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Our understanding of neural population coding has been limited by a
lack of analysis methods to characterize spiking data from large popu-
lations. The biggest challenge comes from the fact that the number of
possible network activity patterns scales exponentially with the num-
ber of neurons recorded (∼2Neurons). Here we introduce a new statistical
method for characterizing neural population activity that requires semi-
independent fitting of only as many parameters as the square of the
number of neurons, requiring drastically smaller data sets and minimal
computation time. The model works by matching the population rate
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(the number of neurons synchronously active) and the probability that
each individual neuron fires given the population rate. We found that
this model can accurately fit synthetic data from up to 1000 neurons.
We also found that the model could rapidly decode visual stimuli from
neural population data from macaque primary visual cortex about 65 ms
after stimulus onset. Finally, we used the model to estimate the entropy
of neural population activity in developing mouse somatosensory cortex
and, surprisingly, found that it first increases, and then decreases during
development. This statistical model opens new options for interrogating
neural population data and can bolster the use of modern large-scale in
vivo Ca2+ and voltage imaging tools.

1 Introduction

Brains encode and process information as electrical activity over popula-
tions of their neurons (Churchland & Sejnowski, 1994; Averbeck, Latham,
& Pouget, 2006). Although understanding the structure of this neural code
has long been a central goal of neuroscience, historical progress has been
impeded by limitations in recording techniques. Traditional extracellular
recording electrodes allowed isolation of only one or a few neurons at a
time (Stevenson & Kording, 2011). Given that the human brain has on the
order of 1011 neurons, the contribution of such small groups of neurons
to brain processing is likely minimal. To get a more complete picture, we
would instead like to simultaneously observe the activity of large popula-
tions of neurons. Although the ideal scenario—recording every neuron in
the brain—is out of reach for now, recent developments in electrical and
optical recording technologies have increased the typical size of population
recording so that many laboratories now routinely record from hundreds
or even thousands of neurons (Stevenson & Kording, 2011). The advent of
these big neural data has introduced a new problem: how to analyze them.

The most commonly applied analysis to neural population data is to sim-
ply examine the activity properties of each neuron in turn, as if they were
recorded in separate animals. However responses of nearby neurons to sen-
sory stimuli are often significantly correlated, implying that neurons do not
process information independently (Perkel, Gerstein, & Moore, 1967; Ger-
stein & Perkel, 1969, 1972; Singer, 1999; Cohen & Kohn, 2011). As a result,
performing a cell-by-cell analysis amounts to throwing away potentially
valuable information on the collective behavior of the recorded neurons.
These correlations are important because they put strong functional con-
straints on neural coding (Zohary, Shadlen, & Newsome, 1994; Averbeck
et al., 2006).

If we consider each neuron to have two spiking activity states, ON or
OFF, then a population of N neurons as a whole can have 2N possible
ON/OFF patterns at any moment in time. The probability of seeing any
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particular one of these population activity patterns depends on the brain
circuit examined, the stimuli the animal is subject to, and perhaps also
the internal brain state of the animal. Neural correlations and sparse firing
imply that the probabilities of some activity patterns are more likely than
others. To help understand the neural code, we would like to be able to
estimate the probability distribution across all 2N patterns, Ptrue. For small
N, the probability of each pattern can be estimated by simply counting each
time it appears, then dividing by the total number of time points recorded.
However, since the number of possible patterns increases exponentially
with N, this histogram method is experimentally intractable for populations
larger than, say, 10 neurons. For example, 20 neurons would require fitting
220 ≈ 106 parameters—one for each possible activity pattern. To accurately
fit this model by counting patterns alone would require data recorded
for many weeks or months. The problem gets worse for larger numbers
of neurons: each additional neuron recorded requires a doubling in the
recording time to reach the same level of statistical accuracy. This explosive
scaling implies that we can never know the true distribution of pattern
probabilities for a large number of neurons in a real brain.

This problem remained intractable until a seminal paper in 2006 demon-
strated a possible solution: fitting a statistical model to the data that matches
only some of the key low-order statistics, such as firing rates and pairwise
correlations, and assume nothing else (Schneidman, Berry, Segev, & Bialek,
2006). The hope was that these basic statistics are sufficient for the model to
capture the majority of structure present in the real data so that Pmodel ≈ Ptrue.
Indeed early studies showed that such pairwise maximum entropy mod-
els could accurately capture activity pattern probabilities from recordings
of 10 to 15 neurons in retina and cortex (Schneidman et al., 2006; Shlens
et al., 2006; Tang et al., 2008; Yu, Huang, Singer, & Nikolić, 2008). Unfortu-
nately, however, later studies found that the performance of these pairwise
models was poor for larger populations and in different activity regimes
(Ohiorhenuan et al., 2010; Ganmor, Segev, & Schneidman, 2011; Yu et al.,
2011; Yeh et al., 2010), as predicted by theoretical work (Roudi, Nirenberg,
& Latham, 2009; Macke, Murray, & Latham, 2011). As a consequence, vari-
ants of the pairwise maximum entropy models have been proposed that
include higher-order correlation terms (Ganmor et al., 2011; Tkacik et al.,
2013, 2014), but these are difficult to fit for large N and are not readily nor-
malizable. Alternative approaches have also been developed that appear
to provide better matches to data (Amari, Nakahara, Wu, & Sakai, 2003;
Pillow et al., 2008; Macke, Berens, Ecker, Tolias, & Bethge, 2009; Macke,
Opper, & Bethge, 2011; Köster, Sohl-Dickstein, Gray, & Olshausen, 2014;
Okun et al., 2012; Park, Archer, Latimer, & Pillow, 2013; Okun et al., 2015;
Schölvinck, Saleem, Benucci, Harris, & Carandini, 2015; Cui, Liu, McFar-
land, Pack, & Butts, 2016), but these suffer from similar shortcomings (see
Table 1). We suggest the following criteria for an ideal statistical model for
neural population data:
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1. It should accurately capture the structure in real neural population
data.

2. Its fitting procedure should scale well to large N, meaning that the
model’s parameters can be fit to data from large neural populations
with a reasonable amount of data and computational resources.

3. Quantitative predictions can be made from the model after it is fit.

No existing model meets all three of these demands (see Table 1). Here we
propose a novel, simple statistical method that does: the population tracking
model. The model is specified by only N2 parameters: N to specify the
distribution of number of neurons synchronously active and a further N2 −
N for the conditional probabilities that each individual neuron is ON given
the population rate. Although no model with N2 parameters can ever fully
capture all 2N pattern probabilities, we find that the population tracking
model strikes a good balance of accuracy, tractability, and usefulness: by
design, it matches key features of the data; its parameters can be easily fit
for large N; it is normalizable, allowing expression of pattern probabilities
in closed form; and, most surprising, it allows estimation of measures of the
entire probability distribution, as we demonstrate for neural populations
as large as N = 1000.

Section 2 of this letter is structured as follows. In section 2.1 we introduce
the basic mathematical form of the model and fit it to spiking data from
macaque visual cortex as an illustration. In sections 2.2 and 2.3, we cover
how the model parameters can be estimated from data and how to sample
synthetic data from the fitted model. In section 2.4 we show how a reduced
3N-parameter model of the entire 2N-dimensional pattern probability dis-
tribution can be derived from the model parameters and how this reduced
model can be used to estimate the population entropy, and the divergence
between the model fits to two different data sets. In sections 2.5, 2.6, and 2.7
we show how the model’s estimates for entropy and pattern probabilities
converge as a function of neuron number and time samples available. Fi-
nally, in sections 2.8 and 2.9, we show how the method can help give novel
biological insights by applying it to two data sets: first, we use the model
to decode stimuli from the recorded electrophysiological spiking responses
in macaque V1, and second, we analyze in vivo two-photon Ca2+ imag-
ing data from mouse somatosensory cortex to explore how the entropy of
neural population activity changes during development.

2 Results

2.1 Overview of the Statistical Model with Example Application to
Data. We consider parallel recordings of the electrical activity of a popu-
lation of N neurons. If the recordings are made using electrophysiology,
then spike sorting methods can be used to extract the times of action po-
tentials emitted by each neuron from the raw voltage waveforms (Quiroga,
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2012). If the data are recorded using imaging methods—for example via
a Ca2+-sensitive fluorophore—then electrical spike times or neural firing
rates can often be approximately inferred (Pnevmatikakis et al., 2016; Rah-
mati, Kirmse, Marković, Holthoff, & Kiebel, 2016). Regardless of the way
in which the data are collected, at any particular time in the recording,
some subset of these neurons may be active (ON), and the rest inactive
(OFF). In the case of electrophysiologically recorded spike trains, the neu-
rons considered ON might be those that emitted one or more spikes within
a particular time bin �t. For fluorescence imaging data, a suitable thresh-
old in the �F(t)/F0 signal may be chosen to split neurons into ON and
OFF groups, perhaps after also binning the data in time. Once we have
binarized the neural activity data in this way, each neuron’s activity across
time is reduced to a binary sequence of zeros and ones, where a zero rep-
resents silence and a one represents activity. For example, the ith neuron’s
activity in the population might be xi = 0, 1, 0, 0, 0, 1, 1, 0, 1 . . . The length
of the sequence T is simply the total number of time bins recorded. The
brain might encode sensory information about the world in these patterns
of neural population activity.

Next, we can next group the neural population data into a large N × T
matrix M, where each row from i = 1:N corresponds to a different neuron
and each column from j = 1:T corresponds to a different time point. At any
particular time point (the jth column of M), we could in principle see any
possible pattern of inactive and active neurons, written as a vector of zeros
and ones {x} j = [x1 j, x2 j, . . . , xN j]

T . In general, there will be 2N possible pat-
terns of population activity or combinations of zeros and ones. In any given
experiment, each particular pattern must have some ground-truth prob-
ability of appearing Ptrue({x}), depending on the stimulus, animal’s brain
state, and so on. We would like to estimate this 2N-dimensional probability
distribution. However, since direct estimation is impossible, we instead fit
the parameters of a simpler statistical model that implicitly specifies a dif-
ferent probability distribution over the patterns, Pmodel({x}). The hope is that
for typical neural data, Pmodel ({x}) ≈ Ptrue({x}). In Figure 1, we schematize
the procedure for building and using such a model.

