assert. This is consistent with Lassiter’s view that, rather than

language being a simple precise entity, there are in fact a number of precise

interpretations that can be employed in a given context (Lassiter 2011). Adopting a

probabilistic approach in which individuals attempt to take account of their prior

knowledge of language conventions and their models of other language users in

order to choose between these various interpretations, could then be a natural way of

bringing to bear already established tools for dealing with epistemic uncertainty

when deciding between competing possible assertions. In this paper we furthermore

propose that probabilistic definitions can also be exploited by communicating agents

as a mechanism for generating stochastic uncertainty which then has a positive role

to play in the aggregation of information from different signals.3

We should note that for some, even this pragmatic epistemic approach to

vagueness may still be unpalatable. Hence, in the context of the current paper it is

worth pointing out that the stochastic channels proposed in the sequel are also

relevant for probabilistic but non-epistemic theories and even for non-probabilistic

degree-based treatments of vagueness. To make the case for the former we consider

the non-epistemic probabilistic approaches to vagueness as proposed by Borel,

discussed and developed by Egré and Barberousse (2014), Egré (2016), and Kamp

(1975). Borel applies statistical methods after identifying two main sources of

variation in the way that individuals apply vague terms. For example, suppose that a

witness’ decision as to whether or not to describe the robber as short depends both

on her perception of his height and on a precise threshold, with the term short being

used provided that the former is less than the latter.4 Variation in the responses of

different witnesses then occurs as a result both of differences in their perceptions of

the height of the robber and in the height thresholds they apply. Certainly the former

would tend to naturally occur due to the inherent imperfection of human perception

and other environmental effects e.g. differences in relative position, lighting etc. For

3 The sorites paradox has traditionally been central to the study of vagueness. Several probabilistic

accounts of sorites have been given in the literature, including Edgington (1997) and most recently

Lassiter and Goodman (2015). These adopt two main interpretations of conditional rules; the material

conditional interpretation (MC) and the probability conditional interpretation (PC) (Lassiter and

Goodman 2015). For the probability threshold model outlined in this paper we can illustrate MC and PC

as follows: Suppose we have a sequence of heights fxkgnk¼0 where xkþ1 ¼ xk þ h for some small value

h[ 0. Further suppose that x0 is clearly short while xn is clearly not short. Now consider the sequence of

sorites rules; IF shortðxkÞ THEN shortðxkþ1Þ for k ¼ 0; . . .; n� 1. For MC each rule is held to be true with

probability 1� PðshortðxkÞ ^ :shortðxkþ1ÞÞ ¼ 1� Pðxk � h\xk þ hÞ ¼ 1� Fðxk þ hÞ � FðxkÞ. For PC
the relevant probabilities are Pðshortðxkþ1ÞjshortðxkÞÞ ¼ Pðh� xkþ1Þ

Pðh� xkÞ ¼ FðxkþhÞ
FðxkÞ . Therefore, for both MC and

PC the premises of sorites are compelling provide that Pðh� x0Þ is high, Pðh� xnÞ is low, and also that

the probabilities of each of the conditionals is high for k ¼ 0; . . .; n� 1. In fact it is straightforward to set

up the sorites scenario so that this indeed the case. For instance, by taking F to be the cumulative

distribution function of a normal distribution on h with a suitable mean and variance, we can obtain that

lshortðx0Þ � 1;lshortðxnÞ � 0 and that, for h sufficiently small, both MC and PC will result in conditional

rules with probabilities close to 1 for k ¼ 0; . . .; n� 1.
4 One might be suspicious that by using a crisp threshold in this way Borel is implicitly endorsing the

epistemic theory. However, Egré (2016) argues that this threshold should be thought of as forming part of

‘a subjective decision rule’ rather than as being an objective cut-off value. In fact, in essence this seems

close to our interpretation of the epistemic stance as being a modelling assumption adopted by individuals

to help them make decisions about assertions.
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the latter Egré (2016) suggests that decision thresholds might be based on a

representative value for the reference or context class, so for the robber example this

could be the mean height of UK males, but with subjective differences between

individuals about how exactly the threshold is derived from this value. Given this

set-up we can try to understand the use of the term short in this particular context by

running a controlled experiment in which a sample of individuals (witnesses) are

shown a number of suspects with varying heights and asked whether or not they

would describe them as being short, yes or no. From the resulting data statistical

methods can then be employed so as to estimate a probability function quantifying

the probability that the adjective short will be applied to describe someone of a

given height. Now the fundamental difference between this statistical approach and

the probabilistic model we have outlined above is that in Borel’s approach

probability describes the macro-level use of vague predicates across a population,

capturing natural variations between individuals,5 whilst we have proposed that

each individual adopts a probabilistic model when deciding whether or not a vague

term can be applied. However, stochastic channels as described below are agnostic

as to the exact source of the variations between senders. Indeed for Borel’s

statistical model the main claim of our paper can be reformulated as follows;

variation in the application of vague predicates with certain overall probabilistic

profiles, can be a positive benefit in multi-sender channels.

A different non-epistemic probabilistic approach is proposed by Kamp (1975) as

an extension of the supervaluation theory of vagueness (Fine 1975) in which a

probability measure is introduced to weight the different admissible precisifications

of a predicate. The membership of a element in the extension of the predicate is then

taken to be the measure of the set of precisifications that contain it. Now clearly this

model can also act as a source of stochasticity if, for example, when deciding

whether or not to describe the robber as short, each witness picks a precisification at

random according to the probability weighting and then checks if the robber’s

height is contained in the particular extension of short that they have chosen.

Finally, a general degree-based view of vagueness defines the membership of the

extension of a predicate as a function into [0, 1], but where there is no probabilistic

interpretation of this membership function (Smith 2008). Even for this non-

probabilistic model, stochastic channels can still be relevant provided that assertion

decisions are made by employing a threshold on membership functions. For

example, a witness will assert that ‘the robber is short’ provided that the robber’s

value in the witness’ membership function for short exceeds some threshold h. If h
is chosen stochastically then the type of signal aggregation proposed below can still

be applied, but where the information conveyed over the channel relates to the

robber’s membership value in short rather than to a direct estimate of their height.

An outline of the remainder of the paper is as follows: Sect. 3 introduces the

optimal Boolean binary channel as well as a simple vague channel involving the

aggregation of stochastic signals. Section 4 then compares these two channels in

terms of the expected squared error between the actual input and the receiver’s

5 In this respect Borel’s approach is similar to that of Black (1937) and to the voting interpretation of

fuzzy logic (Lawry 1998).
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estimate of it, under the assumption that inputs are uniformly distributed on [0, 1].

In Sect. 5 we consider both Boolean and vague channels involving multiple labels.

Section 6 investigates the robustness of vague channels to transmission error. In

Sect. 7 we consider the situation in which the input distribution is unknown so that

the channels cannot be optimised for a particular prior. In particular, we compare

how both channels perform under a range of different input distributions. Section 8

considers optimal vague channels for different numbers of senders and, in

particular, will show that S-curve membership functions perform well for channels

with relatively low numbers of senders. Finally, in Sect. 9 we give some discussion

and conclusions.

3 Boolean and Vague Channels

We now introduce a simple model of binary communication involving aggregation,

as exemplified by the robber story from Sect. 1. An input value x is drawn at random

from the normalised scale [0, 1] according to a uniform distribution. Each of a

number of senders then select a label from the message set M ¼ fL1; L2g which

they judge to be an appropriate description of x, and transmit this to a single

receiver. The receiver then aggregates these signals in order to determine an

estimate y, of the value of x. We assume that all agents, senders and receiver, share

the same definition of the labels in M. Furthermore, we adopt Grice’s assumption

(1975) that all the senders aim to describe x in such a way as to enable the receiver

to determine the best possible estimate. We now consider the two cases in which the

labels in M are defined according to the standard Boolean model and according to

an uncertain threshold based vague model.

