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Abstract 

 

New classes of partially fluorinated cationic surfactants, including 

pyridinium sulfonates and ammonium hydrochlorides have been prepared in 

which a fluoroalkyl chain is interrupted either by ether oxygen (-O-), or by 

methylene (-CH2-) units. These surfactants are obtained from multi-step 

syntheses via intermediate fluoroalkyl ethylene iodides (RfO(CF2CF2)nCH2CH2I, 

Rf=C3F7, C2F5, n=1-3 or Rf(CH2CF2)m(CH2CH2)n, Rf=C4F9, C6F13 m=0-2, n=1-2) 

or fluoroalkyl iodides (RfI, Rf=C3F7O(CF2CF2)3I, C6F13). The surface activities of 

these fluorinated cationic surfactants were examined and compared to 

commercially available fluorinated cationic surfactants used as additives in oil 

field applications. Some examples demonstrated good performance relative to 

controls yet are more fluorine efficient because they have lower fluorine content 

than their perfluoroalkyl analogues. For the ammonium hydrochlorides, the effect 

of different spacer groups between the cation and the fluorinated chain including 

ethylene, butylene and isopropylidene on surface activity was also examined. 
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1. Introduction 

 

Fluorinated surfactants are a diverse class of surface activity agents. They 

have a wide variety of applications due to their unique properties such as surface 

tension reduction, wetting and leveling, exceptional stability in harsh 

environments (high temperature, high and low pH), hydro- and oleophobicity, etc. 

They are used as anti-blocking agents in architectural coatings, leveling and 

wetting agents in paints, inks and floor finishes, aqueous firefighting foams, hard 

surface cleaners, emulsifiers and dispersion aids for olefin polymerization, and 

additives  in oil and gas extraction fluids [1-9].   

 

  In contrast to their hydrocarbon counterparts, fluorinated surfactants often 

exhibit significantly enhanced performance [8,10]. Hydrocarbon surfactants can 

generally reduce aqueous surface tension to ca. 30 dyne/cm, whereas surface 

tension reduction as low as 16 dyne/cm can be achieved with fluorosurfactants. 

Moreover, at the same performance level, the use rate of fluorosurfacants is 

much lower than that of hydrocarbon surfactants, 0.005-0.1 wt% versus 0.1-3 

wt%, respectively. Fluorosurfactants possess outstanding stability in corrosive 

environments. Fluorosurfactants have been designed to perform in organic, 

acidic and basic media, while hydrocarbon surfactants are limited to aqueous 

media. Furthermore the stability of the carbon fluorine bond also enables 

fluorosurfacants to deliver performance at high temperatures and high pressures.      

  

Fluorinated surfactants are comprised of two key structural components, a 

hydro- and oleophobic perfluorinated carbon chain (e.g., F(CF2)n-),  a hydrophilic 

group, and optionally a spacer separating these two groups. In fluorinated 

cationic surfactants, the cation is typically a quaternary ammonium group or a 

protonated amine, including heterocycles [8]. Fluorinated cationic surfactants can 

be highly effective surface tension reducing and foaming agents in acidic and salt 

environments. Also, because they are positively charged they can be used to 

modify negatively charged surfaces. For example, textile surfaces can be 
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modified with fluorinated cationic surfactants to reduce fiber-fiber, fiber-metal, 

and fiber-ceramic coefficients of friction [11]. Fluorinated cationic surfactants are 

additives in aqueous firefighting foams to improve foaming and formulation 

drainage [8]. They also give improved yields in the emulsion polymerization of 

olefins [12]. In the case of oil field applications, the oil and gas extraction is 

conducted in a high temperature, high corrosion environment, and fluorinated 

cationic surfactants function well in these extraction fluids due to their 

outstanding thermal and chemical stability [9,13]. In this application, the positively 

charged surfactant electrostatically absorbs to negatively charged surfaces such 

as rock fines and sand proppant to reduce capillary forces and improve the 

recovery of hydrocarbons (oil/gas) and/or the stimulation fluid used to open up 

the formation. In addition, the cationic surfactant inhibits corrosion by forming a 

protective film on the metal parts of the well [14].  

 

Fluorinated surfactants are usually more expensive than hydrocarbon 

surfactants. Although their unique performance attributes offset the added cost to 

some degree, it is also desirable to increase the fluorine efficiency; i.e., boost the 

performance of the surfactant so that lesser amounts of the expensive 

fluorosurfactant are required to achieve the same or better level of performance.  