The statistical model we propose for neural population data contains
two sets of parameters that are fit in turn. The first set are the N free pa-
rameters needed to describe the population synchrony distribution: the
probability distribution Pr(K = k) = p(k) for the number of neurons simul-
taneously active K, where K = ∑N

i=1 xi. This distribution acts as a measure
of the aggregate higher-order correlations in the population and so may
contain information about the dynamical state of the network. For exam-
ple, during network oscillations, neurons may be mostly either all ON or
all OFF together, whereas if the network is in an asynchronous mode, the
population distribution will be narrowly centered around the mean neuron
firing probabilities.



56 C. O’Donnell et al.

Figure 1: Schematic diagram of the model building and utilization procedure.
The neural circuit generates activity patterns sampled from some implicit dis-
tribution Ptrue, which are recorded by an experimentalist as data. We estimate
certain statistics of these data to be used as parameters for the model. The
model is a mathematical equation that specifies a probability distribution over
all possible patterns Pmodel , whether or not each pattern was ever observed in the
recorded data. We can then use the model for several applications: to sample
synthetic activity patterns, directly estimate pattern probabilities, or build an
even simpler model of the entire pattern probability distribution to estimate
quantities such as the entropy.

The second set of free model parameters is the conditional probabilities
that each individual neuron is ON, given the total number of neurons ac-
tive in the population, p(xi = 1|K). For shorthand, we write p(xi|K) instead
of p(xi = 1|K) for the remainder of this letter. Since there are N + 1 possi-
ble values of K, and N neurons, there are N(N + 1) of these parameters.
However, we know by definition that when K = 0 (all neurons are silent)
and K = N (all neurons are active), then we must have p(x|K = 0) = 0 and
p(x|K = N) = 1, respectively. Hence, we are left with only N(N − 1) free pa-
rameters. Different neurons tend to have different dependencies on the pop-
ulation count because of their heterogeneity in average firing rates (Buzsáki
& Mizuseki, 2014) and because some neurons tend to be closely coupled
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to the activity of their surrounding population while others act indepen-
dently (Okun et al., 2015). These two types of neurons have previously been
termed choristers and soloists, respectively.

Once the N2 total free parameters have been estimated from data (we
discuss how this can be done below), we can construct the model. It gives
the probability of seeing any possible activity pattern, even for patterns we
have never observed, as

p({x}) = p(k)

ak

(
N∏

i=1

p(xi|k)xi [1 − p(xi|k)]1−xi

)
where k =

N∑
i=1

xi, (2.1)

where ak is a normalizing constant defined as the sum of the probabilities
of all

(N
k

)
patterns in the set S(k), where

∑N
i=1 xi = k under a hypothetical

model where neurons are conditionally independent:

ak =
∑

{x}∈S(k)

(
N∏

i=1

p(xi|k)xi [1 − p(xi|k)]1−xi

)
. (2.2)

The model can be interpreted as follows. Given the estimated synchrony
distribution p(k) and set of conditional probabilities p(xi|K), we imagine a
family of N − 1 probability distributions qk({x}), k ∈ [1 : N − 1] where pat-
tern probabilities are specified by the conditional independence models
qk({x}) = ∏N

i=1 p(xi|k)xi [1 − p(xi|k)]1−xi . Now, using this family of distribu-
tions, we construct one single distribution p({x}) by rejecting all patterns in
each qk({x}) where

∑N
i=1 xi �= k, concatenating the remaining distributions

(which cover mutually exclusive subsets of the pattern state space) and
renormalizing so that the pattern probabilities sum to one. This implies that
for any given activity pattern {x}, p({x}) ∝ qk({x}).

More intuitively, the model can be thought of as having two component
levels. First is a high-level component that matches the distribution for
the population rate. This component counts how many neurons are active,
ignoring the neural identities and treating all neurons as homogeneous.
The second, low-level, component accounts for some of the heterogeneity
between neurons. It asks, given a certain number of active neurons in the
population, what is then the conditional probability that each individual
neuron is active? This component captures two features of the data: the dif-
ferences in firing rates between neurons, which can vary over many orders
of magnitude (Buzsáki & Mizuseki, 2014), and the relationship between a
neuron’ s activity and the aggregate activity of its neighbors (Okun et al.,
2015). Both of these features can potentially have large effects on the pattern
probability distribution.

In Figure 2, we fit this statistical model to electrophysiology spike data
recorded from a population of 50 neurons in macaque V1 while the animal
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Figure 2: (A) Original spiking data (top, black) and synthetic data generated
from model (bottom, red). (B) The model’s fitted parameters. First, the popula-
tion synchrony distribution (top), and, second, the conditional probability that
each neuron is ON given the number of neurons active. The conditional ON
probabilities of only 10 of the 50 neurons are shown for clarity. The curves con-
verge to a straight line for k � 25 because those values of k were not observed
in the data, so the parameter estimates collapse to the prior mean. (C) Com-
parison of other statistics of the data with the model’s predictions. The model
gives an exact match of the single neuron firing rates (left) and a partial match
with the pairwise correlations (center), but does not match the data’s temporal
correlations (right).

was presented with a drifting oriented grating visual stimulus. A section of
the original spiking data during stimulus presentation is shown in Figure 2A
(top), along with synthetically generated samples from the model fitted to
these data, below it in red. By definition, the model matches the original
data’s population synchrony distribution and conditional probability that
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each neuron is active (see Figure 2B). In Figure 2C, we show the model’s
prediction for statistics of the data that it was not fitted to.

In Figure 2C (left), the model almost exactly matches the average firing
rate for each individual neuron. This is a direct consequence of the way the
model is constructed and follows from the fits of the two sets of parameters.
Hence, the model can capture the heterogeneity in neural firing rates.

Next, we compare the pairwise correlations between neurons from the
original data with those from the data synthetically generated by sampling
the model (see Figure 2C, center). Here we see only a partial match. Al-
though the model captures the coarse features of the correlation matrix, it
does not match the fine-scale structure on a pair-by-pair basis. For this ex-
ample, the R2 value between the model and data pairwise correlations was
0.52 (see Figure 10 in the appendix). In particular, the model accounts ex-
actly for the population’s mean pairwise correlation, because this is entirely
due to the fluctuations in the population activity. We can demonstrate this
effect directly by first subtracting away the covariance in the original data
that can be accounted for by the model and then renormalizing to get a new
correlation matrix (see Figure 10). Indeed this new correlation matrix is zero
mean, but it retains much of the fine-scale structure between certain pairs
of neurons. This implies that the model captures only coarse properties of
the pairwise correlations.

Finally, the model does not at all match the temporal correlations present
in the original data (see Figure 2C, right), since it assumes that each time bin
is interchangeable. Note that this limitation is an ingredient of the model,
not a failing per se. This property is shared with many other statistical
methods commonly applied to neural population data (Schneidman et al.,
2006; Macke et al., 2009; Cunningham & Yu, 2014; Okun et al., 2015).

These results show which statistics of the data that the population track-
ing model does and does not account for. Although other statistical models
may more accurately account for pairwise or temporal correlation structure
in the data, they typically do not scale well to large N (see Table 1). In the
remainder of the letter we explore the model’s behavior on large N data
and show how we can take advantage of the particular form of the model to
robustly estimate some high-level measures of the activity statistics, includ-
ing the entropy of the data and the divergence between pairs of data sets.
Since these measures are typically difficult or impossible to estimate using
other common statistical models in the field, the population tracking model
may allow experimenters to ask neurobiological questions that would be
otherwise intractable.

2.2 Fitting the Model To Data. We now outline a procedure for fitting
the statistical model’s N2 free parameters to neural population data. We
assume that the data have already been preprocessed, as already discussed,
and are in the format of either a binary N × T matrix M or a two-column
integer list of active timepoints and their associated neuron IDs. We found
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that parameter fitting was fast; for example, fitting parameters to data from
a 1 hour recording of 140 neurons was done on a standard desktop in about
1 minute.

2.2.1 Fitting the Population Activity Distribution. In the first set of pa-
rameters are the N values specifying the probability distribution for the
number of neurons active p(k). In principle, K can take on any of the N + 1
values from 0 (the silent state) to N (the all ON state), but since we have
the constraint that the probability distribution must normalize to one, one
parameter can be calculated by default, so we need only fit N free param-
eters to fully specify the distribution. The most straightforward way to do
this is by histogramming, which gives the maximum likelihood parameter
estimates. We simply count how many neurons are ON at each of the T time
points to get [K(t = 1), K(t = 2) . . . K(t = T )], then histogram this list and
normalize to one so that our estimate p̂(k) = ck/T, where ck is the count of
the number of time points where k neurons were active.

If the data statistics are sufficiently stationary relative to the timescale
of recording, the error on each parameter individually scales ∼ 1/

√
T and

independent of N. However, the relative error on each p̂(k) also scales

∼
√

1−p(k)

p(k)
, which implies large errors for rare values of K, when p(k) is

small. Since neural activity is often sparse, we expect it to be quite common
to observe small p(k) for large K, close to N (neurons are rarely all ON
together). To avoid a case where we naively assign a probability of zero to a
certain p(k) just because we never observe it in our finite data, we propose
adding some form of regularization on the distribution p(k). A common
method for regularization is to assume a prior distribution for p(k), then
multiply it with the likelihood distribution from the data to compute the
final posterior estimate for the parameters following Bayes’ rule. If for
convenience we assume a Dirichlet prior (conjugate to the multinomial
distribution), then the posterior mean estimate for each parameter simplifies
to

p̂(k, α) = ck + α

T + Nα
,

where α is a small positive constant. This procedure is equivalent to adding
the same small artificial count α to each empirical count ck. For the examples
presented in this study, we set α = 0.01.

2.2.2 Fitting the Conditional ON Probabilities for Each Neuron. The second
step is to fit the N2 − N unconstrained conditional probabilities that each
neuron is ON given the total number of active neurons in the population,
p(x|K). The simplest method to fit these parameters is by histogramming,
similar to the above case for fitting the population activity distribution. In
this case, we cycle through each value of K from 1 to N − 1, find the subset
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of time points at which there were exactly k neurons active, and count
how many times each individual neuron was active at those time points,
di,k. The maximum likelihood estimate for the conditional probability of
the ith neuron being ON given k neurons in the population active is just
p̂(xi|k) = di,k/Tk, where Tk is the total number of time points where k neurons
were active.