3.1 The Optimal Boolean Channel

For binary Boolean channels we adopt a general fixed threshold model in which L1
corresponds to the interval ½0; hÞ and L2 to ½h; 1�, for some threshold value h in

[0, 1]. That is, any value x\h is always described as L1 and any x� h is always

described as L2. As discussed in Sect. 1, in such cases the receiver does not benefit

from multiple signals since, given a shared Boolean model, all senders will assert

identical descriptions of x.6 Consequently we can simplify any such Boolean

channel so as to consist of only one sender S and a receiver R. The sender transmits

either a 0 (i.e. S ¼ 0) to stand for L1 or a 1 (i.e. S ¼ 1) to stand for L2. The receiver

then estimates x to be y0, a typical L1 value, if they receive a 0 and to be y1, a typical

L2 value, if they receive a 1. Assuming that x is uniformly distributed on [0, 1] we

can measure the accuracy of this channel by evaluating the expected value of

6 Note that this is not the case if the individual senders are subject to independent identically distributed

sensor noise. For example, if each sender perceives xþ � where ��Nð0; rÞ then employing multiple

senders can indeed improve estimation performance for Boolean channels. Ribeiro and Giannakis (2006)

consider this case in detail including the selection of optimal threshold parameters under different

conditions.
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ðx� yÞ2, which we denote by EBððx� yÞ2Þ. Unsurprisingly this value is minimal

when h ¼ 1
2
; y0 ¼ 1

4
and y1 ¼ 3

4
.

Theorem 1 For a Boolean channel, if L1 is defined as the interval ½0; hÞ and L2 as

the interval ½h; 1� and

y ¼
y0 : R ¼ 0

y1 : R ¼ 1

�
;

and assuming that x is uniformly distributed on [0, 1], then EBððx� yÞ2Þ is minimal
when h ¼ 1

2
; y0 ¼ 1

4
and y1 ¼ 3

4
.

3.2 A Multiple Sender Vague Channel

We now propose a multiple sender vague channel in which signals from a number of

stochastic senders are aggregated by a receiver so as to estimate the input variable.

In contrast to the Boolean channel, in the vague channel all senders and receiver

adopt a probabilistic interpretation of the labels in M as described in Sect. 2. More

formally, there are nþ 1 agents corresponding to n senders S1; . . .; Sn and a receiver

R. Given the same input x 2 ½0; 1� each sender independently selects a message from

the setM ¼ fL1; L2g and transmits either a 0 (i.e. Sj ¼ 0) standing for L1 or a 1 (i.e.

Sj ¼ 1) standing for L2. All agents adopt the same shared probabilistic definition of

M in which L1 is ½0; hÞ and L2 is ½h; 1� and where h is an uncertain threshold which

we assume to be uniformly distributed on [0, 1].7 This results in the membership

functions lL1ðxÞ ¼ 1� x and lL2ðxÞ ¼ x. We then assume that for each sender Sj the

choice of signal, either 0 or 1, is stochastic with PðSj ¼ 0jxÞ ¼ lL1ðxÞ ¼ 1� x, and

PðSj ¼ 1jxÞ ¼ lL2ðxÞ ¼ x (see Fig. 1). R receives an n-bit sequence of 1’s and 0’s

from the different senders, where Rj denotes the signal received from sender Sj. R

then aggregates these signals in order to obtain an estimate y, of the input x (see

Fig. 2). We initially adopt the simple frequency estimator;

y ¼ T

n
where T ¼

Xn
j¼1

Rj

4 A Comparison of Boolean and Vague Binary Channels

Assuming that x is uniformly distributed on [0, 1] we can use elementary statistics

to evaluation the expected squared error for the vague channel described in Sect. 3.2

and denoted EVððx� yÞ2Þ, as follows:

EVððx� yÞ2Þ ¼
Z1

0

EVððx� yÞ2jxÞ dx

Given input x, T is distributed according to a binomial distribution with parameters

n and x. Hence, EðT jxÞ ¼ nx and EVðyjxÞ ¼ x. Therefore,

7 From the perspective of the epistemic theory this corresponds to the situation in which the speaker is

completely uncertain about h.
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EVððEVðyjxÞ � yÞ2jxÞ ¼ VVðyjxÞ ¼ V
T

n
jx

� �
¼ 1

n2
VðTjxÞ ¼ xð1� xÞ

n

From this we obtain that:

EVððx� yÞ2Þ ¼
Z1

0

xð1� xÞ
n

dx ¼ 1

6n

For the optimal Boolean channel we have instead that the expected squared error is

given by:

EBððx� yÞ2Þ ¼
Z 1

2

0

x� 1

4

� �2

dxþ
Z1

1
2

x� 3

4

� �2

dx ¼ 1

48

Now trivially, EVððx� yÞ2Þ is a strictly decreasing function of n (see Fig. 3) and

hence EVððx� yÞ2Þ� EBððx� yÞ2Þ provided that n� 8.

P (Sj = 1|x)
L2

P (Sj = 0|x)
L1

x

Fig. 1 Probabilities for sending
a 0 or a 1 given x, derived from a
vague definition of labels L1 and
L2

S1

Sj

Sn

x

x

x

R y

Fig. 2 A multiple sender vague
channel
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At this point we might be tempted to argue that a lower bound of 8 on the

required number of senders does not make a strong case for the utility of vagueness

in communication. After all how often do we have the luxury of aggregating

assertions from that many different independent sources? However, note that we

have not yet attempted to optimise the vague channel as we have done for the

Boolean channel. We return to this issue in Sect. 8 where we show that there are

vague channels that outperform the optimal Boolean channel when there are 2 or

more senders. Initially, however, we investigate the behaviour of the linear vague

channel described above (Fig. 1) as the number of labels in M increases and in this

case show that the number of senders required to outperform the Boolean channel

also decreases significantly. Furthermore, we then consider the robustness of the

vague channel to noise and to ignorance about the underlying distribution on x.

5 Multiple Labels Channels

In this section we consider channels in which there are multiple labels so that

M ¼ fL1; . . .; Lkg for k� 2. We are thinking of these labels as representing higher

granularity descriptions of values on some common underlying scale. For example,

instead of simply describing the robber as being either short or tall, witnesses might

instead choose between the three labels; short, medium and tall, or perhaps between

the five labels; very short, short, medium, tall and very tall. As the number of labels

increases then each label refers to a more and more specific range on the scale.

We assume that Boolean labels are defined in terms of k þ 1 fixed threshold

values 0 ¼ h0 � h1 � . . .� hk�1 � hk ¼ 1 such that the label Li corresponds to the

interval ½hi�1; hiÞ for i ¼ 1; . . .; k � 1 and Lk corresponds to ½hk�1; hk�. As in Sect. 4,

the Boolean nature of this channel and the fact that the same label definitions are

shared by all agents mean that we need only assume one sender and a receiver. The

sender transmits a value in f0; . . .; k � 1g, where S ¼ i� 1 stands for Li, and upon

receiving which the receiver estimates the value of x to be a typical value of Li
denoted by yi�1. This form of channel fits within the general framework of

quantization in multi-sensor platforms proposed by Gubner (1993). Gubner’s model

is more general in that, for example, it allows for different sensor reading from the

different senders resulting from sensory noise and other environmental variations.

From the following theorem we see that the expected squared error for this channel

is minimal when the threshold values are regularly spaced between 0 and 1 and

where the typical values are the mid points of each interval.

Theorem 2 For a Boolean channel, if Li is defined as the interval ½hi�1; hiÞ for

i ¼ 1; . . .; k � 1 and Lk is defined as ½hk�1; hk� where 0 ¼ h0\h1\. . .\hk�1\hk ¼
1; and

y ¼ yi : R ¼ i for i ¼ 0; . . .; k � 1f

then, assuming that x is uniformly distributed on ½0; 1�; EBððx� yÞ2Þ is minimal

when hi ¼ i
k
and yi ¼ hi�1þhi

2
for i ¼ 1; . . .; k.
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For the vague channels with multiple labels we assume that the label Li
corresponds to the interval ½hi�1; hiÞ for i ¼ 1; . . .; k � 1 but where each of the

thresholds is uncertain.8 There are many possible joint distributions on these k � 1

thresholds satisfying the constraints that hi�1\hi, but here we adopt a simple

formulation in which hi ¼ hþ i�1
k�1

where the parameter h is uniformly distributed on

the interval ð0; 1
k�1

Þ. The memberships for the labels are then as follows (see Fig. 4):

lLiðxÞ ¼

ðk � 1Þx� ði� 1Þ : x 2 i� 2

k � 1
;
i� 1

k � 1

� �

i� ðk � 1Þx : x 2 i� 1

k � 1
;

i

k � 1

� �

0 : otherwise

8>>>>><
>>>>>:

for i ¼ 1; . . .; k

Each of the n senders then stochastically transmits a value from f0; . . .; k � 1g
where PðSj ¼ i� 1jxÞ ¼ lLiðxÞ. R then receives a n-length sequence of numbers

from f0; . . .; k � 1g which they aggregate using the frequency estimator;

y ¼ T

nðk � 1Þ where T ¼
Xn
j¼1

Rj

This form of multiple label linear vague channel is a special case of the model of

probabilistic quantization proposed by Xiao et al. (2006). In Xiao et al. (2006) an

upper bound on estimation error is determined for a sensor fusion platform

employing linear probabilistic quantization and assuming that each sender is prone

to independent noise drawn from a distribution with mean zero and a known

E
V((x − y)2)