It is thus desirable to reduce the chain length of the perfluoroalkyl groups or to 

reduce the amount of fluorine within a partially fluorinated group, thereby 

reducing the total fluorine present while still achieving the same or superior 

surface effects.  Additionally, alternative fluorinated materials, including 

surfactants, with improved environmental properties have been the subject of 

significant recent attention and review [15-22]. 

 

We describe here the syntheses of a few novel fluorinated pyridinium 

sulfonates and fluorinated ammonium chlorides in which the fluorinated carbon 

chains are interrupted either by methylene (-CH2) or ether (e.g., -O-) linkages. 

We further show that in comparison to their perfluorinated analogues, these 

interrupted structures are more fluorine efficient with respect to their surface-
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active properties. Such a design allows these surfactants to maintain the 

chemical stability required for harsh application environments, while also 

translating into reduced cost.   

 

2. Results and Discussion 

2.1 Synthesis of Fluoroalkyl Ethylene Iodides 

 

The fluoroalkyl ethylene iodide synthesis is shown in Scheme 1 [23,24].  In 

the case of fluoroalkyl chains interrupted with methylene groups, the thermal or 

redox-initiated insertion of vinylidene fluoride (VDF)  into fluoroalkyl iodide bonds 

has been studied extensively by Ameduri and others [25-29]. Here a metal-

meditated vinylidene fluoride Insertion of fluoroiodide, followed by radical-

mediated ethylene insertion is employed [24].  Access to the fluorinated ethers 

was accomplished by reaction of perfluorovinyl ether with I2 and IF5 to give the 

fluorinated ether iodides [24], subsequent thermal telomerization with 

tetrafluoroethylene to extend the chain length, and then insertion of one 

equivalent of ethylene. The example of a double ethylene insertion in the case of 

C6F13(CH2CH2)2I was achieved by reaction of C6F13I and ethylene in the 

presence of radical initiator [30].   Fractional distillation was applied in each step 

for material purification.  

 

Insert Scheme 1 
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Scheme 1 Synthesis of Fluoroalkyl Ethylene Iodides 
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2.2 Synthesis of Fluorinated Pyridinium Surfactants  

  

The fluoroalkyl ethylene iodides were heated with pyridine at 80 oC for 20 

hours (Scheme 2). The resulting pyridinium iodide was filtered, washed with ethyl 

acetate, and dried in the vacuum oven overnight. Yields range from 70 to 95%. 

Treating this intermediate with p-toluene sulfonic acid in methanol at 70 oC for 

24-48 hours offered the final product in quantitative yields. In this step methyl 

iodide and water are generated and constantly removed by distillation to drive the 

reaction to completion (Scheme 3). These reactions are conveniently followed by 

periodic gas chromatography of the distillate to monitor the methyl iodide removal.  

In addition to driving the equilibrium to products, the water stripping may be 

important to prevent leveling of the acid catalyst and potential inhibition of the 

reaction rate.  
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Insert Scheme 2  
 

Scheme 2 Synthesis of Fluorinated Pyridinium Surfactants 
 
 

 
 
 

Insert Scheme 3  
 

Scheme 3 Reaction of Fluorinated Pyridinium Iodides with p-Toluene Sulfonic 

Acid 

 

 

 
 

    

The above fluorinated pyridinium salts were subjected to performance 

tests as 50 wt% solutions in methanol. 

 

2.3 Synthesis of Fluorinated Ammonium Surfactants  
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 Fluoroalkyl azides with an ethylene spacer were prepared in moderate 

yields by the biphasic reaction of fluoroalkyl ethylene iodides and sodium azide in 

the presence tetrabutylammonium bromide as phase transfer catalyst at 100 oC. 

Raney nickel and hydrazine reduction of the azide intermediates was used to 

generate the free amines, followed by acidification with HCl to provide the 

fluoroalkyl ammonium chlorides (Scheme 4).  

 

Insert Scheme 4 
 
Scheme 4 Synthesis of Fluorinated Ethylene Ammonium Surfactants  

 

 

 
   

 

The synthesis of fluoroalkylamines with isopropylidene spacers was first 

reported by Feiring [31]. The same methodology was applied here to prepare the 

fluoroether analogues (Scheme 5). Thus, tetrabutylammonium nitropropanide 

(generated from tetrabutylammonium hydroxide and 2-nitropropane at 85-95 oC) 

was used to convert C3F7O(CF2CF2)3I to C3F7O(CF2CF2)3C(CH3)2NO2.  This was 

then reduced to C3F7O(CF2CF2)3C(CH3)2NH2  with hydrogen over Pd/C catalyst. 
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After catalyst removal the amine was purified by distillation. HCl was added to 

the amine to form the final ammonium chloride salt.      