As before, given that some values of K are likely to be only rarely ob-
served, we should also add some form of regularization to our estimates
for p(x|K). We want to avoid erroneously assigning p(xi|K) = 0, or any
p(xi|K) = 1 just because we had few data points available. Since xi here is a
Bernoulli variable, we regularize following standard Bayesian practice by
setting a beta prior distribution over each p(xi|K) because it is conjugate to
the binomial distribution. Under this model, the posterior mean estimate
for the parameters is

p̂(xi|k, β0, β1) = di,k + β1

β0 + β1 + Tk
.

Using the beta prior comes at the cost of setting its two hyperparameters,
β1 and β2. We eliminate one of these free hyperparameters by constraining
the prior’s mean to be equal to k/N. This will pull the final parameter esti-
mates toward the values that they would take if all neurons were homoge-
neous. The other free hyperparameter is the variance or width of the prior.
This dictates how much the final parameter estimate should reflect the data:
the wider the prior is, the closer the posterior estimate will be to the naive
empirical data estimate. We found in practice good results if the variance
of this prior scaled with the variance of the Bernoulli variables, ∝ μ(1 − μ)

where μ = k/N. This guaranteed that the variance vanished as k became
near 0 or N. For the examples presented in this study, we set the prior
variance σ 2 = 0.5μ(1 − μ), and β1 = μ

σ 2 (μ − μ2 − σ 2) and β2 = β1(
1
μ

− 1).
An alternative method for fitting p(x|K) would be to perform logistic

regression. Although in principle logistic regression should work well since
we expect p(x|K) to typically be both monotonically increasing and corre-
lated across neighboring values of k, we found in practice that as long as
sufficient data were available, it gave inferior fits compared with the his-
togram method already discussed. However, for data sets with limited time
samples, logistic regression might indeed be preferable. The other benefit
would be that since logistic regression requires fitting of only two param-
eters per regression, if employed it would reduce the total number of the
model’s free parameters from N2 to only 3N.

2.2.3 Calculating the Normalization Constants. The above expression for
pattern probabilities includes a set of N − 1 constants Ak = {a1, a2 . . . aN−1}
that are necessary to ensure that the distribution sums to one. These con-
stants are not fit directly from data but instead follow from the parameters.
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Each ak is calculated separately for each value of k. They can be calculated
in at least four ways. The most intuitive method is by the brute force enu-
meration of the probabilities of all

(N
k

)
possible patterns where k neurons are

active, then summing the probabilities, as given by equation 2.2. Although
this method is exact, it is computationally feasible only if

(N
k

)
is not too large,

which can occur quite quickly when analyzing data from more than 20 to 30
neurons. The second method to estimate ak is to draw N Bernoulli samples
for many trials following the probabilities given by p(x|k), then count the
fraction of trials in which the number of active neurons did in fact equal k.
This method is approximate and inaccurate for large N because ak → 0 as
N → ∞.

The third method is to estimate ak using importance sampling. We can
rewrite equation 2.2 as

ak =
(

N
k

)∑
{x}∈S(k)

(∏N
i=1 p(xi|k)xi [1 − p(xi|k)]1−xi

)
(N

k

)
=

(
N
k

)
E[ϕ{x}],

where {x} is a sample from the uniform distribution on S(k), and
ϕ({x}) = ∏N

i=1 p(xi|k)xi [1 − p(xi|k)]1−xi . If we have m such samples {x(1)},
{x(2)}, . . . , {x(m)}, then by the law of large numbers,

1
m

m∑
j=1

ϕ({x( j)}) → E[ϕ({x})] = ak(N
k

) ,

so by implication,

m∑
j=1

ϕ({x( j)}) ≈ mE[ϕ({x})] = akm(N
k

) .

If we fit a straight line in m to the partial sums ŷ = ∑m
j=1 ϕ({x( j)}) by linear

regression, say, ŷ = c1m + c0, we get

c1m + c0 ≈
m∑

j=1

ϕ({x( j)}) ≈ akm(N
k

) .

Assuming that ŷ(m = 0) = 0, then the intercept c0 = 0, so we are left with

c1

(
N
k

)
≈ ak.
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Finally, a fourth method follows from a procedure we present below
for estimating a low-dimensional model of the entire pattern probability
distribution as a sum of log normals.

2.2.4 The Implicit Prior on the Pattern Probability Distribution. By assuming
a prior distribution over all of our parameters, we are implicitly assuming
a prior distribution over the model’s predicted pattern probabilities. What
does that look like? For the population activity distribution, we have chosen
a uniform value of α across all values of k, implying that our prior expects
each level of population activity to be equally likely. The prior imposed
on the second set of parameters, the p(x|K)s, would assign each neuron
an identical conditional ON probability of k/N. Although the second set of
priors is maximal entropy given the first set, it is important to note that
the uniform prior over population activity is not maximum entropy, since
each value of k carries a different number of patterns. Hence for large N,
the prior will be concentrated on patterns where few (k near zero) or many
(k near N) neurons are active.

A geometrical view of the effect of the priors can be given as follows.
Since our N2 parameters can each be written as a weighted linear sum
of the 2N pattern probabilities, they specify N2 constraint hyperplanes for
the solution in the 2N-dimensional space of pattern probabilities. There
are also other constraint hyperplanes that follow from constraints inherent
to the problem, such as the fact that the pattern probabilities must sum
to one and that p(x|K = 0) = 0. Since N2 < 2N (for all N > 4), an infinite
number of solutions satisfy the constraints. Our final expression for the
pattern probabilities is just a single point on the intersection of this set of
hyperplanes. The effect of including priors on the parameters is to shift the
hyperplanes so that our final solution is closer to prior pattern probabilities
than that directly predicted by the data. In doing so, it ensures all patterns
are assigned a nonzero probability of occurring, as any sensible model
should.

2.3 Sampling from Model Given Parameters. Given the fitted param-
eters, sampling is straightforward using the following procedure:

1. Draw a sample for the integer number of neurons active ksample from
the range {0, . . . , N} according to the discrete distribution p(k). This
can be done by drawing a random number from the uniform distribu-
tion and then mapping that value onto the inverse of the cumulative
of p(k).

2. Draw N independent Bernoulli samples x = {x1, x2 . . . xN}, one for
each neuron, with the probability for the ith neuron given by
p(xi|ksample). This is a candidate sample.
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3. Count how many neurons are active in the candidate sample: k∗
sample =∑N

i=1 xi. If k∗
sample = ksample, accept the sample. If k∗

sample �= ksample, reject
the sample and return to step 2.

One benefit of this model is that since the sampling procedure is not itera-
tive, sequential samples are completely uncorrelated.

2.4 Estimating the Full Pattern Probability Distribution, Entropy, and
Divergence.

2.4.1 Low-Dimensional Approximation to Pattern Probability Distribution.
So far we have shown how to fit the model’s parameters, calculate the
probability of any specific population activity pattern, and sample from the
model. Depending on the neurobiological question, an experimenter might
also wish to use this model to calculate the probabilities of all possible
activity patterns, either to examine the shape of the distribution or compute
some measure that is a function of the entire distribution. One such measure,
for example, is the joint population entropy H used in information-theoretic
calculations, H = −∑2N

i=1 p({x}i) log2 p({x}i).
For small populations of neurons N <∼ 20, the probabilities of all 2N pos-

sible activity patterns can be exhaustively enumerated. However, for larger
populations, this brute force enumeration is not feasible due to limitations
on computer storage space. For example, storing 2100 ∼ 1030 decimal num-
bers on a computer with 64-bit precision would require ∼ 1019 terabytes of
storage space. Hence for most statistical models, such as classic pairwise
maximum entropy models, this problem is either difficult or intractable
(Broderick, Dudik, Tkacik, Schapire, & Bialek, 2007; although see Schaub
& Schultz, 2012). Fortunately, the particular form of the model we propose
implies that the distribution of pattern probabilities it predicts will, for
sufficiently large k and N, tend toward the sum of a set of log-normal distri-
butions, one for each value of k (see Figures 3B and 3C), as we explain below.
Since the log-normal distribution is specified by only two parameters, we
can fit this approximate model with only 3N parameters total, which can
be readily stored for any reasonable value of N.

We derive the sum-of-log-normals distribution model as follows. First,
we take the log of both sides of equation 2.1 to get

log p({x})= log p(k) +
N∑
i

log
[
p(xi|k)xi (1 − p(xi|k))(1−xi )

] − log ak (2.3)

= log p(k) +
k∑
i

log p(xi|k) +
N−k∑

j

log(1 − p(x j|k)) − log ak,
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Figure 3: Calculating the distribution of population pattern probabilities and
entropy for spiking data from macaque visual cortex. (A) Example raster plots
of spiking data from 50 neurons in macaque V1 in response to static-oriented
bar stimulus (left) and a blank screen (right). (B) The distribution of pattern
probabilities for varying numbers of neurons is estimated for various values
of the numbers of neurons active, k. (C) Summed total distribution of pattern
probabilites for data recorded during stimulus (top, light blue) and blank screen
(bottom, dark blue) conditions. The small bumps on top of the distributions are
due to values of k that were unobserved in the data. Since the model assumes
all patterns at these values are equally probable, they lead to the introduction
of several sharp delta peaks to the pattern probability distribution. (D) The
cumulative probability as a function of the cumulative number of patterns
considered. Note that many-fold fewer activity patterns account for the bulk
of the probability mass in the blank screen condition compared to during the
stimulus. (E) Entropy per neuron of the pattern probability distribution for both
conditions.
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where the second and third terms correspond to sums over the k active
and (N − k) inactive neurons in {x}, respectively. Note that this equation is
valid only for the cases where k ≥ 1. For clarity in what follows, we will
temporarily represent p({x}) = θ and p({x}|k) = θk. Now let us consider the
set Lk of the log probabilities for all

(N
k

)
patterns for a given level of popu-

lation activity k, Lk = {log(p({x})}k = {log(θ )}k where
∑N

i=1 xi = k. Since the
population tracking model assumes that neurons are (pseudo) condition-
ally independent, then for sufficiently large N, according to the central limit
theorem, the second and third terms in the sum in equation 2.3 will be
normally distributed with some mean μ(k) and variance σ 2(k), no matter
what the actual distribution of p(xi|K)’s is. Hence, if we were to histogram
the log probabilities {log(θ )}k of all patterns for a given k, their distribution
could be approximated by the sum of two gaussians and two constants:

p(log(θ ))k ≈ log p(k) + N (μON(k), σ 2
ON(k)) + N (μOFF (k), σ 2

OFF (k))

− log ak. (2.4)

Note that this is a distribution over log pattern probabilities: it specifies the
fraction of all neural population activity patterns that share a particular log
probability of being observed.