E
B((x − y)2)

n

Fig. 3 EVððx� yÞ2Þ and
EBððx� yÞ2Þ as functions of the
number of senders n

8 We take h0 ¼ 0; hk ¼ 1 and Lk to be ½hk�1; hk�.
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standard deviation. Here, however, we focus on a direct comparison between

stochastic channels of this kind and the optimal Boolean channel. The following

results show that the minimal number of senders required for the vague channel with

multiple labels to be on average at least as accurate as the comparable Boolean

channel, is a decreasing function of the number of labels k (see Fig. 5). This value is

strictly greater than 2 for all k, tending to 2 in the limit as k tends to infinity. In fact,

for channels with 6 or more labels only 3 senders are required for the vague channel

to be at least as accurate as the Boolean channel.

Lemma 3 Let ni ¼ jfj : Sj ¼ igj for i ¼ 0; . . .; k � 1: If x 2 ½ i�1
k�1

; i
k�1

Þ then

y ¼
ni
n
þ i� 1

k � 1
¼

ni
ni�1þni

þ i� 1

k � 1

Furthermore, EVðyjxÞ ¼ x:

Theorem 4 If x is uniformly distributed on [0, 1] then EVððx� yÞ2Þ� EBððx�
yÞ2Þ if and only if n� 2k2

ðk�1Þ2
l m

.9

6 Robustness to Errors

It is commonly argued that systems which employ categories with fuzzy or blurred

boundaries are inherently tolerant of errors due to the gradedness of category

Fig. 4 Definition of vague and Boolean labels for a k label channel

9 zd e denotes the smallest natural number great than or equal to z.
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membership.10 In our context we now investigate how tolerant binary vague

channels are to transmission errors i.e. when Sj 6¼ Rj. For example, such errors could

be due to the receiver mishearing the speaker in a noisy environment, or in our

robbery example, information from a witness being misreported or misrecorded.

Throughout this analysis we will compare the expected squared error of the vague

channel to that of the error free optimal Boolean channel. For vague channels we

consider the simple case in which there is a fixed probability a of an error occurring

for each of the j channels to be aggregated. In other words;

PðRj ¼ 1jSj ¼ 0Þ ¼ PðRj ¼ 0jSj ¼ 1Þ ¼ a for j ¼ 1; . . .; n

The following result shows that provided the transmission error probability a is

less than 1
4
then by increasing the number of senders, vague channels can

compensate for errors so as to still perform as well as the error free Boolean channel

(see Fig. 6). As a tends to 1
4
from below this minimum number of required senders

tends to infinity. However, for example, to compensate for a 10% error rate only

requires a relatively modest increase from 8 to 12 senders. Indeed, for small error

probabilities of upto 0.045 only one additional sender is needed.

Theorem 5 If x is uniformly distributed on [0, 1], and a\1
4
then EVððx�

yÞ2jaÞ� EBððx� yÞ2Þ if and only if n� 8ð2a�2a2þ1Þ
1�16a2

l m
. If a� 1

4
then EVððx�

yÞ2jaÞ� EBððx� yÞ2Þ for all n� 1:

k

n

Fig. 5 The minimum number of
senders n required such that

EVððx� yÞ2Þ� EBððx� yÞ2Þ
plotted as a function of the
number of labels k

10 For example, see Hüllermeier (2011) for a discussion of the robustness of fuzzy methods used in

machine learning.
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7 Robustness to Ignorance

In the previous sections we have assumed that the distribution of the inputs x is

known to be uniform on [0, 1]. Instead, we now consider the situation in which the

distribution on inputs is unknown prior to communication so that it is not possible to

a priori optimise the design of the channels in order to minimize expected squared

error.11 In the face of such ignorance we assess how the Boolean and vague

channels introduced in Sect. 3 perform in different possible realities i.e. given

different distributions on x. In the first instance we suppose that the world turns out

to be such that inputs are symmetrically distributed about 1
2
. To model this scenario

we evaluate the expected squared error for both channels assuming that x is

distributed according to a symmetric beta distribution with parameter s i.e. with

density function
xs�1ð1�xÞs�1

bðs;sÞ (see Fig. 7). The following result gives an expression for

the minimal number of senders required for the vague channel to be at least as

accurate as the Boolean channel as a function of the symmetric beta distribution

parameter s. In the limit as s tends to infinity the required number of senders tend to

4. Furthermore, from Fig. 8 we can see that across all s the maximal number of

required senders is 11. In other words, providing that the vague channel has at least

11 senders then we can be sure that it will be as least as accurate as the Boolean

channel no matter what value of s characterises the true input distribution.

α

n

α

n

(a) (b)

Fig. 6 The minimum value of n such that EVððx� yÞ2jaÞ� EBððx� yÞ2Þ plotted as a function of the

channel error probability a. a a ranging from 0 to 1
4
. b a ranging from 0 to 0.1

11 Given ignorance of the distribution on inputs, agents might invoke the principle of insufficient reason

and assume a uniform distribution. This would then motivate them to adopt a Boolean channel with

h ¼ 1
2
; y0 ¼ 1

4
and y1 ¼ 3

4
as described in Sect. 3.1.
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Theorem 6 If x is distributed according to a symmetric beta distribution with

parameter s[ 0; then EVððx� yÞ2Þ� EBððx� yÞ2Þ if and only if

n� 8s2bðs; sÞ
sð2sþ 5Þbðs; sÞ � 1

2

� �2sþ1
16ð2sþ 1Þ

& ’

The assumption that inputs will turn out to be symmetrically distributed is of

course a strong one, and may well be unrealistic. In order to investigate asymmetric

input distributions we now evaluate the expected squared error for both channels

s =0 .2

s =0 .5

s =1

s =2

s =5
Fig. 7 Density functions for
symmetric beta distributions
with s ¼ 0:2; s ¼ 0:5; s ¼ 1; s ¼
2 and s ¼ 5

n

s

Fig. 8 The minimum number of senders n required such that EVððx� yÞ2Þ�EBððx� yÞ2Þ, assuming that
x is distributed according to a symmetric beta distribution with parameter s, plotted as a function of s

J. Lawry, O. James

123



assuming that inputs follow a general beta distribution with parameters s and t i.e.

with density function
xs�1ð1�xÞt�1

bðs;tÞ . The following result gives an expression for the

minimum number of senders required for the vague channel under this distribution,

as a function of the beta parameters s and t. From this we can obviously infer that no

matter what values of s and t characterise the actual distribution of inputs there is

always a minimum number of senders for which the vague channel is at least as

accurate as the Boolean channel. Unfortunately, this minimal number of senders is

unbounded as s and t vary. To see this consider the case where s ¼ 2t. Figure 9b

shows the beta density functions in this case for different values of t, all of which

have an expected value of 3
4
. Furthermore, as t increases these density functions

become increasingly peaked at 3
4
. Now clearly the Boolean channel will tend to be

well suited to any such reality since the sender would be highly likely to transmit a

1, given which the receiver will estimate the value y1 ¼ 3
4
. Indeed Fig. 9a suggests

that the minimum number of senders required for the vague channel given this

family of skewed distributions is an unbounded strictly increasing function of t.