 

Insert Scheme 5 
 
Scheme 5 Synthesis of Fluorinated Isopropylidene Ammonium Surfactants  

 

 

 
 

 

2.3 Cationic Fluorosurfactant Performance 

2.3.1 Surface Tension 

2.3.1.1 Surface Tension in Deionized Water    

 

The fluorinated pyridinium salt and fluorinated ammonium salts described 

above were diluted into water at different concentrations for surface tension 

measurement and evaluation (Table 1-2 and Figure 1-3).   

 
Insert Table 1 
Insert Figure 1 
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Table 1 Surface Tensions* (dyne/cm) of Fluorinated  Pyridinium Cationic 

Surfactants in Deionized Water at 23 oC 

Surfactants F (wt %) 
Concentration (wt% of surfactant) 

0.001 0.01 0.1 0.5 

[C3F7OCF2CF2CH2CH2py][p-CH3C6H4SO3] (I-B) 37.1 72.1 64.9 41.0 21.6 
[C4F9CH2CF2CH2CH2py][p-CH3C6H4SO3] (II-B) 37.3 72.1 67.7 43.1 22.8 

[C4F9(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] (III-B) 39.5 72.3 59.9 30.5 19.5 

[C6F13CH2CF2CH2CH2py][p-CH3C6H4SO3] (IV-B) 43.1 69.5 45.6 18.3 17.2 

[C6F13(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] (V-B) 44.5 64.2 34.7 18.8 18.3 

[RfCH2CH2py][p-CH3C6H4SO3] (Formulation I**) 43.2 68.9 43.0 18.1 17.5 

[RfCH2CH2py][p-CH3C6H4SO3] (Formulation II***) 43.4 67.8 40.6 18.2 17.6 

[C6F13CH2CH2py][p-CH3C6H4SO3] (VI-B) 41.4 65.9 51.4 27.5 18.8 
[C8F17CH2CH2py][p-CH3C6H4SO3] (Control) 46.3 60.9 30.6 17.2 17.0 

* The average of 10 replicates is reported; the standard deviation is <1 dyne/cm 

** Formulation I is a mixture of IV-B and V-B (90:10 mol ratio) 

*** Formulation II is a mixture of IV-B and V-B (80:20 mol ratio) 
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Figure 1 Aqueous Surface Tension of Fluorinated Pyridinium 
Cationic Surfactants 

 

The surface tension of deionized water is 72 dyne/cm at 23 oC. When the 

above fluorinated pyridinium cationic surfactants are added at the specified levels, 

they exhibited different level of surface tension reduction. As shown in Table 1 

and Figure 1, surfactants I-B, II-B, III-B and VI-B are not as effective as the 

control example [n-C8F17CH2CH2py][p-CH3C6H4SO3] until reaching 

concentrations as high as 0.5%. IV-B performs equally to the control in the 

concentration range 0.1-0.5%, but is inferior below 0.1%. V-B has the strongest 

surface tension reduction among all the new surfactants, demonstrating 

performance only slightly below the control at all tested concentrations. Mixtures 

of IV-B and V-B give improved performance over pure IV-B, even with only small 

amounts of V-B added.        
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Insert Table 2 
Table 2 Surface Tensions* (dyne/cm) of Fluorinated Ammonium Cationic 

Surfactants in Deionized Water at 23 oC 

Surfactants F (wt%) 
Concentration (wt% of surfactant) 

0.001 0.01 0.1 0.5 

Group I      

[C3F7OCF2CF2CH2CH2NH3][Cl] (I-D) 57.2 71.7 68.8 59.1 38.1 

[C3F7O(CF2CF2)2CH2CH2NH3][Cl ](II-D) 61.2 67.2 47.6 25.8 14.3 

[C3F7O(CF2CF2)3CH2CH2NH3][Cl] (III-D) 63.8 52 35.2 16.4 14.8 

[C3F7O(CF2CF2)3C(CH3)2NH3][Cl] (IV-D) 62.3 71.2 68.3 54.7 28 

[C2F5O(CF2CF2)2CH2CH2NH3][Cl]  (V-D) 59.4 69.7 59.2 36.2 14.6 

[C2F5O(CF2CF2)3CH2CH2NH3][Cl] (VI-D) 62.6 57.3 27.9 16.9 15.5 

[RfCH2CH2 NH3][Cl] (Control**) 65.8 67.1 30.3 23.7 20.9 

Group II      

[C6F13CH2CH2NH3][Cl] (VII-D) 61.8 70.1 64.4 47.8 23.8 

[C6F13(CH2CH2)2NH3][Cl] (VIII-D) 57.8 70.9 54.9 33.4 15.1 

[C6F13C(CH3)2NH3][Cl] (IX-D) 59.7 71.4 63.9 38.3 18.5 

[C6F13CH2CF2CH2CH2NH3][Cl] (X-D) 61.5 65.7 48.1 29.1 14.9 

[RfCH2CH2 NH3][Cl] (Control**) 65.8 67.1 30.3 23.7 20.9 

* The average of 10 replicates is reported; the standard deviation is <1 dyne/cm 

** Rf is the mixture of C8F17 and C10F21 (45:55 mol ratio)  

 