The two normal distribution means are given by

μON(k) = k〈log p(x|k)〉,
μOFF (k) = (N − k)〈log

(
1 − p(x|k)

)〉,
and the variances are

σ 2
ON(k) = k

(
N − k − 1

N − 1

)
var[log p(x|k)],

σ 2
OFF (k) = (N − k)

(
k − 1
N − 1

)
var[log(1 − p(x|k))],

where the fractional terms in the variance equations are corrections because
we are drawing without replacement from a finite population. Finally since
we are adding two random variables (the second and third terms in equa-
tions 2.4), we also need to account for their covariance. Unfortunately, the
value of this covariance depends on the data, and unlike the means and
variances, we could find no simple formula to predict it directly from the
parameters p(x|k). Hence, it should be estimated empirically by drawing
random samples from the coupled distributions N (μON(k), σ 2

ON(k)) and
N (μOFF (k), σ 2

OFF (k)) and computing the covariance of the samples.
Although the log-normal approximation is valid when both K and N are

large, the approximation will become worse when K is near 0 and N, no
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matter how large N is. This is problematic because neural data are often
sparse, so small values of K are expected to be common and, hence, impor-
tant to accurately model. Indeed, we found empirically that the distribution
of log pattern probabilities at small K can become substantially skewed or,
if the data come from neurons that include distinct subpopulations with
different firing rates, even multimodal. We suggest that the experimenter
examines the shape of the distribution by histogramming the probabilities
of a large number of randomly chosen patterns to assess the appropriate-
ness of the log-normal fit. The validity of the log-normal approximation
can be formally assessed using, for example, the Lilliefors or Anderson-
Darling tests. If the distribution is indeed non-log-normal for certain values
of K, we suggest application of either or both of the following two ad hoc
alternatives. First, for very small values of K (say, k � 3), the number of
patterns at this level of population synchrony

(N
k

) = N!
k!(N−k)! should also be

small enough to permit brute force enumeration of all such pattern proba-
bilities. Second, for slightly larger values of K (3 � k � 10), the distribution
can be empirically fit by alternative low-dimensional parametric models,
for example, a mixture-of-gaussians (MoG), which should be sufficiently
flexible to capture any multimodality or skewness. In practice, we found
that MoG model fits are typically improved by initializing the parameters
with standard clustering algorithms, such as K-means.

One important precaution to take when fitting any parametric model
to the pattern probability distributions (log normal, MoG, or otherwise) is
to make sure that the resulting distributions are properly normalized so
that the product of the integral of the approximated distribution of pattern
probabilities for a given k, p(θ )k, with the total number of possible patterns
at that k,

(N
k

)
, does indeed equal the p(k) previously estimated from data:

(
N
k

) ∫ 1

0
p(θ )kdθ = p(k).

Although in principle this normalization should be automatic as part of
the fitting procedure, even small errors in the distribution fit due to finite
sampling can lead to appreciable errors in the normalization, due to the
exponential sensitivity of the pattern probability sum on the fit in log co-
ordinates. The natural place to absorb this correction is in the constant ak,
which in any case has to be estimated empirically so it will carry some error.
Hence, we suggest that when performing this procedure, estimation of ak
should be left as the final step, when it can be calculated computationally
as whatever value is necessary to satisfy the above normalization.

2.4.2 Calculating Population Entropy. Given the above reduced model of
the pattern probability distribution, we could compute any desired function
of the pattern probabilities (e.g., the mean or median pattern probability or
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the standard deviation). One example measure that is relevant for informa-
tion theory calculations is Shannon’s entropy, H = −∑

i pi log2 pi, measured
in bits. This can be calculated by first decomposing the total entropy as

H = Hk + H(p({x}|k)) = Hk + H(θ )k,

where Hk = −∑N
k=0 p(k) log2 p(k) is the entropy of the population syn-

chrony distribution and H(θ )k = ∑N
k=0 p(k)H(θk) is the conditional entropy

of the pattern probability distribution given K. Given the sum-of-log-
normals reduced model of the pattern probability distribution, the total
entropy (in bits) of all patterns for a given k is

H(θk) =
(

N
k

) ∫ 1

0
p(θ )k × [

θk log2 θk

]
dθ.

This can be calculated by standard numerical integration methods sepa-
rately for each possible value of K.

In the homogeneous case where all neurons are identical, all
(N

k

)
pat-

terns for a given K will have equal probability of occurring, p({x}|K = k) =
p(k)/

(N
k

)
. This situation maximizes the second term in the entropy expres-

sion and simplifies it to Hpop = ∑N
k=0 p(k) log2

(N
k )

p(k)
.

To demonstrate these methods, we calculated the probability distribution
across all 250 ≈ 1015 possible population activity patterns and the popula-
tion entropy for an example spiking data set recorded from 50 neurons
in macaque primary visual cortex. The presentation of a visual stimulus
increases the firing rates of most neurons as compared to a blank screen
(see Figure 3A). We found that this increase in firing rates leads to a shift
in the distribution of pattern probabilities (see Figures 3C and 3D) and an
increase in population entropy (see Figure 3E). Notably, a tiny fraction of
all possible patterns accounts for almost all the probability mass. For the
visually evoked data, around 107 patterns accounted for 90% of the total
probability, which implies that only ∼ 107

1015 = 0.000001% of all possible pat-
terns are routinely used. Although this result might not seem surprising
given that neurons fire sparsely, any model that assumed independent neu-
rons would likely overestimate this fraction because such a model would
also overestimate the neural population’s entropy (see below). These results
demonstrate that the population tracking model can detect aspects of neural
population firing that may be difficult to uncover with other methods.

2.4.3 Calculating the Divergence between Model Fits to Two Data Sets.
Many experiments in neuroscience involve comparisons between neural
responses under different conditions—for example, the firing rates of a
neural population before and after application of a drug or the response to
a sensory stimulus in the presence or absence of optogenetic stimulation.
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Therefore, it would be desirable to have a method for quantifying the differ-
ences in neural population pattern probabilities between two conditions.
Commonly used measures for differences of this type are the Kullback-
Leibler divergence and the related Jensen-Shannon divergence (Cover and
Thomas, 2006; Berkes, Orbán, Lengyel, & Fiser, 2011). Calculation of ei-
ther divergence involves a point-by-point comparison of the probabilities
of each specific pattern under the two conditions. For small populations,
this can be done by enumerating the probabilities of all possible patterns,
but how would it work for large populations? On the face of it, the above
approximate method for entropy calculation cannot help here, because that
involved summarizing the distribution of pattern probabilities while losing
the identities of individual patterns along the way. Fortunately, the form of
the statistical model we propose does allow for an approximate calculation
of the divergence between two pattern probability distributions, as follows.

The Kullback-Leibler divergence from one probability distribution p(i)
to another probability distribution q(i) is defined as

DKL(p||q) =
∑

i

p(i) log2
p(i)
q(i)

. (2.5)

We can decompose this sum into N + 1 separate sums over the subsets of
patterns with K neurons active:

DKL(p||q) =
N∑

k=0

DKL(p||q)k.

Hence, we just need a method to compute DKL(p||q)k for any particular
value of k. Notably, the term to be summed over in equation 2.5 can be
seen as the product of two components, p(i) and log2

p(i)
q(i) . In the preceding

section, we showed that for sufficiently large k and N, the distribution of
pattern probabilities at a fixed K is approximately log normal because of
our assumption of conditional independence between neurons. Hence, the
first component p(i) can be thought of as a continuous random variable that
we will denote X1, drawn from the log-normal distribution f (x1). Because
p(i) represents pattern probabilities, the range of f (x1) is [0, 1]. The second
component, log2

p(i)
q(i) , in contrast, can be thought of as a continuous random

variable that we will denote X2, which is drawn from the normal distribution
g(x2), because by the same argument, p(i)

q(i) is approximately log normally
distributed, so its logarithm is normally distributed. Since this term is the
logarithm of the ratio of two positive numbers, the range of g(x2) is [−∞,∞].
Now the term to be summed over can be thought of as the product of
two continuous and dependent random variables Y = X1X2, with some
distribution h(y).



70 C. O’Donnell et al.

Our estimate for the KL divergence ˆDKL for a given k is, then, just the
number of patterns at that value of k times the expected value of Y:

ˆDKL(p||q)k = E[DKL(p||q)k] =
(

N
k

) ∫ ∞

−∞
yh(y)dy

=
(

N
k

)
E[Y]

=
(

N
k

)
E[X1X2]

=
(

N
k

) (
E[X2]E[X2] + Cov[X1, X2]

)
.

The three new terms in the last expression, E[X1], E[X2], and Cov[X1, X2],
can be estimated empirically by sampling a set of matched values of p({x}i)

and q({x}i) from a large, randomly chosen subset of the
(N

k

)
patterns corre-

sponding to a given value of k.

2.5 Model Fit Convergence for Large Numbers of Neurons. To test
how the model scales with numbers of neurons and time samples, we fit
it to synthetic neural population data from a different established statisti-
cal model, the dichotomized Gaussian (DG) (Macke et al., 2009). The DG
model generates samples by thresholding a multivariate gaussian random
variable in such a way that the resulting binary values match desired target
mean ON probabilities and pairwise correlations. The DG is a particularly
suitable model for neural data, because it has been shown that the higher-
order correlations between “neurons” in this model reproduce many of
the properties of high-order correlations seen in real neural populations
recorded in vivo (Macke, Opper et al., 2011). This match may come from
the fact that the thresholding behavior of the DG model mimics the spike
threshold operation of real neurons.