Theorem 7 If x is distributed according to a beta distribution with parameters

s[ 0 and t[ 0; then EVððx� yÞ2Þ� EBððx� yÞ2Þ if and only if

n� 16bðs; tÞst
8b 1

2
; s; t

� �
ðs� tÞðsþ t þ 1Þ � 16 1

2

� �sþtðsþ t þ 1Þ þ ð9t2 þ 9t � 6st þ s2 þ sÞbðs; tÞ

& ’

8 Optimal Vague Channels

Up to this point we have focused on comparing a simple linear vague channel with

the optimal Boolean channel for languages of different sizes, as well as under

channel noise and when both senders and receives are ignorant about the underlying

distribution of the input values. In this section we investigate the optimal vague

channel for a fixed number of senders. To make a precise comparison between the

optimal vague and Boolean channel we initially need to clarify what exactly we

mean by vague channel in this more general context. From the discussion of the

threshold model of vagueness in Sect. 2, we consider the labels L1 ¼ ½0; hÞ and

L2 ¼ ½h; 1� where h is a random variable with probability density function f and

associated cumulative distribution F. We then have that Sj sends a 0 or 1 according

to the generator function F as follows:

PðSj ¼ 0jxÞ ¼ Pðx\hÞ ¼ 1� FðxÞ and PðSj ¼ 1jxÞ ¼ Pðx� hÞ ¼ FðxÞ

Now if we allow for the possibility that f ðxÞ ¼ dðx� 1
2
Þ, i.e. the Dirac delta function

at 1
2
, then this class of channels will also include the optimal Boolean channel.

Hence, to make a clear distinction between vague and Boolean channels we insist

that for vague channels f is a continuous function on [0, 1]. Given this requirement it

follows that for channels with only one sender all vague channels have a strictly

higher expected error than the optimal Boolean channel.
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Theorem 8 There is no vague channel with only one sender such that

EVððx� yÞ2Þ� EBððx� yÞ2Þ.

In contrast, for n� 2 it is always possible to find a vague channel of this more

general form which outperforms the optimal Boolean channel. However, the

optimal distribution on the threshold h will be different for different numbers of

senders. To see this consider a vague channel with n senders and threshold

cumulative distribution F then the error minimizing estimator of x from T is given

by:

y ¼ EðxjTÞ ¼
Z1

0

xPðxjTÞ dx ¼
R 1
0
xPðT jxÞ dxR 1

0
PðTjxÞ dx

¼
R 1
0
xFðxÞTð1� FðxÞÞn�T

dxR 1
0
FðxÞTð1� FðxÞÞn�T

dx

For example, if h is uniformly distributed as in Sect. 3 then the error minimizing

estimator of x corresponds to Laplace’s rule so that y ¼ Tþ1
nþ2

. In this case we obtain

that EVððx� yÞ2Þ ¼ 1
6ðnþ2Þ and hence, by using this estimator in place of the fre-

quency y ¼ T
n
the minimum number of senders for which EVððx� yÞ2Þ� EBððx�

yÞ2Þ decreases from 8 to 6. More generally, we can also consider optimising the

choice of threshold distribution F so as to minimise the expected error of the vague

channel when applying the error minimizing estimator of x. Here we consider a

parametrised family of density functions f in the form of normal distributions with

mean 1
2
and standard deviation r, normalised so that all values of h are between 0

and 1. In this case the cumulative distribution F has the following form:

FðxÞ ¼ 1

2
1þ erf

x� 1
2

r
ffiffiffi
2

p
� ��

þ x� 1

2

� �
1þ erf

�1
2

r
ffiffiffi
2

p
� �� �

t

n

t =10

t =50

t =100
(a) (b)

Fig. 9 The case in which x is distributed according an asymmetric beta distributions with parameters 2t

and t. a The minimum value for n for which EVððx� yÞ2Þ�BBððx� yÞ2Þ. b Beta distribution with
parameters 2t and t for t ¼ 10; t ¼ 50 and t ¼ 100
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Here we can view r as a vagueness parameter such that as r ! 0 then F(x) tends to

the step function so that the vague channel converges to the Boolean channel,

whereas as r ! 1 then F(x) tends to x giving the linear vague channel already

investigated in this paper. Figure 10 shows EVððx� yÞ2Þ for the error minimizing

vague channel with two senders compared to EBððx� yÞ2Þ as r varies. The optimal

two sender vague channel for this parametrised family of distributions is at r �
0:07532 but the error minimising vague channel outperforms the optimal Boolean

channel for r� 0:1482. Note that the optimal distribution function is different for

channels with different numbers of senders n. For example, Fig. 11 shows the

optimal cumulative distributions and Fig. 12 shows the corresponding optimal

values of r for the channels with n ¼ 1; . . .; 10 senders. This suggests that vaguer

channels are optimal when there are a larger numbers of senders, but that the

gradient of this increasing trend in vagueness decreases with n. In terms of a direct

comparison between vague and Boolean channels then for n� 6, adopting the error

minimizing estimator of x ensures that EVððx� yÞ2Þ\EBððx� yÞ2Þ for all r[ 0.

For example, Fig. 13a, b shows the expected error for channels with 6 and 8 senders

respectively plotted against r and compared to the Boolean channel error.

9 Discussion and Conclusions

In this paper we have attempted to make the case for vague categories with blurred

boundaries playing a positive role in a certain type of communication scenario in

which a receiver aggregates signals from multiple senders. We have compared a

simple vague channel with linear membership functions and frequency based

aggregation to the optimal Boolean channel. Unsurprisingly, for error free channels

in which the input distribution is a priori known to be uniform, the expected squared

error for the vague channel is a strictly decreasing function of the number of

senders. Since Boolean channels do not gain from having multiple senders then we

E
V((x − y)2)

E
B((x − y)2)

σ
0

Fig. 10 EVððx� yÞ2Þ and EBððx� yÞ2Þ plotted against r for a channel with 2 senders
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can always identify a minimum number of senders above which the vague channel

will be on average more accurate, in terms of expected squared error, than the

comparable Boolean channel. Our focus has then been on identifying the minimal

number of senders in different scenarios where there are multiple labels, channel

error or prior ignorance about the input distribution, and also when optimal vague

channels are considered. This is motivated by the intuition that the lower bound on

the number of senders required by vague channels directly influences the strength of

our case for the efficacy of blurred boundaries.

The plausibility of our argument that the blurred boundaries of vague predicates

have a useful role to play as a natural source of stochastic assertion decisions,

depends to a large part on the extent to which aggregation, of the form exemplified

by our robbery story, is a common part of natural language communication. We note

that for one sender and one receiver channels our results are entirely consistent with

those of Lipman (2009), all be it formulated differently. Stochastic channels of the

form we have proposed are undoubtedly suboptimal in such cases (see Theorem 8).

For our argument in favour of vagueness to be in any way convincing it would need

x

F
(x
)

Fig. 11 Cumulative distribution F for the optimal channel for n ¼ 1; . . .; 10 senders

n

σ

Fig. 12 Optimal values of r for channels with n ¼ 1; . . .; 10 senders
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to hold that some level aggregation is a common part of linguistic communication,

indeed even more common than one-on-one interactions of the type modelled by

signalling games. We do not attempt to directly make this case here, neither are we

aware of any empirical studies which look specifically into this claim. Instead, as we

emphasised earlier, our goal is only to identify a possible scenario in which

vagueness can be useful. However, it nonetheless seems clear that the larger the

number of senders required for the vague channel to at least match the accuracy of

the Boolean channel, the less compelling is the case for stochastic aggregation being

a common feature of language. From this respect both our result for multiple vague

channels (Theorem 4) and our study of optimal vague channels (Sect. 8) are both

encouraging. For the former we have shown that the number of senders required for

the linear vague channel to outperform the Boolean channel decreases rapidly as the

number of labels increases (see Fig. 5). For the latter we have shown that by

adopting the error minimizing estimator of x and then by selecting the distribution

on h from a parametrised family with mean 1
2
, we can identify a unique channel

which minimizes the value of EVððx� yÞ2Þ for any fixed number of senders.

Furthermore, provided that n� 2 then vague channels can be found with a lower

expected error than the optimal Boolean channel. Note that different vague channels

are optimal for aggregating different numbers of senders, with more vague label

definitions being preferred for larger n (see Fig. 12). Tantalisingly the type of

S-curve reported in recent experimental studies on scalar adjectives (Lassiter and

Goodman 2013; Qing and Franke 2014) are similar in form to those cumulative

distribution functions optimal for channels with relatively low numbers of senders

(see Fig. 11). This would then be consistent with the form of limited aggregation

that one might expect to find in natural language where senders are scarce resources

and where normally there will only be a small number of them. Certainly, the

E
V((x − y)2)

E
B((x − y)2)

σ

E
V((x − y)2)

E
B((x − y)2)

σ

(a) (b)

Fig. 13 EVððx� yÞ2Þ and EBððx� yÞ2Þ plotted against r for channels with 6 and 8 sender channel.
a Expected errors for a channel with 6 senders. b Expected errors for a channel with 8 senders
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accuracy gained by using vague channels could potentially confer a significant

advantage to both senders and receivers. For instance, in multi-label communication

with 7 labels and 3 senders the expected squared error for the vague channel is

around 11% lower than that of the Boolean channel with the same number of

senders. Certainly message sets with around 7 labels are not unrealistic, being

consistent with the famous magic number theory of Miller (1956) which proposes

bounds on the number of graduations on a numerical scale based on the limitations

of human memory. Furthermore, a vague channel optimised for 2 labels and for only

2 senders has an error around 13% lower than the Boolean channel.