 

 

Insert Figure 2 
Insert Figure 3 
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Figure 2 Aqueous Surface Tension of Fluoroether Ammonium  

Cationic Surfactants (Group I) 
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Figure 3 Aqueous Surface Tension of Fluorinated (C6F13) Ammonium 

Cationic Surfactants (Group II) 

 

To more closely examine the correlation between surfactant structure and 

surface tension, the surface tension results of fluorinated ammonium cationic 

surfactants were divided into two structural groups. Group I ammonium 

surfactants are a variety of fluoroethers of variable chain length and Group II 

ammonium surfactants are centered on analogues with different spacers 

between a fixed, linear C6F13 chain and the ammonium cation. From results 

shown in Table 2 and Figure 2, in general the surface tension reduction capability 

of a Group I surfactant is proportional to the fluoroether chain length and the 

fluorine content. I-D, II-D and V-D show significant performance gaps compared 

with the control surfactant (RfCH2CH2 NH3][Cl], where Rf is a mixture of n-C8F17 

and n-C10F21). Excellent surface tension reduction is observed with III-D and VI-D, 
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which are equal to or better than the control even though both possess lower 

fluorine content (mass basis). It is worth noting that III-D and IV-D exhibit 

dramatic surface activity difference although the only structural difference is the 

hydrocarbon spacer, ethylene vs. isopropylidene group, respectively. While III-D 

excels in surface tension reduction, IV-D shows only moderate performance 

especially the concentration range 0.001 to 0.1%. There two possible 

explanations for this phenomenon [32]. The isopropylidene group interrupts the 

crystalline structure of the surfactant, and thus surfactant IV-D does not align or 

pack well at the liquid-air interface.  As a result, the surface tension reduction is 

not as effective as for III-D, which is better able to align/pack. It is also possible 

that the isopropylidene group diminishes the hydrophilicity of the ammonium ion, 

thus disrupting the hydrophilic-lipophilic balance.  

 

 As indicated in Table II and Figure III, the Group II ammonium surfactants 

reduce the surface tension of water significantly. Although better performance 

was obtained at higher concentrations, none of the members of this group of 

surfactants outperform the control. Given the fixed fluorinated carbon chain 

(C6F13), the differences seen among these surfactant are rather interesting. 

Doubling the alkylidene spacer to butylene in VIII-D boosted its surface tension 

reducing ability relative to the ethylene spacer in VII-D. The isopropylidene 

spacer in IX-D provides performance lying between the ethylene and butylene 

spacers. The best performer in this group is X-D in which the spacer is -

CH2CF2CH2CH2-. It appears that the dipole provided by difluoromethylene group 

helps this matter, possibly by enhancing the ability of this surfactant to align and 

pack at the air-water interface [32].  

 

2.3.3.2 Surface Tension in Aqueous KCl and HCl  

 

Surface tension measurement in 15% HCl and 2% KCl is used to indicate 

surfactant efficacy in oil well applications. The 2% KCl solution mimics the salinity 

of the fluids that are used to hydraulically fracture a well.  The 15% HCl solution 
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emulates the acidic stimulation treatment fluids that are used to dissolve the 

formation rock in wells. At a given concentration, the surfactant with the lower 

surface tension will help provide improved fluid penetration and recovery for 

oilfield stimulation fluids [9,33]. 

 

The fluorinated pyridinium surfactants were tested for surface tension as 

2% KCl aqueous and 15% HCl aqueous solutions as a function of surfactant 

concentration. These results are summarized in Tables 3-4 and Figures 4-5. 