For this section, we used the DG to simulate the activity of two equally
sized populations of neurons, N1 = N2 = N/2: one population with a low
firing rate of r1 = 0.05 and the other with a higher firing rate of r2 = 0.15.
The correlations between all pairs of neurons were set at ρ = 0.1. We first es-
timated ground-truth pattern probability distributions by histogramming
samples. Although there are 2N possible patterns, the built-in symmetries
in our chosen parameters meant that all patterns with the same number
of neurons active from each group k1 and k2 share identical probabilities.
Hence, the task amounted to estimating only the joint probabilities p(k1, k2)

of the (N + 1)2 configurations of having k1 and k2 neurons active. We gener-
ated as many time samples as were needed for this probability distribution
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to converge (T > 109) for varying numbers of neurons ranging from N = 10
to N = 1000.

We then fit both our proposed model and several alternatives to further
sets of samples from the DG, varying T from 100 to 1,000,000. Finally, we
repeated the fitting procedure on many sets of fresh samples from the DG
to examine variability in model fits across trials. To assess the quality of the
fits, we use the population entropy as a summary statistic. We compared the
entropy estimates of the population tracking model with five alternatives:

1. Independent neuron model. Neurons are independent, with individu-
ally fit mean firing rates estimated from the data. This model has N
parameters.

2. Homogeneous population model. Neurons are identical but not inde-
pendent. The model is constrained only by the population synchrony
distribution p(k), as estimated from data. This model has N + 1 pa-
rameters.

3. Histogram. The probability of each population pattern is estimated
by counting the number of times it appears and normalizing by T.
This model has 2N parameters.

4. Singleton entropy estimator (Berry, Tkacik, Dubuis, Marre, & da Sil-
veira, 2013). This model uses the histogram method to estimate the
probabilities of observed patterns in combination with an indepen-
dent neuron model for the unobserved patterns. We implemented
this method using our own Matlab code.

5. Archer-Park-Pillow (APP) method (Archer, Park, & Pillow, 2013). A
Bayesian entropy estimator that combines the histogram method
for observed patterns with a Dirichlet prior constrained by the
population synchrony distribution. We implemented this method
using the authors’ publicly available Matlab code (http://github
.com/pillowlab/CDMentropy).

We chose these models for comparison because they are tractable to im-
plement. Although it is possible that other statistical approaches, such
as the maximum entropy model family, would more accurately approxi-
mate the true data distribution, it is difficult to estimate the joint entropy
from these models for data from 20 or more neurons (see Table 1).

In Figure 4 we plot the mean and standard deviation of the entropy/
neuron estimates for this set of models as a function of the number of
neurons (panels B and C) and number of time samples (panels D and E)
analyzed. The key observation is that across most values of N and T, the
majority of methods predict entropy values different from the true value
(dashed line in all plots). These errors in the entropy estimates come from
three sources: the finite sample variance, the finite sample bias, and the
asymptotic bias.

The finite sample variance is the variability in parameter estimates across
trials from limited data, shown in Figures 4C and 4E as the standard de-
viation in entropy estimates. Notably, the finite sample variance decreases
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Figure 4: Convergence of entropy estimate as a function of the number of
neurons and time samples analyzed. (A) Example spiking data from the DG
model with two subpopulations: a low firing rate group (filled black circles)
and a higher firing rate group (open circles). Mean (B) and standard deviation
(C) of estimated entropy per neuron as a function of the number of neurons
analyzed, for each of the various models. The mean (D) and standard deviation
(E) of estimated entropy per neuron as a function of the number of time steps
considered, for data from varying numbers of neurons (left to right).
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to near zero for all models within 105 to 106 time samples and is approxi-
mately independent of the number of neurons analyzed for the population
tracking method (see Figures 4C and 4E).

The second error, the finite sample bias, arises from the fact that en-
tropy is a concave function of p({x}). This bias is downward in the sense
that the mean entropy estimate across finite data trials will always be less
than the true entropy: E[H( p̂{x})] ≤ H(p({x})). Intuitively, any noise in the
parameter estimates will tend to make the predicted pattern probability
distribution lumpier than the true distribution, thus reducing the entropy
estimate. Although this error becomes negligible for all models within a
reasonable number of time samples for small numbers of neurons (N ≈ 10)

(see Figures 4B and 4D), it introduces large errors for the histogram, sin-
gleton, and APP methods for larger populations. In contrast to the finite
sample variance, the finite sample bias depends strongly on the number
of neurons analyzed for all models, typically becoming worse for larger
populations.

The third error, the asymptotic bias, is the error in entropy estimate that
would persist even if infinite time samples were available. It is due to a
mismatch between the form of the statistical model used to describe the
data and the true underlying structures in the data. In Figure 4, this error
is present for all models that do not include a histogram component: the
independent, homogeneous population and population tracking models.
Because the independent and homogeneous population models are maxi-
mum entropy given their parameters, their asymptotic bias in entropy will
always be upward, meaning that these models will always overestimate
the true entropy, given enough data. They are too simple to capture all of
the structure in the data. Although the population tracking method may
have either an upward or downward asymptotic bias, depending on the
structure of the true pattern probability distribution, this error was small in
magnitude for the example cases we examined.

The independent, homogeneous population and population tracking
models converged to their asymptotic values within 104–105 time samples
(see Figures 4D and 4E). The histogram, singleton, and APP methods, in
contrast, performed well for small populations of neurons, N < 20, but
strongly underestimated the entropy for larger populations (see Figures 4B,
and 4D), even for T = 106 samples.

The independent, homogeneous population, and population tracking
models consistently predicted different values for the entropy. In order
from greatest entropy to least entropy, they were: independent model, ho-
mogeneous population model, and population tracking. Elements of this
ordering are expected from the form of the models. The independent model
matches the firing rate of each neuron but assumes that they are uncorre-
lated, implying a high entropy estimate. Next, we found that the homoge-
neous population model had lower entropy than the independent model.
However, this ordering will depend on the statistics of the data so may
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Figure 5: Predicted pattern probabilities as a function of true pattern proba-
bilities for a population of 100 neurons sampled from the same DG model as
Figure 4. From left to right: independent model (blue), homogeneous popula-
tion model (green), population tracking model (red), and histogram method
(amber). In each plot, the darker-colored symbols correspond to patterns seen
during model training and so were used in fitting the model parameters, and
lighter-colored symbols correspond to new patterns that appeared only in the
test set. The histogram plot (right) shows only data for the subset of patterns
seen in both the training and test sets. Dashed diagonal line in each plot indicates
identity.

vary from experiment to experiment. The model we propose, the popula-
tion tracking model, matches the data statistics of both the independent and
the homogeneous population models. Hence, its predicted entropy must be
less than or equal to both of these two previous models. One important note
is that the relative accuracies of the various models should not be taken as
fixed, but will depend on both the statistics of the data and the choices of
the priors.

In summary, of the six models we tested on synthetic data, the popula-
tion tracking model consistently performed best. It converged on entropy
estimates close to the true value even for data from populations as large as
1000 neurons.

2.6 Population Tracking Model Accurately Predicts Probabilities for
Both Seen and Unseen Patterns. The previous analysis involved estimat-
ing a single summary statistic, the entropy, for the entire 2N-dimensional
pattern probability distribution. But how well do the models do at predict-
ing the probability of individual population activity patterns? To test this,
we fit four of the six models to the same DG-generated data as the previous
section, with N = 100 and T = 106. As seen in Figures 4D and 4E, for data
of this size, the entropy predictions of the three statistical models had con-
verged, but the histogram method’s estimate had not. We then drew 100
new samples from the same DG model, calculated all four models’ predic-
tions of pattern probability for each sample, and compared the predictions
with the known true probabilities (see Figure 5).
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The independent model’s predictions deviated systematically from the
true pattern probabilities. In particular, it tended to underestimate both
high-probability and low-probability patterns, while overestimating inter-
mediate probability patterns. It is important to note that the data in Figure
5 are presented on a log scale. Hence, these deviations correspond to many
orders of magnitude error in pattern probability estimates. The homoge-
neous population model did not show any systematic biases in probability
estimates but did show substantial scatter around the identity line, again
implying large errors. This is to be expected since this model assumes that all
patterns for a given k have equal probability. In contrast to these two models,
the population tracking model that we propose accurately estimated pat-
tern probabilities across the entire observed range. Finally, the histogram
method failed dramatically. Although it predicted well the probabilities for
the most likely patterns, it quickly deviated from the true values for rarer
patterns. And worst of all, it predicts a probability of zero for patterns that
it has not seen before, as evidenced by the large number of missing points
in the right plot in Figure 5.

One final important point is that of the 100 test samples drawn from the
DG model, 63 were not part of the training set (lighter-colored circles in
Figure 5). However, the population tracking model showed no difference
in accuracy for these unobserved patterns compared with the 37 patterns
previously seen during training (darker circles in Figure 5). Together, these
results show that the population tracking model can accurately estimate
probabilities of both seen and unseen patterns for data from large numbers
of neurons.

2.7 Model Performance for Populations with Heterogeneous Firing
Rates and Correlations. In order to calculate the ground truth-pattern
probabilities and entropy for large N for the above analysis, we assumed
homogeneous firing rates and correlations to ensure symmetries in the
pattern probability distributions. However, since the population tracking
model also implicitly assumes some shared correlations across neurons due
to their shared dependence on the population rate variable K, this situation
may also bias the results in favor of the population tracking model in the
sense that this may be the regime where Pmodel best matches Ptrue. Since in
vivo neural correlations typically appear to have significant structure (see
Figure 1C), we also examined the behavior of the model for a scenario
with more heterogeneous firing rates and correlations. We repeated the
above analysis using samples from the DG neuron model with N = 10,
but with individual neuron firing rates drawn from a normal distribution
μ = 0.1, σ = 0.02 and pairwise correlations drawn from a normal distri-
bution with μ = 0.05, σ = 0.03 (see Figure 6A). We numerically calculated
the 210 = 1024 ground-truth pattern probabilities by exhaustively sampling
from the DG model. We again varied the number of time samples from 100
to 1,000,000 and fit the population tracking model and several comparison



76 C. O’Donnell et al.

Figure 6: Performance of various models for data from 10 neurons with het-
erogeneous firing rates and correlations. (A) Example spiking data from the
DG model (top left), with heterogeneous correlations and firing rates (bottom).
Jensen-Shannon divergence of each model’s predicted pattern probability dis-
tribution with the true distribution (B) and entropy per neuron (C) as a function
of the number of time samples. (D) Predicted pattern probabilities versus true
pattern probabilities for each of the tested models (left to right), for 1,000,000
time samples.

models: the independent neuron model, the homogeneous population
model, the histogram method, and also the pairwise maximum entropy
model (Schneidman et al., 2006). We computed the Jensen-Shannon (JS) di-
vergence, a measure of the difference between the true and model pattern
probability distributions (see Figure 6B), entropy/neuron (see Figure 6C),
and all 1024 individual pattern probabilities (see Figure 6D). Although the
population tracking model outperformed the independent and homoge-
neous population models as before, it was outperformed by the pairwise
maximum entropy model on this task. The JS divergence of the population
tracking model saturated at a higher nonzero floor than the pairwise max-
imum entropy models in Figure 6B. However, the asymptotic error in the
population tracking’s estimate of entropy was minimal at +0.0015 bits, or
0.3% (see Figure 6C). It is difficult to ascertain whether the pairwise maxi-
mum entropy model would also outperform the population tracking model
for large N and requires further study.