From a game theory perspective and with reference to Lipman (2009) we might

wonder how the multi-sender games described in this paper can demonstrate the

utility of stochasticity in communication and hence escape the general result that

mixed strategies are always suboptimal to pure strategies. In order to reconcile

Lipman’s observation with our results we must first clarify the type of games being

played by the Boolean and vague channels respectively. For instance, for the

Boolean channel only two strategies are available to senders; transmit 0 or transmit

1. In contrast, for the vague channel we should think of the n senders as a compound

aggregated sender S who can choose between signals 0; 1; . . .; n, i.e. the possible

values of T, and whose available strategies is the set of all the binomial distributions

on f0; . . .; ng. Hence, for n[ 1 one explanation for the superior performance of

vague channels is that the sender simply has more strategies to chose from than in

the Boolean channel. The question remains, however, why is a pure strategy not also

optimal for the vague channel? The reason for this lies in the restricted set of

strategies available to S. In a mixed-strategy game S would be allowed to chose any

strategy from D, the set of all probability distributions on f0; . . .; ng (Osborne and

Rubinstein 1994). However, the set of binomial distributions is a non-convex strict

subset of D. In particular, it does not include any pure strategy of the form S ¼ T ,

where T 2 f1; . . .; n� 1g. However, in the case that x 2 ð0; 1Þ it is exactly such a

pure strategy, i.e. where S ¼ nxd e, that is optimal in the full mix-strategy game. On

the other hand, permitting this optimal strategy would be hard to justify in the

context of natural language communication, since it would require that the n senders

collaborate so as to transmit the best n-bit approximation to x i.e. any combination

of signals in which the number of ones is exactly nxd e. Essentially this would then

be equivalent to a single n-bit channel, rather than n 1-bit channels. However, in

natural language scenarios such as the robbery example in which the descriptions of

a number of independent witnesses are aggregated, it is the latter which would seem

to provide the more appropriate model.12

To assume error free channels for which the input distribution is completely

known prior to communication, is unrealistic. However, we have shown that vague

channels are robust to reasonable levels of transmission error i.e. with error

probability less than 1
4
. In such cases by increasing the number of senders a vague

12 In sensor networks it can be appropriate and useful to consider different models of collaboration

between senders. For example, Luo (2005) proposes a scheme in which, while each sender transmits

independently, they are allocated different bits to transmit in the binary expansion of the number to be

communicated. The optimal scheme suggests allocating 1
2
of the senders to the first bit, 1

4
to the second bit

etc.
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channel can compensate for transmission error so as to still be more accurate than

the error free Boolean channel. Indeed to compensate for an error rate less than

4.5% requires only one additional sender. Regarding robustness to ignorance

concerning the input distribution our results are rather more mixed. If reality is well

modelled by the family of symmetric beta distributions then across all possible

parameter values there is an upper bound on the minimal number of senders

required by the vague channel. On the other hand, no such upper bound exists for

the general family of beta distributions. This is mainly because an asymmetric

model of this kind allows for the case that reality may turn out to be particularly

favourable for the Boolean channel. For example, this is the case if the distribution

on inputs is heavily peaked at either 1
4
or 3

4
.

In the current paper we have focussed on vague labels with fixed definitions.

However, a common feature of adjectives in natural language is that they are

context dependent. For example, the description short has a different meaning when

applied to the restricted class of basketball players than to the general class of

potential suspects in the Bristol robbery. One potential mechanism by which relative

descriptors of this kind could be incorporated into the current model would be for

both speakers and listeners to employ a form of context dependent scaling. For

instance, suppose that z is the underlying variable to be communicated, e.g. unscaled

height in the robber example, and further suppose that for a reference class C, z has

the distribution function FC. If both senders and receivers have sufficient knowledge

of z on class C to have a good estimate of FC, then channels of the following form

can be defined by employing rescaling. Senders evaluate the scaled variable

x ¼ FCðzÞ, which is uniformly distributed on [0, 1] provided that inputs are

restricted to the class C. This can then be transmitted using vague channels of the

form proposed above, with the receiver obtaining an estimate y of x, which they then

rescale according to F�1
C ðyÞ in order to give an estimate of z. In this case the

production function for the input z is PðS ¼ 1jzÞ ¼ lL2ðFCðzÞÞ, and Fig. 14

illustrates this scaling process for the reference classes ‘UK males’, perhaps the

reference class for the robbery example, and ‘Basketball players’. In particular,

Fig. 14c shows the membership functions for tall in the two different contexts.

Additional work is required to investigate the efficacy of this approach from a

communication perspective.13

In addition to signalling errors as discussed in Sect. 6, there are two additional

sources of noise that will naturally occur for the type of communication channel we

have proposed. Firstly, assuming a distributed learning model in which individuals

infer the meanings of labels from repeated experiences of language use, it is

inevitable that there will be variations in definitions between individuals. Secondly,

we have assumed that all senders are describing the same input value. In reality this

sensory data is likely to be subject to noise from a variety of sources. A future

challenge is then to undertake a comparative study of vague and Boolean channels

in the presence of both types of noise.

13 In the ‘‘Appendix’’, Example 9 illustrates how this model of context can be applied so as to give an

account of absolute adjectives.
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In summary, the results presented in this paper suggest that vagueness acting as a

source of randomness in assertion decisions, can be useful in communication

scenarios where the number of relevant description words is moderately large and

when there is aggregation of signals from several senders. However, the extent to

which such scenarios occur in natural language and whether or not they are

sufficiently common to explain the ubiquitousness of vague terms, remains very

much an open question.
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Fig. 14 Context scaling for the reference classes ‘UK males’ and ‘Basketball players’. a Distributions of
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PðS ¼ 1jzÞ ¼ lL2 ðFCðzÞÞ for the two reference classes. These correspond to the membership functions for
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Appendix

Proof of Theorem 1 This is a special case of Theorem 2. h

Proof of Theorem 2 For fixed hi : i ¼ 0; . . .; k then we need to pick yi so as to

minimize

EBððx� yÞ2Þ ¼
Xk
i¼1

Zhi

hi�1

ðx� yiÞ2 dx

This corresponds to selecting yi so as to minimize
R hi
hi�1

ðx� yiÞ2 dx for i ¼ 1; . . .; k.

Now,

Zhi

hi�1

ðx� yiÞ2 dx ¼
1

3
h3i � h2i yi þ hiy

2
i �

1

3
h3i�1 þ h2i�1yi � hi�1y

2
i

Now differentiating with respect to yi is gives us the following:

oEBððx� yÞ2Þ
oyi

¼ �h2i þ 2yihi þ h2i�1 � 2hi�1yi

Hence, setting
oEBððx�yÞ2Þ

oyi
¼ 0 gives us that

2yiðhi � hi�1Þ ¼ h2i � h2i�1 ) yi ¼
hi þ hi�1

2

Also, since the second derivative
o2EBððx�yÞ2Þ

oy2
i

¼ 2ðhi � hi�1Þ[ 0 then this corre-

sponds to the minimum. Hence, substituting we obtain the following expression:

EBððx� yÞ2Þ ¼
Xn
i¼1

1

12
h3i �

1

4
h2i hi�1 þ

1

4
hih

2
i�1 �

1

12
h3i�1

Differentiating with respect to hi we obtain the following:

oEBððx� yÞ2Þ
ohi

¼ �1

2
hihi�1 þ

1

4
h2i�1 �

1

4
h2iþ1 þ

1

2
hiþ1hi

Hence, setting
oEBððx�yÞ2Þ

oti
¼ 0 gives us that
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1

2
hiþ1hi �

1

2
hihi�1 ¼

1

4
h2iþ1 �

1

4
h2i�1 )

hiðhiþ1 � hi�1Þ
2

¼ ðhiþ1 þ hi�1Þðhiþ1 � hi�1Þ
4

) hiþ1 ¼ 2hi � hi�1:

Now since h0 ¼ 0 and hk ¼ 1 then this recurrence relation has the closed form

hi ¼ i
k
. Finally now that since the second derivative

o2EBððx�yÞ2Þ
oh2i

¼ 1
2
ðhiþ1 � hi�1Þ[ 0

then this is a minimum. h

Proof of Lemma 3 If x 2 ½ i�1
k�1

; i
k�1

Þ then PðLrjxÞ ¼ 0 for r[ iþ 1 and r\i. Hence,

n ¼ ni þ ni�1 and
Pn

j¼1 Rj ¼ i ¼ ðiÞni þ ði� 1Þni�1. Therefore,Pn
j¼1 Rj

nðk � 1Þ ¼
ðiÞni þ ði� 1Þni�1

nðk � 1Þ ¼ ðiÞni þ ði� 1Þðn� niÞ
nðk � 1Þ

¼ ni þ nði� 1Þ
nðk � 1Þ ¼

ni
n
þ i� 1

k � 1
¼

ni
ni�1þni

þ i� 1

k � 1

Now for x 2 ½ i�1
k�1

; i
k�1

Þ; ni has a binomial distribution with probability parameter

PðSj ¼ ijxÞ ¼ lLiþ1
ðxÞ ¼ ðk � 1Þx� ði� 1Þ. Hence,

EVðyjxÞ ¼ E
ni
n
þ i� 1

k � 1
jx

� �
¼

1
n
EðnijxÞ þ i� 1

k � 1
¼ ðk � 1Þx� ði� 1Þ þ i� 1

k � 1
¼ x

h

Proof of Theorem 4 Now,

EBððx� yÞ2Þ ¼
Z1

0

EBððx� yÞ2jxÞ dx ¼
Xk
i¼1

Z i
k

i�1
k

EBððx� yÞ2jxÞ dx

¼
Xk
i¼1

Z i
k

i�1
k

x� 2i� 1

2k

� �2

dx ¼ k
1

12k3

� �
¼ 1

12k2

Also,

EVððx� yÞ2Þ ¼
Z1

0

EVððx� yÞ2jxÞ dx ¼
Xk
i¼1

Z i
k�1

i�1
k�1

EVððx� yÞ2jxÞ dx

Now by Lemma 3 EVðyjxÞ ¼ x and hence

EVððx� yÞ2jxÞ ¼ EVððEVðyjxÞ � yÞ2jxÞ ¼ VVðyjxÞ

Also, for x 2 ½ i�1
k�1

; i
k�1

Þ; ni is binomially distributed with parameters n and

lLiþ1
ðxÞ ¼ xðk � 1Þ � ði� 1Þ. Hence,
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EVððx� yÞ2jxÞ ¼ V
ni
n
þ i� 1

k � 1
jx

� �
¼ V

ni

nðk � 1Þjx
� �

¼ 1

n2ðk � 1Þ2
VðnijxÞ ¼

ðxðk � 1Þ � ði� 1ÞÞði� xðk � 1ÞÞ
ðk � 1Þ2n

so that

Z i
k�1

i�1
k�1

EVððx� yÞ2jxÞ dx ¼ 1

6nðk � 1Þ3

and therefore,

EVððx� yÞ2Þ ¼ ðk � 1Þ 1

6nðk � 1Þ3
¼ 1

6nðk � 1Þ2

In contrast, we have for the k symbol Boolean channel that:

EBððx� yÞ2Þ ¼ k

Z i
k

i�1
k

x� 2i� 1

2k

� �2

dx ¼ k
1

12k3

� �
¼ 1

12k2

Consequently, EVððx� yÞ2Þ� EBððx� yÞ2Þ if and only if 1

6nðk�1Þ2 �
1

12k2
if and only if

n� 2k2

ðk�1Þ2 as required. h

Proof of Theorem 5 For x 2 ½0; 1� we have that:

PðRj ¼ 1jxÞ ¼ PðRj ¼ 1jSj ¼ 1ÞPðSj ¼ 1jxÞ þ PðRj ¼ 1jSj ¼ 0ÞPðSj ¼ 0jxÞ
¼ ð1� aÞxþ að1� xÞ

Hence, T ¼
Pn

j¼1 Rj is binomially distributed with mean nðð1� aÞxþ að1� xÞÞ
and variance nðð1� aÞxþ að1� xÞÞðaxþ ð1� aÞð1� xÞÞ. Now

EVððx� yÞ2jx; aÞ ¼ EVðy2jx; aÞ � 2xEVðyjx; aÞ þ x2

Here we have that:

EVðyjx; aÞ ¼ 1

n
EðT jx; aÞ ¼ ð1� aÞxþ að1� xÞ

and

EVðy2jx; aÞ ¼ 1

n2
EðT2jx; aÞ ¼ 1

n2
ðVðT jx; aÞ þ EðT jx; aÞ2Þ

¼ ðð1� aÞxþ að1� xÞÞðaxþ ð1� aÞð1� xÞÞ
n

þ ðð1� aÞxþ að1� xÞÞ2
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Substituting and expanding we obtain:

EVðy2jx; aÞ ¼ 1

n
4ax2 þ x� x2 � 4ax� 4a2x2 þ 4a2xþ a� a2 þ 4na2x2 � 4na2xþ na2
� �

Hence,

EVððx� yÞ2jaÞ ¼
Z1

0

EVððx� yÞ2jx; aÞ dx ¼ 1

6n
2a� 2a2 þ 2na2 þ 1
� �

Hence, trivially EVððx� yÞ2jaÞ is a decreasing function of n and

limn!1 EVððx� yÞ2jaÞ ¼ 1
3
a2. Now for a� 1

4
; 1
3
a2 � 1

48
¼ EBððx� yÞ2Þ and hence

8n� 1 EVððx� yÞ2jaÞ[ EBððx� yÞ2Þ. In the case that a\1
4
we require that:

1

6n
2a� 2a2 þ 2na2 þ 1
� �

� 1

48
) n� 8ð2a� 2a2 þ 1Þ

1� 16a2

as required. h

Proof of Theorem 6 This is a special case of Theorem 7. h

Proof of Theorem 7 Recall from Sect. 5 we have for the vague channel that

EVððx� yÞ2jxÞ ¼ xð1� xÞ
n

Hence,

EVððx� yÞ2Þ ¼
Z1

0

x� x2

n

xs�1ð1� xÞt�1

bðs; tÞ dx ¼ 1

nbðs; tÞðbðsþ 1; tÞ � bðsþ 2; tÞÞ

Now,

bðsþ 1; tÞ
bðs; tÞ ¼ s

sþ t
and

bðsþ 2; tÞ
bðs; tÞ ¼ ðsþ 1Þt

ðsþ t þ 1Þðsþ tÞ

EVððx� yÞ2Þ ¼ 1

n

s

sþ t
� ðsþ 1Þs
ðsþ t þ 1Þðsþ tÞ

� �
¼ st

nðsþ t þ 1Þðsþ tÞ

For the Boolean channel we have that

EBððx� yÞ2Þ ¼
Z0:5

0

x� 1

4

� �2
xs�1ð1� xÞt�1

bðs; tÞ dxþ
Z1

0:5

x� 3

4

� �2
xs�1ð1� xÞt�1

bðs; tÞ dx
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Now consider:

Z0:5

0

x� 1

4

� �2
xs�1ð1� xÞt�1

bðs; tÞ dx ¼
Z0:5

0

x2 � 1

2
xþ 1

16

� �
xs�1ð1� xÞt�1

bðs; tÞ dx

¼
Z0:5

0

xsþ1ð1� xÞt�1

bðs; tÞ dx� 1

2

Z0:5

0

xsð1� xÞt�1

bðs; tÞ dx

þ 1

16

Z0:5

0

xs�1ð1� xÞt�1

bðs; tÞ dx

¼
b 1

2
; sþ 2; t

� �
bðs; tÞ � 1

2

b 1
2
; sþ 1; t

� �
bðs; tÞ þ 1

16

b 1
2
; s; t

� �
bðs; tÞ

Now consider
bð1

2
;sþ2;tÞ
bðs;tÞ and recall that

bðsþ 2; tÞ ¼ ðsþ 1Þs
ðsþ t þ 1Þðsþ tÞbðs; tÞ )

b 1
2
; sþ 2; t

� �
bðs; tÞ

¼ sðsþ 1Þ
ðsþ tÞðsþ t þ 1Þ

bð1
2
; sþ 2; tÞ

bðsþ 2; tÞ ¼ sðsþ 1Þ
ðsþ tÞðsþ t þ 1ÞI12ðsþ 2; tÞ

Furthermore,

I1
2
ðsþ 2; tÞ ¼ I1

2
ðsþ 1; tÞ �

1
2

� �sþtþ1

ðsþ 1Þbðsþ 1; tÞ

¼ I1
2
ðsþ 1; tÞ �

1
2

� �sþtþ1ðsþ tÞ
sðsþ 1Þbðs; tÞ since bðsþ 1; tÞ ¼ s

sþ t
bðs; tÞ

Also, we have that:

I1
2
ðsþ 1; tÞ ¼ I1

2
ðs; tÞ �

1
2

� �sþt

sbðs; tÞ

Hence,

I1
2
ðsþ 2; tÞ ¼ I1

2
ðs; tÞ �

1
2

� �sþt

sbðs; tÞ �
1
2

� �sþtþ1ðsþ tÞ
sðsþ 1Þbðs; tÞ

¼ I1
2
ðs; tÞ �

1
2

� �sþt

sbðs; tÞ
3
2
sþ 1

2
t þ 1

sþ 1

� �

Therefore, by substituting we obtain

b 1
2
; sþ 2; t

� �
bðs; tÞ ¼ sðsþ 1Þ

ðsþ tÞðsþ t þ 1Þ I1
2
ðs; tÞ �

1
2

� �sþt

sbðs; tÞ
3
2
sþ 1

2
t þ 1

sþ 1

� � !

¼ sðsþ 1Þ
ðsþ tÞðsþ t þ 1ÞI12ðs; tÞ �

1
2

� �sþt 3
2
sþ 1

2
t þ 1

� �
ðsþ tÞðsþ t þ 1Þbðs; tÞ

Now consider
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b 1
2
; sþ 1; t

� �
bðs; tÞ ¼ s

sþ t
I1
2
ðsþ 1; tÞ since bðsþ 1; tÞ ¼ s

sþ t
bðs; tÞ

Furthermore,

I1
2
ðsþ 1; tÞ ¼ I1

2
ðs; tÞ �

1
2

� �sþt

sbðs; tÞ

Hence,

b 1
2
; sþ 1; t

� �
bðs; tÞ ¼ s

sþ t
I1
2
ðs; tÞ �

1
2

� �sþt

sbðs; tÞ

 !
¼ s

sþ t
I1
2
ðs; tÞ �

1
2

� �sþt

ðsþ tÞbðs; tÞ

Finally,
b 1

2
; s; t

� �
bðs; tÞ ¼ I1

2
ðs; tÞ

Therefore;

Z0:5

0

x� 1

4

� �2
xs�1ð1� xÞt�1

bðs; tÞ dx ¼ sðsþ 1Þ
ðsþ tÞðsþ t þ 1ÞI12ðs; tÞ �

1
2

� �sþt 3
2
sþ 1

2
t þ 1

� �
ðsþ tÞðsþ t þ 1Þbðs; tÞ

� 1

2
I1
2
ðs; tÞ �

1
2

� �sþt

sbðs; tÞ

 !
þ 1

16
I1
2
ðs; tÞ

¼ 1

ðsþ tÞðsþ t þ 1Þ
I1
2
ðs; tÞð9s2 þ 9s� 6st þ t2 þ tÞ

16
�

1
2

� �sþtþ1ð2sþ 1Þ
bðs; tÞ

 !

Now considerZ1

0:5

x� 3

4

� �2
xs�1ð1� xÞt�1

bðs; tÞ dx ¼
Z0:5

0

y� 1

4

� �2
yt�1ð1� yÞs�1

bðt; sÞ dy

by substituting y ¼ 1� x and since bðs; tÞ ¼ bðt; sÞ. Hence, by exchanging s and t in
the previous expression we have that:

Z1

0:5

x� 3

4

� �2
xs�1ð1� xÞt�1

bðs; tÞ dx

¼ 1

ðsþ tÞðsþ t þ 1Þ
I1
2
ðt; sÞð9t2 þ 9t � 6st þ s2 þ sÞ

16
�

1
2

� �sþtþ1ð2t þ 1Þ
bðs; tÞ

 !

¼ 1

ðsþ tÞðsþ t þ 1Þ
1� I1

2
ðs; tÞ

	 

ð9t2 þ 9t � 6st þ s2 þ sÞ

16
�

1
2

� �sþtþ1ð2t þ 1Þ
bðs; tÞ

0
@

1
A
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Hence,

EBððx� yÞ2Þ ¼ 1

ðsþ tÞðsþ t þ 1Þ
I1
2
ðs; tÞð9s2 þ 9s� 6st þ t2 þ tÞ

16
�

1
2

� �sþtþ1ð2sþ 1Þ
bðs; tÞ

 !

þ 1

ðsþ tÞðsþ t þ 1Þ
ð1� I1

2
ðs; tÞÞð9t2 þ 9t � 6st þ s2 þ sÞ

16
�

1
2

� �sþtþ1ð2t þ 1Þ
bðs; tÞ

 !

¼ 1

ðsþ tÞðsþ t þ 1Þ
1

2
I1
2
ðs; tÞðs� tÞðsþ t þ 1Þ

�

�
1
2

� �sþtðsþ t þ 1Þ
bðs; tÞ þ 9t2 þ 9t � 6st þ s2 þ s

16

!

Therefore, for EVððx� yÞ2Þ� EBððx� yÞ2Þ we require that

st

nðsþ t þ 1Þðsþ tÞ �
1

ðsþ tÞðsþ t þ 1Þ
1

2
I1
2
ðs; tÞðs� tÞðsþ t þ 1Þ

�

�
1
2

� �sþtðsþ t þ 1Þ
bðs; tÞ þ 9t2 þ 9t � 6st þ s2 þ s

16

!

Hence,

n� 16bðs; tÞst
8b 1

2
; s; t

� �
ðs� tÞðsþ t þ 1Þ � 16 1

2

� �sþtðsþ t þ 1Þ þ ð9t2 þ 9t � 6st þ s2 þ sÞbðs; tÞ

as required. h

Proof of Theorem 8 A vague channel is defined such that L1 ¼ ½0; hÞ and L2 ¼
½h; 1� where h is a random variable in [0, 1] with density function f and cumulative

distribution function F, so that:

PðS ¼ 0Þ ¼ Pðx\hÞ ¼ 1� FðxÞ and PðS ¼ 1Þ ¼ Pðx� hÞ ¼ FðxÞ

We assume that the density f is continuous on [0, 1] and hence EðhÞ 2 ð0; 1Þ and

VðhÞ[ 0. For any such channel the error minimising estimator of x from T is:

y ¼ EðxjTÞ ¼
R 1
0
xPðTjxÞ dxR 1

0
PðT jxÞ dx

When there is only one sender then either T ¼ 1 or T ¼ 0. Now PðT ¼ 1jxÞ ¼
PðS ¼ 1jxÞ ¼ FðxÞ and hence:

y1 ¼ EðxjT ¼ 1Þ ¼
R 1
0
xFðxÞ dxR 1

0
FðxÞ dx
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Now

Z1

0

FðxÞ dx ¼
Z1

0

Zx

0

f ðhÞ dh dx ¼
Z1

0

f ðhÞ
Z1

h

dx dh

¼
Z1

0

f ðhÞð1� hÞ dh ¼ Eð1� hÞ ¼ 1� EðhÞ

Also

Z1

0

xFðxÞ dx ¼
Z1

0

x

Zx

0

f ðhÞ dh dx ¼
Z1

0

f ðhÞ
Z1

h

x dx dh

¼
Z1

0

f ðhÞ ð1� h2Þ
2

dh ¼ 1

2
Eðh2Þ ¼ 1

2
ð1� Eðh2ÞÞ

Hence,

y1 ¼
1
2
ð1� Eðh2ÞÞ
1� EðhÞ

Similarly, PðT ¼ 0jxÞ ¼ PðS ¼ 0jxÞ ¼ 1� FðxÞ and hence:

y0 ¼ EðxjTÞ ¼
R 1
0
xð1� FðxÞÞ dxR 1
0
1� FðxÞ dx

Now,

Z1

0

1� FðxÞ dx ¼ 1�
Z1

0

FðxÞ dx ¼ EðhÞ

Also,

Z1

0

xð1� FðxÞÞ dx ¼
Z1

0

x dx�
Z1

0

xFðxÞ dx ¼ 1

2
� 1

2
ð1� Eðh2ÞÞ ¼ 1

2
Eðh2Þ

Hence,

y0 ¼
1
2
Eðh2Þ
EðhÞ

J. Lawry, O. James

123



From this we have that:

EVððx� yÞ2jxÞ ¼ ðx� y1Þ2FðxÞ þ ðx� y0Þ2ð1� FðxÞÞ

and hence,

EVððx� yÞ2Þ ¼
Z1

0

ðx� y1Þ2FðxÞ dxþ
Z1

0

ðx� y0Þ2ð1� FðxÞÞ dx

Now,

Z1

0

ðx� y1Þ2FðxÞ dx ¼
Z1

0

ðx2 � 2y1xþ y21ÞFðxÞ dx

¼
Z1

0

x2FðxÞ dx� 2y1

Z1

0

xFðxÞ dxþ y21

Z1

0

FðxÞ dx

Also,

Z1

0

ðx� y0Þ2ð1� FðxÞÞ dx ¼
Z1

0

ðx2 � 2y0xþ y20Þð1� FðxÞÞ dx

¼
Z1

0

x2 � 2y0xþ y20 dx�
Z1

0

ðx2 � 2y0xþ y20ÞFðxÞ dx

¼ 1

3
� y0 þ y20 �

Z1

0

x2FðxÞ dxþ 2y0

Z1

0

xFðxÞ dx� y20

Z1

0

FðxÞ dx

Hence,

EVððx� yÞ2Þ ¼
Z1

0

x2FðxÞ dx� 2y1

Z1

0

xFðxÞ dxþ y21

Z1

0

FðxÞ dx

þ 1

3
� y0 þ y20 �

Z1

0

x2FðxÞ dxþ 2y0

Z1

0

xFðxÞ dx� y20

Z1

0

FðxÞ dx

¼ 1

3
� y0 þ y20 þ ðy0 � y1Þ2

Z1

0

xFðxÞ dxþ ðy21 � y20Þ
Z1

0

xFðxÞ dx

¼ 1

3
� y0 þ y20 þ ðy0 � y1Þð1� Eðh2ÞÞ þ ðy21 � y20Þð1� EðhÞÞ

Letting w ¼ Eðh2Þ and EðhÞ ¼ z we have that y0 ¼ 1
2

w
z

	 

; y0 ¼ 1

2
1�w
1�z

	 

and by

substituting that:
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EVððx� yÞ2Þ ¼ 1

3
� 1

4

w2 þ z� 2wz

zð1� zÞ

Now since f is continuous on [0, 1] it follows that 0\z2\w\z\1. From this we

have that w2þz�2wz
zð1�zÞ [ 0. Hence, EVððx� yÞ2Þ is minimal when w2þz�2wz

zð1�zÞ is maximal.

Now,

o

ow

w2 þ z� 2wz

zð1� zÞ ¼ 2ðw� zÞ
zð1� zÞ \ 0

Hence, since w[ z2 it therefore follows that:

w2 þ z� 2wz

zð1� zÞ \
w2 þ z� 2wz

zð1� zÞ

����
w¼z2

¼ �z2 þ zþ 1

Furthermore �z2 þ zþ 1 has a maximum at z ¼ 1
2
and hence

w2 þ z� 2wz

zð1� zÞ \ � z2 þ zþ 1 � � z2 þ zþ 1

����
z¼1

2

¼ 5

4

Hence,

EVððx� yÞ2Þ[ 1

3
� 1

4

5

4

� �
¼ 1

48
¼ EBððx� yÞ2Þ

h

Example 9 Kennedy (2006) identifies the class of absolute gradable adjectives

which, while relating to an underlying bounded scale, refer specifically to the end

points of that scale and are either crisp or a least much less vague than terms such as

short or tall. In this example we illustrate how the model of context outlined in

Sect. 9 can be used to give an account of absolute adjectives. For example, consider

the question ‘is the glass full?’. Here the underlying variable z described by the

adjective full is something like the ratio of the volume of liquid in the glass over the

total volume of the glass, and the context relates to the glasses of liquid typically

encountered. Now suppose that the distribution of z in this context is skewed

towards the upper bound 1. For instance, Fig. 15a shows the density function for

this context assuming that z is distributed according to a beta distribution with

parameter values s ¼ 7 and t ¼ 1. In this case, for a channel optimised for 2 senders

(Fig. 15b), the production function for z, i.e. the membership function of full, will be

close to a step function near 1 (Fig. 15c). In summary, this example shows that for a

pair of labels, in a context in which the underlying scale is bounded and the dis-

tribution is skewed towards the upper (lower) bound on that scale, if the production

function of x is optimised for a small number of senders then the resulting mem-

bership function for the second (first) label is ‘almost’ crisp and with the transition

between 0 and 1 membership occurring close to the upper (lower) boundary on the

scale. This account seems to have similarities with the probabilistic treatment of
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absolute adjectives in Qing and Franke (2014), although in the latter the optimi-

sation of production functions has a different motivation.

One criticism of this approach is the assumption of an asymmetric distribution on

z which, while providing some justification for an almost crisp membership for full,

does not naturally generate a similar membership function for empty as being close

to a step function near 0. An alternative would be to assume a symmetric

distribution for z which is peaked at both of the scale boundaries. In other words, to

assume that there is a bias towards glasses that are either very full or very empty.

One possibility is to consider symmetric beta distributions with s ¼ t\1. For

example, Fig. 16a shows the density function for the beta distribution with

s ¼ t ¼ 0:2. However, such distributions are not in themselves sufficient to generate

intuitive membership functions for empty and full. The problem lies in our having

limited ourselves to only two labels and in the fact that senders must choose exactly

z =

D
en

si
ty

x = FC(z)

µ
L

2
(x

)

z =

vol. of liquid
vol. of glass

vol. of liquid
vol. of glass

µ
fu

ll
(z

)

(a) (b)

(c)

Fig. 15 Context scaling for the reference class ‘glass of water’ for underling variable z ¼ vol: of liquid
vol: of glass

where z is distributed according to a beta distribution with parameters s ¼ 7 and t ¼ 1. a Distribution of
the reference class. b Optimal membership for L2 given 2 senders. c Scaled production function
corresponding to the membership function of full
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one of these to transmit given any input value. Consequently, for all values of z,

including those between 0 and 1, it holds that lemptyðzÞ þ lfullðzÞ ¼ 1. Given this

constraint it follows, for example, that assuming a symmetric beta distribution on z

with s ¼ t, in the limit as s tends to 0 we obtain membership functions for empty and

full such that:

lemptyðzÞ ¼
1 : z ¼ 0

0:5 : 0\z\1

0 : z ¼ 1

8><
>: and lfullðzÞ ¼

0 : z ¼ 0

0:5 : 0\z\1

1 : z ¼ 1

8><
>:

z = vol. of liquid
vol. of glass

D
en

si
ty

x = FC(z)

M
em

be
rs

hi
p

L1 L2 L3

z = vol. of liquid
vol. of glass

empty
neither

full

M
em

be
rs

hi
p

(a) (b)

(c)

Fig. 16 Context scaling for the reference class ‘glass of water’ for underling variable z ¼ vol: of liquid
vol: of glass

where z is distributed according to a symmetric beta distribution with parameters s ¼ 0:2 and t ¼ 0:2 and
where the message set has three description labels. a Symmetric distribution of the reference class.
b Gaussian membership functions for three labels. c Scaled production functions corresponding to the
membership functions of empty, neither empty nor full and full
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This is clearly counter intuitive since one would not expect absolute adjectives to

have membership 0.5 for such a large range of values. A possible way around this is

to add another label to the language, perhaps standing for ‘neither empty nor full’.

Figure 16b shows possible Gaussian membership functions for a general three label

message set. Assuming that z is distributed according to a beta distribution with

s ¼ t ¼ 0:2 then we obtain the membership functions for empty, full and neither, as

shown in Fig. 16c.
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Egré, P., & Barberousse, A. (2014). Borel on the heap. Erkenntnis, 79, 1043–1079.
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