 

 Insert Table 3 
Insert Figure 4 

 
Insert Table 4 
Insert Figure 5 
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 Table 3 Surface Tensions* (dyne/cm) of Fluorinated  Pyridinium Cationic 

Surfactants in 2% Aqueous KCl  at 23 oC 

Surfactants F (wt%) 
Concentration (wt% of surfactant) 

0.001 0.01 0.1 0.5 

[C3F7OCF2CF2CH2CH2py][p-CH3C6H4SO3] (I-B) 37.1 68.5 57.4 40.0 21.8 
[C4F9CH2CF2CH2CH2py][p-CH3C6H4SO3] (II-B) 37.3 54.5 32.2 18.6 17.5 

[C4F9(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] (III-B) 39.5 66.5 51.0 28.1 20.0 
[C6F13CH2CF2CH2CH2py][p-CH3C6H4SO3] (IV-B) 43.1 54.5 32.2 18.6 17.5 

[C6F13(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] (V-B) 44.5 42.3 19.4 18.2 17.6 
[RfCH2CH2py][p-CH3C6H4SO3] (Formulation I**) 43.2 53.7 28.2 18.3 17.4 

[RfCH2CH2py][p-CH3C6H4SO3] (Formulation II***) 43.4 52.8 25.4 18.4 17.7 
[C6F13CH2CH2py][p-CH3C6H4SO3] (VI-B) 41.4 65.9 51.4 27.5 18.8 

[C8F17CH2CH2py][p-CH3C6H4SO3] (Control) 46.3 41.2 20.1 17.9 17.0 
* The average of 10 replicates is reported; the standard deviation is <1 dyne/cm 

** Formulation I is a mixture of IV-B and V-B (90:10 mol ratio) 

*** Formulation II is a mixture of IV-B and V-B (80:20 mol ratio) 
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Figure 4 Surface Tensions of Fluorinated Pyridinium Cationic 

Surfactants in 2% KCl 
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Table 4 Surface Tensions (dyne/cm) of Fluorinated Pyridinium Cationic 

Surfactants in 15% Aqueous HCl  at 23 oC 

Surfactants F (wt%) 
Concentration (wt% of surfactant) 

0.001 0.01 0.1 0.5 

[C3F7OCF2CF2CH2CH2py][p-CH3C6H4SO3] (I-B) 37.1 67.0 54.8 39.1 25.2 

[C4F9CH2CF2CH2CH2py][p-CH3C6H4SO3] (II-B) 37.3  
70.0 

 
60.5 

 
44.4 

 
28.5 

[C4F9(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] (III-B) 39.5 65.4  
49.1 

 
29.3 

 
22.8 

[C6F13CH2CF2CH2CH2py][p-CH3C6H4SO3] (IV-B) 43.1 51.7 29.9 20.0 19.0 
[C6F13(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] (V-B) 44.5 41.7  19.1 18.6 18.6 
[RfCH2CH2py][p-CH3C6H4SO3] (Formulation I**) 43.2 51.5 26.0 19.7 18.9 

[RfCH2CH2py][p-CH3C6H4SO3] (Formulation II***) 43.4 50.5 24.4 19.6 18.8 
[C6F13CH2CH2py][p-CH3C6H4SO3] (VI-B) 41.4 63.7 47.8 26.8 22.8 

[C8F17CH2CH2py][p-CH3C6H4SO3] (Control) 46.3 37.9 19.2 19.2 18.4 
* The average of 10 replicates is reported; the standard deviation is <1 dyne/cm 

** Formulation I is a mixture of IV-B and V-B (90:10 mol ratio) 

*** Formulation II is a mixture of IV-B and V-B (80:20 mol ratio) 
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Figure 5 Surface Tensions of Fluorinated Pyridinium Cationic 

Surfactants in 15% HCl 

 

 The normal surface tension of 2% aqueous KCl is 73 dyne/cm and 76 

dyne/cm for 15% aqueous HCl. Similarly to their performance in deionized water, 

these surfactants showed vast performance differences. Compared to the control, 

poor performance was obtained with I-B, II-B, III-B and VI-B.  Good surface 

tension reduction was observed with IV-B, and V-B performed as well as the 

control. Again, IVB performance can be improved by formulating 10-20 wt% V-B 
into IV-B.    

 
2.3.3 Foaming 
  

Foaming is an essential property of surfactants used as drilling fluid 

additives as well as for foamed hydraulic fracturing stimulation activities. 

Foaming during drilling aids in the removal of fines from the well around the drill 
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bit. If these fines are not efficiently removed, they can cause damage to the drill-

bit head, costing time and money [33,34]. The addition of the fluorosurfactant 

boosts the drilling fluid foaming properties.  The cutting bit is lubricated with 

stable foam which aids in carrying cuttings up to the surface. Lower pressure can 

be applied to the formulation when using a foam drilling fluid which is particularly 

important when drilling into low pressure reservoirs. The unique thermal and 

chemical stability of fluorinated surfactants render them well suited for harsh 

drilling environments. The use of foams (with surfactants and minimal amounts of 

water) in hydraulic fracturing allows for reduced water use, treatment, and 

disposal, by improving the efficacy of the stimulation fluid removal from down 

hole. The blender foaming test is used as an indicator of the amount of foam that 

a sample produces as well as the persistence of that foam. The test is also 

performed in 2% KCl aqueous and 15% HCl aqueous solutions to mimic the 

stimulation fluid types that are pumped down hole into wells. The test results are 

listed in Table 5-7. 