2.8 Decoding Neural Population Electrophysiological Data from
Monkey Visual Cortex. We next tested the ability of the population
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tracking model to decode neural population responses to stimuli. We ana-
lyzed electrode array data recorded from anaesthetized macaque primary
visual cortex in response to visual stimuli (see Figure 7A; see Zandvakili &
Kohn, 2015, for details). Spike-sorting algorithms were applied to the raw
voltage waveforms to extract the times of action potentials from multiunits.
Altogether 131 different multiunits were recorded from a single animal. The
animal was shown drifting oriented sinusoidal gratings chosen from eight
orientations in a pseudorandom order. Each 1.28 s stimulus presentation
was interleaved with a 1.5 s blank screen, and all eight possible stimulus
orientations were presented 300 times each.

Our decoding analysis proceeded as follows. We first rebinned the data
into 10 ms intervals. If a unit spiked one or more times in a time bin, it
was labeled ON; otherwise it was labeled OFF. Second, we chose a random
subset of N units from the 131 total and excluded data from the rest. Then,
for a given stimulus orientation, we randomly split the data from the 300
trials into a 200-trial training set and a 100-trial test set. We concatenated
the data from the 200 training trials and fit the population tracking model
to this data set, along with two control statistical models: the independent
model and the homogeneous population model. We repeated this procedure
separately for the eight different stimulus orientations, so we were left with
eight different sets of fitted parameters—one for each orientation. We then
applied maximum likelihood decoding separately on neural responses to
100 randomly chosen stimuli from the test data set. Finally, we repeated
the entire analysis 100 times for different random subsets of N neurons
and training/test data set partitions and took a grand average of decoding
performance.

We plot the decoding performance of the various statistical models as
a function of time since the stimulus onset in Figure 7B. For all models,
decoding was initially at chance level (1/8 = 0.125), then began to increase
around 50 ms after stimulus onset, corresponding to the delay in spiking
response in visual cortex (see Figure 7A). Decoding performance generally
improved monotonically with both the number of neurons and number of
time points analyzed for all models. However, decoding performance was
much higher for the independent and population tracking models, which
saturated at almost 100% correct, compared with about 25% correct for the
homogeneous population model. Hence, for these data, it appears that the
majority of information about the stimulus is encoded in the identities of
which neurons are active, not in the total numbers of neurons active.

Although both the independent and population tracking models satu-
rated to almost 100% decoding performance at long times, we found that
for larger sets of neurons, the population tracking model’s performance
rose earlier in time than the independent neuron model (see Figures 7B and
7C). For 10 neurons, the independent model and population tracking model
reached 50% accuracy at similar times after stimulus onset (146 ms with 95%
CI [136.4:156] ms for the population tracking model and 142.5 ms with 95%
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Figure 7: Decoding neural population spiking data from macaque primary vi-
sual cortex in response to oriented bar visual stimuli. (A) Example spiking data
from 50 neurons during a single presentation of an oriented bar stimulus. Time
zero indicates onset of stimulus. (B) Decoding performance as a function of
time since stimulus onset for three different decoding models (different col-
ored curves) and varying numbers of neurons (plots from left to right). Chance
decoding level in all cases was 1/8 = 0.125. (C) The mean time since stimulus
onset to reach 50% decoding accuracy for the independent (blue) and popula-
tion tracking (red) models as a function of the number of neurons analyzed. The
dashed curves indicate the time at which decoding accuracy first statistically ex-
ceeded noise levels. Time bin size fixed at 10 ms. The homogeneous population
model is not shown because it never reached 50% decoding accuracy.
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CI [133.2:152.3] ms for the independent model). However, given spiking
data from 100 neurons, the population tracking model reached 50% correct
decoding performance at 66.1 ms after stimulus onset (95% CI [64.2:68] ms),
whereas the independent model reached the same level later, at 76.2 ms af-
ter stimulus onset (95% CI [74.2:78] ms). Although superficially this may
appear to be a modest difference in decoding speed, it is important to note
that the baseline time for decoding above chance was not until 52.3 and
56.8 ms after stimulus onset for the population tracking and independent
models, respectively. The reason for this late rise in decoding accuracy is
the documented 50 ms lag in spiking response in macaque V1 relative to
stimulus onset (Chen, Geisler, & Seidemann, 2006, 2008) (see Figure 7A).
Given that we discretized the data into time bins of 10 ms, this implies that
the population tracking model could decode stimuli mostly correctly given
data from fewer than two time frames on average. In summary, these re-
sults show that the population tracking model can perform rapid stimulus
decoding.

2.9 Entropy Estimation from Two-Photon Ca2+ Imaging Population
Data from Mouse Somatosensory Cortex. As a second test case neuro-
biological problem, we set out to quantify the typical number of activity
patterns and entropy of populations of neurons in mouse neocortex across
development. We applied our analysis method to spontaneous activity in
neural populations from data previously recorded (Gonçalves, Anstey, Gol-
shani, & Portera-Cailliau, 2013) by in vivo two-photon Ca2+ imaging in layer
2/3 primary somatosensory cortex of unanaesthetized wild-type mice with
the fluorescent indicator Oregon green BAPTA-1. The original data were
recorded at about 4 Hz (256 ms time frames), but for this analysis, we re-
sampled the data into 1 s time bins because we found that it optimized a
trade-off between catching more neurons in the active state versus main-
taining a sufficient number of time frames for robust analysis.

To compare neural activity across development we used the Shannon
entropy/neuron, h (see Figures 8H and 8I). Shannon entropy is a concept
adopted from information theory that quantifies the uniformity of a prob-
ability distribution. If all patterns were equally probable, then h = 1 bit. At
the opposite extreme, if only one pattern were possible, then h = 0 bits. It
also has a functional interpretation as the upper limit on the amount of
information the circuit can code (Cover & Thomas, 2006).

We performed the analysis on data from mice at three developmental
age points: P9–11 (n = 13), P14–16 (n = 8), and P30–40 (n = 7). These cor-
respond to time points just before (P9–11) and after (P14–P16), the critical
period for cortical plasticity, and mature stage post-weaning (P30–P40).
Entropy is determined by two main properties of the neural popula-
tion activity: the activity levels of the neurons and their correlations. We
found that mean ON probability increased between ages P9–P11 and
P14–16 (p = 0.0016), then decreased again at age P30–40 (p = 0.0024). As
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Figure 8: Entropy of neural populations in mouse somatosensory cortex in-
creases and then decreases during development. (A) Example Ca2+ imaging
movie from mice ages P9–11 (left), P14–16 (center), and P30–40 (right). (B) Mean
ON probability of neurons by group. Each circle corresponds to the mean across
all neurons recorded in a single animal; bars represent group means. (C) Proba-
bility density of the fraction of active neurons for sets of 50 neurons. Light gray
traces are distributions from single animals; heavy black traces are group means.
(D) Mean pairwise correlation between neurons in each group. (E) Cumulative
distribution of pattern probabilities for each group, for sets of 50 neurons. Note
log scale on x-axes. (F) Entropy per neuron as a function of the number of
neurons analyzed. (G) Estimate of mean entropy per neuron for 100 neurons.

previously observed (Rochefort et al., 2009; Golshani et al., 2009; Gonçalves
et al., 2013), mean pairwise correlations decreased across development
(p < 0.001, P9–11 versus P14–16) (see Figure 8D) so that as animals aged,
there were fewer synchronous events when many neurons were active to-
gether (see Figures 8A and 8C).

What do these statistics predict for the distribution of activity patterns
exhibited by neural circuits? Interestingly, activity levels and correlations
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are expected to have opposite effects on entropy: in the sparse firing regime,
any increased ON probability should increase the entropy by increasing the
typical number of activity patterns due to combinatorics, while an increase
in correlations should decrease the entropy because groups of neurons will
tend to be either all ON or all OFF together.

When we quantified the entropy of the pattern probability distributions,
we found a nonmonotonic trajectory across development (see Figures 8F
and 8G). For 100-neuron populations, in young animals at P9–11, we found
a low group mean entropy of about 0.38 bits/neuron (CI [0.347:0.406]), fol-
lowed by an increase at P14–16 (p < 0.001) to about 0.49 bits/neuron (CI
[0.478:0.517]), and then a decrease in adulthood P30-P40 (p = 0.036) to about
0.45 bits/neuron (CI [0.418:0.476]). Although these shifts in dimensionality
were subtle as estimated by entropy, they correspond to exponentially large
shifts in pattern number. For example, 100-neuron populations in P14–16
animals showed an average of 5.6 × 1010 patterns, while 100-neuron pop-
ulations in P30–40 animals showed an eight-fold fewer number of approx-
imately 7.1 × 109 typical patterns (data not shown). One interpretation of
these findings is that young animals compress their neural representations
of stimuli into a small dictionary of activity patterns, then expand their
representations into a larger dictionary at P14–16, before again reducing
the coding space again in adulthood, P30–40.

Is the shift in cortical neural population entropy across development
due to changes in firing rates, correlations, or both? We assessed this by
fitting two control models to the same Ca2+ imaging data: the independent
neuron model and the homogeneous population model (see Figure 9). The
independent neuron model captures changes in neural firing rates across
development, including the heterogeneity in firing rates across the popula-
tion, but inherently assumes that all correlations are fixed at zero. Although
the independent model predicted a significant decrease in entropy between
P14–P16 and P30–P40 (p = 0.014) similar to the population tracking model,
it did not detect an increase in entropy from P9–P11 to P14–P16 (p = 0.13)
(see Figure 9B, left).

The homogeneous population model captures a different set of statistics.
By matching the population synchrony distribution, it fits both the mean
neuron firing rates and mean pairwise correlations. However, it also as-
sumes that all neurons have identical firing rates and identical correlations;
hence, it does not capture any of the population heterogeneity that the in-
dependent neuron model does. In contrast to the independent model, the
homogeneous population model did predict the increase in entropy from
P9–11 to P14–16 (p = 0.002) but did not detect a decrease in entropy from
P14–16 to P30–40 (p = 0.24).

Importantly, the independent and homogeneous population models al-
ways estimate greater entropy values than the population tracking model.
This is to be expected since the population tracking model matches the
key statistics of both control models together and so cannot have a greater
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Figure 9: Mouse somatosensory cortex entropy trajectories are not captured by
either the independent or homogeneous population models. (A) Entropy per
neuron estimated from the independent (blue circles) or homogeneous popu-
lation (green) models against the same quantity estimated from the population
tracking model, for data from mice of three age groups (left, center, and right
plots). Each circle indicates the joint entropy estimated for 100-neuron popu-
lation recording from a single animal. Note that the independent and homo-
geneous population models always estimate greater entropy values than the
population tracking model. (B) Same data as panel A plotted to compare to
Figure 8G. Note that neither the independent (blue, left) nor homogeneous
population (green, right) models predict the inverted-U shaped trajectory un-
covered by the population tracking model (see Figure 8G).

entropy than either. Together, these results demonstrate that the popula-
tion tracking model can detect shifts in population entropy that could not
be detected from either independent or homogeneous population models
alone.

3 Discussion

In this letter, we introduced a novel statistical model for neural population
data. The model works by matching two features of the data: the proba-
bility distribution for the number of neurons synchronously active and the
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conditional probability that each individual neuron is ON given the total
number of active neurons in the population. The former set of parameters
is informative about the general statistics of the population activity: the
average firing rates and the level of synchrony. The latter set of parameters
tells us more about the heterogeneity within the population: some neurons
tend to follow the activity of their neighbors, while others tend to act inde-
pendently. These two types of cells recently have been called choristers and
soloists, respectively (Okun et al., 2015; Gardella, Marre, & Mora, 2016).

Compared to existing alternatives (see Table 1), the model we propose
has several strengths: (1) it is rich enough to accurately predict pattern
probabilities, even for large neural populations; (2) its parameters are com-
putationally cheap to fit for large N; (3) the parameter estimates converge
within an experimentally reasonable number of data time points; (4) sam-
pling from the model is straightforward, with no correlation between con-
secutive samples; (5) it is readily normalizable to directly obtain pattern
probabilities; and (6) the model’s form permits a computationally tractable
low-parameter approximation of the entire pattern probability distribution.

These strengths make the model appealing for certain neurobiological
problems. However, since a pattern probability distribution can be fully
specified only by 2N numbers—so including correlation at all orders—
whereas our model has only N2 parameters, it must naturally also have
some shortcomings. The main weaknesses are: (1) since the population syn-
chrony distribution becomes more informative with greater N, our model
will in most cases be outperformed by alternatives for small N; (2) although
our model captures the mean pairwise correlation across the population, it
does not account for the full pairwise correlation structure (see Figure 2C,
center); (3) since the model considers only spatial correlations, temporal
correlations are unaccounted for (see Figure 2C, right); (4) the model pa-
rameters are not readily interpretable in a biological sense, unlike the pair-
wise couplings of the maximum entropy models (Schneidman et al., 2006)
or the stimulus filters in generalized linear models (Pillow et al., 2008); and
(5) unlike classic maximum entropy models, ours carries no notion of an
energy landscape and so does not imply a natural dynamics across the state
space (Tkacik et al., 2014).

We demonstrated the utility of the population tracking model by apply-
ing it to two neurobiological problems. First, we found that the population
tracking model allowed fast prediction of visual stimuli by decoding neu-
ral population data from macaque primary visual cortex (see Figure 7). A
simple but widely used alternative model that assumes independent neu-
rons achieved 50% decoding accuracy around 20 ms after performance rose
above chance levels. In contrast, the population tracking model reached 50%
accuracy only about 14 ms after exceeding chance levels. Since we binned
time in 10 ms intervals, this implies that the population tracking model
was correct more often than not given neural population data from fewer
than two time points on average. What does this finding imply for brain
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function? The actual decoding algorithm we used for this task, maximum
likelihood, is not neurobiologically plausible. However, the fact that the
population tracking model worked so well implies two things about corti-
cal visual processing. First, sufficient information is present in the spiking
patterns of these neural populations to perform stimulus discrimination
very quickly after the stimulus response onset. Previous studies found that
good decoding performance for similar tasks was typically achieved at least
80 to 100 ms following stimulus onset (Chen et al., 2008; Berens et al., 2012),
whereas the population tracking model took only about 65 ms. However,
direct comparisons with these previous studies are problematic. For exam-
ple, Berens et al. (2012) examined only 20 units while we considered groups
up to N = 100, but Berens et al. (2012) considered only a binary classifica-
tion task whereas we considered the more difficult task of decoding a single
stimulus orientation from all eight possibilities. Further work is needed to
resolve these issues. Second, the improved performance of the population
tracking model over the independent model implies that it may be beneficial
for the brain to explicitly represent the number of neurons simultaneously
active in the local circuit. Indeed this seems like a natural computation
for single neurons to perform as they sum the synaptic inputs from their
neighboring neurons. Our finding implies that this summed value itself
carries additional information about the stimulus beyond that present in
the list of identities of active neurons. Whether and how the brain uses this
information remain questions for future study.

Our second application of the population tracking model was to look
for changes in the distribution of neural pattern probabilities in mouse
somatosensory cortex across development (see Figure 8). We found a sur-
prising nonmonotonic trajectory across development. Initially at P9–11,
the entropy of population activity is low due to large synchronous events
in the population. The correlations decrease dramatically at around P12
(Golshani et al., 2009; Rochefort et al., 2009), so that at P14–16 activity is
relatively desynchronized, leading to an increase in population entropy.
However, we then found a reduction in firing rates from P14–16 to P30–40
that corresponded to a decrease in entropy, despite no large change in cor-
relations. These findings uncover a subtle and unexplained developmental
trajectory for mouse somatosensory cortex that warrants detailed further
study. Importantly, this nonmonotonic development curve would not have
been detectable by examining either firing rates or correlations in isolation
(see Figure 9).

The population tracking model we propose is similar in spirit to a re-
cently proposed alternative, the population coupling model (Okun et al.,
2012, 2015; Schölvinck et al., 2015). These authors developed a model of
neural population data with 3N parameters: N specifying the firing rates
of each neuron, another N specifying the population rate distribution, and
a final N specifying the linear coupling of each individual neuron with the
population rate. Okun et al. (2015) fit this model to data from mouse, rat,
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and primate cortex and found that neighboring neurons showed diverse
couplings to the population rate, that this coupling was invariant to stimu-
lus conditions, and that the degree of a neuron’s population coupling was
reflected in the number of synaptic inputs it received from its neighbors.
These results show that the population rate contains valuable statistical in-
formation that can help constrain models of neural population dynamics.
Despite these notable advances, the population coupling model of Okun
et al. also suffers from several shortcomings that our model does not. First, it
offers no way to write down either the probability of a single neural activity
pattern or the relative probabilities of two activity patterns in terms of the
model’s parameters. Second, for large neural populations, there is no way
to estimate functions of the entire pattern probability distribution, such as
the Shannon entropy or the Kullback-Leibler divergence. Third, generat-
ing samples from the model involves a computationally expensive iterative
procedure, and the probability distribution across possible samples is not
fully determined by the model parameters but depends also on the experi-
menter’s choice of sampling algorithm. Finally, the model assumes a linear
relationship between each individual neuron’s firing rate and the popula-
tion rate. Although parsimonious, this linear model may be insufficiently
flexible to capture the true relationship. Also a linear model must break
down at some point: a neuron cannot fire at rates less than 0 Hertz or at
rates higher than its maximal firing frequency. For all of these reasons, we
suggest that the model we propose may be applicable to a wider range of
neurobiological problems than the population coupling model.

In what scenarios will the population tracking model do best and worst
in? Intuitively, the model will do best when the true pattern probability
distribution, which in principle could take any arbitrary shape in its 2N-
dimensional space, is near the family of probability distributions that are
attainable from the population tracking model, which has only N2 degrees
of freedom. A rigorous mathematical understanding of the neural activity
regimes that could be well matched by the population tracking model re-
mains a goal for future studies. Nevertheless, we can hazard an answer to
this question based on the form of the model. Given that the population
tracking model assumes that all individual neurons are coupled only via a
single global population rate variable K, it will be unlikely that the model
can capture any correlations within or between any specific subgroups
present in the data. Presumably the degree of error that this introduces will
increase with increasing heterogeneity in correlation structure, especially if
the neural population is highly modular. Indeed we found that the entropy
estimated for heterogeneous DG model samples was less accurate than the
case where DG model parameters were more homogeneous (compare Fig-
ure 4D, left, with Figure 6C). We do note, however, that the population track-
ing model can capture some of the pairwise correlation structure beyond
the means, as observed in Figures 2C and 10. This may be due to the fact
that the model captures the heterogeneity in firing rates, which can affect
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pairwise correlations (de la Rocha, Doiron, Shea-Brown, Josić, & Reyes,
2007). Overall, we suggest that the primary benefit of the population track-
ing model may not be that it is the most accurate of all available models,
but that it preserves its accuracy and tractability for large N data sets.

What type of new neurobiological research questions can we ask with
the population tracking model? We introduced a method for calculating the
divergence between the model fits to two sets of neural population activ-
ity data. This measure should be useful for experiments where the same
neurons are recorded in two or more different conditions, such as compar-
ing the statistics of spontaneous activity with that evoked by stimuli (see
Figure 5), or the effects of an acute pharmacological or optogenetic stimu-
lation on neural circuit activity. In contrast, if experiments involve compar-
ing neural population activity from different animals, such as genetically
distinct animals or at different time points in development, one can still
perform quantitative comparisons of the activity statistics at a grouped
population level (see Figure 8).