  

 Insert Table 5 
Insert Table 6 
Insert Table 7 
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Table 5 Foaming of Fluorinated Pyridinium Cationic Surfactants in Water 

Sample ID 
F 

(wt%) 

  
Foam Volume (mL)  

Initial t=30 
sec 

t = 5 
min 

t= 10 
min 

t =15 
min 

[C3F7OCF2CF2CH2CH2py][p-CH3C6H4SO3] 

(I-B) 
37.1 105 0 0 0 0 

[C4F9CH2CF2CH2CH2py][p-CH3C6H4SO3] 

(II-B) 
37.3 108 0 0 0 0 

[C4F9(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] 

(III-B) 
39.5 105 10 5 0 0 

[C6F13CH2CF2CH2CH2py][p-CH3C6H4SO3] 

(IV-B) 
43.1 100 93 87 77 75 

[C6F13(CH2CF2)2CH2CH2py][p-CH3C6H4SO3] 

(V-B) 
44.5 106 105 97 91 73 

[RfCH2CH2py][p-CH3C6H4SO3] 

(Formulation I**) 
43.2 105 97 88 73 65 

[RfCH2CH2py][p-CH3C6H4SO3] 

(Formulation II***) 
43.4 103 98 84 74 68 

[C6F13CH2CH2py][p-CH3C6H4SO3]  

(VI-B) 
41.4 98 13 7 2 0 

[C8F17CH2CH2py][p-CH3C6H4SO3]  

(Control) 
46.3 106 100 97 86 73 

* Sample was added to deionized water by weight based on solids of the additive in methanol to 

make 100 mL 0.1% solution 

** Formulation I is a mixture of IV-B and V-B (90:10 mol ratio) 

*** Formulation II is a mixture of IV-B and V-B (80:20 mol ratio) 
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Table 6 Foaming of Fluorinated Pyridinium Cationic Surfactants in 2% KCl 

Aqueous Solution 

Sample ID 
 
 

F 
(wt%) 

 

  Foam Volume  (mL)    

 Initial t=30 
sec 

t = 5 
min 

t= 10 
min 

t =15 
min 

[C3F7OCF2CF2CH2CH2py][ p-CH3C6H4SO3] 

(I-B) 37.1 117 0 0 0 0 

[C4F9CH2CF2CH2CH2py][ p-CH3C6H4SO3] 
(II-B) 37.3 110 0 0 0 0 

[C4F9(CH2CF2)2CH2CH2py][ p-CH3C6H4SO3] 
(III-B) 39.5 110 71 2 0 0 

[C6F13CH2CF2CH2CH2py][ p-CH3C6H4SO3] 

(IV-B) 43.1 110 101 99 88 75 

[C6F13(CH2CF2)2CH2CH2py][ p-CH3C6H4SO3] 

(V-B) 44.5 106 101 91 71 66 

[RfCH2CH2py][ p-CH3C6H4SO3] 

(Formulation I) 43.2 110 102 99 89 78 

[RfCH2CH2py][ p-CH3C6H4SO3] 

(Formulation II) 43.4 113 105 101 89 78 

[C6F13CH2CH2py][ p-CH3C6H4SO3] 

(VI-B) 41.4 104 44 4 3 3 

[C8F17CH2CH2py][ p-CH3C6H4SO3]  

(Control) 46.3 111 101 101 81 76 

* Sample was added to 2% KCl aqueous solution by weight based on solids of the additive in     

methanol to make 100 mL 0.1% solution 
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Table 7 Foaming of Fluorinated Pyridinium Cationic Surfactants in 15% HCl 

Aqueous Solution 

Sample ID 

 
F 

(wt%) 
 

Foam Volume (mL) 

Initial t=30 
sec 

t = 5 
min 

t= 10 
min 

t =15 
min 

[C3F7OCF2CF2CH2CH2py][ p-CH3C6H4SO3] 

(I-B) 37.1 112 1 0 0 0 

[C4F9CH2CF2CH2CH2py][ p-CH3C6H4SO3] 
(II-B) 37.3 111 0 0 0 0 

[C4F9(CH2CF2)2CH2CH2py][ p-CH3C6H4SO3] 
(III-B) 39.5 117 102 41 21 11 

[C6F13CH2CF2CH2CH2py][ p-CH3C6H4SO3] 

(IV-B) 43.1 118 105 101 99 99 

[C6F13(CH2CF2)2CH2CH2py][ p-CH3C6H4SO3] 

(V-B) 44.5 116 107 106 106 106 

[RfCH2CH2py][ p-CH3C6H4SO3] 

(Formulation I) 43.2 114 108 106 106 106 

[RfCH2CH2py][ p-CH3C6H4SO3] 

(Formulation II) 43.4 108 102 101 101 101 

[C6F13CH2CH2py][ p-CH3C6H4SO3] 

(VI-B) 41.4 118 103 48 28 19 

[C8F17CH2CH2py][ p-CH3C6H4SO3] 

(Control) 46.3 116 106 106 106 106 

* Sample was added to 15% HCl aqueous solution by weight based on solids of the additive in 

methanol to make 100 mL 0.1% solution 

 
 

The foaming tests follow the trends observed in the surface tension 

studies.  Thus, I-B, II-B and III-B did not provide persistent, stable foams in the 

test. V-D showed equal performance to the control. IV-D performance was 

between VI-D and V-D, and improvement can be obtained by formulating a small 

percentage of V-D into IV-D. Overall V-D, Formulation I, and Formulation II 
demonstrated comparable performance to the control. From a practical point of 

view, using a mixture of IV-D and V-D is cost beneficial as these are coproducts 
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resulting from the insertion of vinylidene fluoride into 1,1,1,2,2,3,3,4,4,5,5,6,6-

tridecafluoro-6-iodohexane.  

  

3. Conclusions 

 

 Fluorinated pyridinium and ammonium cationic surfactants have been 

prepared in moderate to good yields, where the organofluorinated chain is 

interrupted with methylene or ether oxygen groups and the hydrocarbon spacer 

is ethylene, butylene or isopropylidene.  These novel fluorosurfactants have 

lower fluorine content (wt% basis) and therefore are more fluorine efficient than 

their perfluoroalkyl analogues. Aqueous surface tension and foaming of these 

new fluorinated cationic surfactants were tested.   

     

4. Experimental 

4.1 General  

 

Nonfluorinated starting materials and solvents were obtained from Sigma-

Aldrich Inc., St. Louis, MO, EMD Chemicals Inc. (Merck KGaA, Darmstadt, 

Germany) and Alfa Aesar, Ward Hill, MA. Perfluoroalkyl iodides, perfluorovinyl 

ether, vinylidene fluoride, tetrafluoroethylene, and iodine pentafluoride were from 

E. I. du Pont de Nemours. All reagents were used without further purification.  

 

Nuclear magnetic resonance spectra of hydrogen nuclei were recorded 

using a Bruker Avance DRX® (400 MHz) and fluorine-19 nuclei using a Bruker 

Avance DRX® (376 MHz). Abbreviations for coupling patterns are as follows: s 

(singlet), d (doublet), t (triplet), tt (triplet of triplets), q (quartet), quin (quintet) and 

m (multiplet). Elemental analysis was performed by Micro Analysis Inc., 

Wilmington, DE 19808. Mass spectra (MS) were obtained using an Agilent 

Technologies 5973 Network mass selective detector coupled to an Agilent 

Technologies 6890N Network GC System. In this document: F wt% is the weight 

percentage of fluorine in the pure active ingredient.  
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4.2 Performance Test Methods  

 

4.2.1 Surface tension was measured according to the American Society for 

Testing and Materials ASTM D1331-56, using the Wilhelmy plate method on a 

KRUSS K11 Version 2.501 tensiometer (KRUSS USA, Matthews NC) in 

accordance with the vendor-provided instructions.  A vertical plate of known 

perimeter was attached to a balance, and the force due to wetting was 

measured. Ten replicates were tested at each surfactant concentration, and the 

following machine settings were used: 

Method: Plate Method SFT 

Interval: 1.0 s 

Wetted length: 40.2mm 

Reading limit: 10 

Min Standard Deviation: 2 dynes/cm 

Gr. Acc.: 9.80665 m/s2 

 

Results are reported in dynes/cm (mN/m) and standard deviations were 

less than 1 dyne/cm.  