The most direct use of our model may, however, be to provide limits and
constraints on future theoretical models of neural population coding. The
Shannon entropy is a particularly useful measure because it provides an
upper bound on the information that the neural population can represent.
We conjecture, but have not proven, that our model is maximum entropy
given the parameters. Adding temporal correlations, which real neurons
show but are not included in the population tracking model, can only
reduce the population entropy further. Hence, assuming that enough data
are available for the model parameter fits to converge, the entropy estimate
from the population tracking model gives a hard upper bound on the coding
capacity of a circuit. Any feasible model for neural processing in a given
brain region must obey these limits.

Appendix: Experimental and Statistical Methods

A.1 Macaque Electrophysiological Recording. All macaque electro-
physiology data were previously published (Zandvakili & Kohn, 2015) and
kindly shared by A. Kohn. Full details of experimental procedures and raw
data processing steps are available in Zandvakili and Kohn (2015).

A.2 Mouse in Vivo Calcium Imaging Recording. All Ca2+ imaging
data were previously published (Gonçalves et al., 2013). Briefly, data were
collected from male and female C57Bl/6 wild-type mice at P9–40. Mice
were anaesthetized with isoflurane, and a cranial window was fitted over
primary somatosensory cortex by stereotaxic coordinates. Mice were then
transferred to a two-photon microscope and head-fixed to the stage while
still under isoflurane aneasthesia. Two to four injections of the Ca2+-
sensitive Oregon-Green BAPTA-1 (OGB) dye and sulforhodamine-101 (to
visualize astrocytes) were injected 200 μm below the dura. Calcium imaging
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Figure 10: The population tracking model partially recapitulates the pairwise
correlation structure of the original data. In the left column are the pairwise
correlation matrices from the example data shown in Figure 2 (top), for sam-
ples drawn from the population tracking model fit to these data (center), and
the residual pairwise correlations in the data after subtracting the covariance
accounted for by the population tracking model and renormalizing (bottom). In
the center column are histograms of the pairwise correlations from each matrix
in the left column. The scatter plots in the right column show the individual
pairwise correlations of the model (red) and the data minus the model (purple)
against the pairwise correlations in the original data. Note that the model almost
exactly captures the mean pairwise correlation of the original data and part of
the remaining structure (R2 = 0.52).

was performed using a Ti-Sapphire Chameleon Ultra II laser (Coherent)
tuned to 800 nm. Imaging in unanaesthetized mice began within 30 to 60 min
of stopping the flow of isoflurane after the last OGB injection. Images were
acquired using ScanImage software (Pologruto, Sabatini, & Svoboda, 2003)
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written in Matlab (MathWorks). Whole-field images were collected using a
20× 0.95 NA objective (Olympus) at an acquisition speed of 3.9 Hz (512 ×
128 pixels).

Several 3 min movies were concatenated, and brief segments of motion
artifacts were removed (always less than 10 s total). Data were corrected
for x-y drift. Cell contours were automatically detected, and the average
�F/F signal of each cell body was calculated at each time point. Each �F/F
trace was low-pass-filtered using a Butterworth filter (coefficient of 0.16)
and deconvolved with a 2 s single-exponential kernel (Yaksi & Friedrich,
2006). To remove baseline noise, the standard deviation of all points below
zero in each deconvolved trace was calculated, multiplied by two, and set
as the positive threshold level below which all points in the deconvolved
trace were set to zero. Estimated firing rates of the neurons, ri(t), were then
obtained by multiplying the deconvolved trace by a factor of 78.4, which
was previously derived empirically from cell-attached recordings in vivo
(Golshani et al., 2009).

A3. Data Analysis Methods. All data analysis and calculations were
done using Matlab (Mathworks).

A.3.1 Statistical Tests. To avoid parametric assumptions, all statistical tests
were done using standard bootstrapping methods with custom-written
Matlab scripts. For example, when assessing the observed difference be-
tween two group means �μobs, we performed the following procedure to
calculate a p-value. First, we pool the data points from the two groups to cre-
ate a null set Snull . We then construct two hypothetical groups of samples S1
and S2 from this by randomly drawing n1 and n2 samples with replacement
from Snull , where n1 and n2 are the number of data points in the original
groups 1 and 2, respectively. We take the mean of both hypothetical sets μ1
and μ2 and calculate their difference �μnull = μ1 − μ2. We then repeat the
entire procedure 107 times to build up a histogram of �μnull . This distribu-
tion is always centered at zero. After normalizing, this can be interpreted as
the probability distribution Pr(�μnull ) for observing a group mean differ-
ence of �μnull purely by chance if the data were actually sampled from the
same null distribution. Then the final p-value for the probability of finding
a group difference of at least �μobs in either direction is given by

p =
∫ −�μobs

−∞
Pr(�μnull )d�μnull +

∫ ∞

�μobs

Pr(�μnull )d�μnull

Any data that varied over multiple orders of magnitude (e.g., the number
of patterns observed) were log-transformed before comparing group means.

A.3.2 Conversion from Firing Rate to ON/OFF Probabilities for Ca2+ Imag-
ing Data. For the Ca2+ imaging data, we began with estimated firing rate
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time series ri(t) for each neuron i recorded as part of a population of N
neurons. For later parts of the analysis, we needed to convert these firing
rates to binary ON/OFF values. This conversion involves a choice. One
option would be to simply threshold the data, but this would throw away
information about the magnitude of the firing rate. We instead take a prob-
abilistic approach where, rather than deciding definitively whether a given
neuron was ON or OFF in a given time bin, we calculate the probabil-
ity that the neuron was ON or OFF by assuming that neurons fire action
potentials according to an inhomogeneous Poisson process with rate ri(t).
The mean number of spikes λi(t) expected in a time bin of width �t is
λi(t) = ri(t) × �t. We choose �t = 1 second. Under the Poisson model, the
actual number of spikes m in a particular time bin is a random variable that
follows the Poisson distribution P(m = k) = λke−λ

k! . We will consider a neu-
ron active (ON) if it is firing one or more spikes in a given time bin. Hence,
the probability that a neuron is ON is pon(t) = 1 − P(m = 0) = 1 − eλ. This
approach has two advantages over thresholding: (1) it preserves some in-
formation about the magnitude of firing rates, and (2) it acts to regularize
the probability distribution for the number of neurons active by essentially
smoothing nearby values together.

A.3.3 Entropy Estimation for Large Numbers of Neurons for Ca2+ Imaging
Data. The entropy/neuron generally decreased slightly with the number
of neurons considered as result of the population correlations (see Figure 8F)
so we needed to control for neural population size when comparing data
from different experimental groups. On the one hand, we would like to
study as large a number of neurons as possible because we expect the
effects of collective network dynamics to be stronger for large population
sizes, and this may be the regime where differences between the groups
emerge. On the other hand, our recording methods allowed us to sample
only typically around 100 neurons at a time and as few as 40 neurons in
some animals. Hence, we proceeded by first estimating the entropy/neuron
in each animal by calculating the entropy of random subsets of neurons of
varying size from 10 to 100 (if possible) in steps of 10. For each population
size, we sampled a large number of independent subsets and calculated
the entropy of each. Finally, for each data set, we fit a simple decaying
exponential function to the entropy/neuron as a function of the number
of neurons: H(N)

N = Ae−bN + c, and used this fit to estimate H/N for 100
neurons.
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Rahmati, V., Kirmse, K., Marković, D., Holthoff, K., & Kiebel, S. J. (2016). Inferring

neuronal dynamics from calcium imaging data using biophysical models and
Bayesian inference. PLoS Computational Biology, 12(2), e1004736.

Rochefort, N. L., Garaschuk, O., Milos, R.-I., Narushima, M., Marandi, N., Pichler,
B., . . . Konnerth, A. (2009). Sparsification of neuronal activity in the visual cortex
at eye-opening. Proceedings of the National Academy of Sciences, 106(35), 15049–
15054.

Roudi, Y., Nirenberg, S., & Latham, P. E. (2009). Pairwise maximum entropy models
for studying large biological systems: When they can work and when they can’t.
PLoS Computational Biology, 5(5), e1000380.

Schaub, M. T., & Schultz, S. R. (2012). The Ising decoder: Reading out the activity of
large neural ensembles. Journal of Computational Neuroscience, 32(1), 101–118.

Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise corre-
lations imply strongly correlated network states in a neural population. Nature,
440(7087), 1007–1012.

Schölvinck, M. L., Saleem, A. B., Benucci, A., Harris, K. D., & Carandini, M. (2015).
Cortical state determines global variability and correlations in visual cortex. Jour-
nal of Neuroscience, 35(1), 170–178.

Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., . . .

Chichilnisky, E. J. (2006). The structure of multi-neuron firing patterns in primate
retina. Journal of Neuroscience, 26(32), 8254–8266.

Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of rela-
tions? Neuron, 24(1), 49–65.

Stevenson, I. H., & Kording, K. P. (2011). How advances in neural recording affect
data analysis. Nature Neuroscience, 14(2), 139–142.

Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., . . . Beggs, J. M.
(2008). A maximum entropy model applied to spatial and temporal correlations
from cortical networks in vitro. Journal of Neuroscience, 28(2), 505–518.

Tkacik, G., Marre, O., Amodei, D., Schneidman, E., Bialek, W., & Berry, M. J. (2014).
Searching for collective behavior in a large network of sensory neurons. PLoS
Computational Biology, 10(1), e1003408.



The Population Tracking Model 93

Tkacik, G., Marre, O., Mora, T., Amodei, D., Berry II, M. J., & Bialek, W. (2013). The
simplest maximum entropy model for collective behavior in a neural network.
Journal of Statistical Mechanics: Theory and Experiment, 2013(3), P03011.

Yaksi, E., & Friedrich, R. W. (2006). Reconstruction of firing rate changes across
neuronal populations by temporally deconvolved Ca2+ imaging. Nature Methods,
3(5), 377–383.

Yeh, F.-C., Tang, A., Hobbs, J., Hottowy, P., Dabrowski, W., Sher, A., . . . Beggs, J.
(2010). Maximum entropy approaches to living neural networks. Entropy, 12(1),
89–106.

Yu, S., Huang, D., Singer, W., & Nikolić, D. (2008). A small world of neuronal
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