 

A stock solution is prepared for the highest concentration of 

fluorosurfactant to be analyzed.  The concentration of the solution is by percent 

active ingredient, based on either weight percentage or fluorine content.  This 

stock solution is prepared in de-ionized water, 2% KCl, or 15% HCl depending on 

the desired application for which the surface tension is being measured.  The 

stock solution is stirred overnight (for approximately 12 hours) to ensure 

complete mixing.  Additional concentrations of the fluorosurfactant for analysis 

are made by diluting the stock solution. The diluted samples are shaken 

thoroughly and then left undisturbed for 30 minutes.  These samples are then 

remixed and subjected to the analysis with the Krus 11 Tensiometer.   
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4.2.2 A modified version of ASTM D3519-88 was used to quantitfy foaming 

performance. A blender, graduated cylinder, glass sample bottles and a stop 

watch were employed. Samples (100 mL) of the fluorosurfactant at 0.1 wt% 

concentration were prepared in deionized water, 2% KCl, and 15% HCl and 

stirred overnight to ensure complete mixing. The blender was rinsed with 

deionized water, then acetone, and then de-ionized water again. The test fluid 

sample was added to the blender jar and the temperature recorded. The blender 

was then run for 20 seconds at 50-60% power. After 20 seconds, the liquid and 

foam were immediately poured into a 500 mL graduated cylinder. The initial liquid 

and foam heights were measured immediately and then   again at 5, 10 and 15 

min intervals. During this time, any observations of the foam such as its density 

or persistency were recorded. The variability in these foam height data is 10 mL.  

 

4.3 Fluoroalkyl ethyl iodides RfCH2CH2I (Rf=C4F9CH2CF2, C4F9(CH2CF2)2, 

C6F13CH2CF2, C6F13(CH2CF2)2), C6F13(CH2CH2)2I and C3F7OCF2CF2CH2CH2I  

were prepared according to literature methods[23,24,30].  

 

4.4 Synthesis of 1,1,2,2,3,3,4,4-octafluoro-1-iodo-4-(heptafluoropropoxy)butane 

C3F7OCF2CF2CF2CF2I and 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoro-1-iodo-6-

(heptafluoropropoxy)hexane C3F7OCF2CF2CF2CF2CF2CF2I 

 

Tetrafluoroethylene (180 g, 1.8 mol) was introduced to an autoclave 

charged with C3F7OCF2CF2I (600 g, 1.46 mol), and the reactor was heated at 

230 ºC for 2 h.  The reaction was repeated two more times. The products were 

combined and isolated by vacuum distillation to provide C3F7OCF2CF2CF2CF2I 

(370 g, 29%) and C3F7OCF2CF2CF2CF2CF2CF2I (234 g, 18%) based on 

recovered starting material. C3F7OCF2CF2CF2CF2I: b.p. 63-66 oC at 60 mmHg; 
19F NMR (CDCl3, 376 MHz,): δ -65.63 - -65.75 (2F, m), -82.65 (3F, t, J=7.3 Hz), -

84.41 - -84.54 (2F, m), -85.34 - -85.47 (2F, m), -115.07 (2F, s), -125.49 - -125.61 

(2F, m), -131.03 (2F, s); MS (PCI): 513(M++1); C7F15OI (511.88); Calc. C 16.41 F 

55.67; Found C 16.57 F 56.95. C3F7OCF2CF2CF2CF2CF2CF2I: 19F NMR (CDCl3, 
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376 MHz): δ -65.33   -65.45 (2F, m), -82.72 (3F, t, J=7.2 Hz), -84.08 - 84.21 (2F, 

m), -85.37 - 85.47 (2F, m), -114.60 - 114.75 (2F, m), -121.96 - - 122.18 (2F, m), -

123.19 (2F, s), -126.43- -126.55 (2F, m), -131.09 (2F, s); MS (PCI): 613( M++1); 

C11F19OI (611.87) Calc. C 17.65 F 59.00;  Found C 17.76 F 57.62. 

 

4.5 Synthesis of 1,1,2,2,3,3,4,4-octafluoro-6-iodo-1-(heptafluoropropoxy)hexane 

C3F7OCF2CF2CF2CF2CH2CH2I and 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoro-8-iodo-1-

(heptafluoropropoxy)octane C3F7OCF2CF2CF2CF2CF2CF2CH2CH2I 

 

Ethylene (12 g, 0.4 mol) was introduced to an autoclave charged with 

C3F7OCF2CF2CF2CF2I  (177 g, 0.33 mol). The reactor was then heated at 220 °C 

for 12 hours. The product C3F7OCF2CF2CF2CF2CH2CH2I was purified via 

vacuum distillation (115 g, 65% yield). b.p. 68-71 oC at 14.5 mmHg; 1H NMR 

(CDCl3, 400 MHz) δ 3.16 (2H, t, J = 7.9 Hz), 2.70-2.55 (2H, m); 19F NMR (CDCl3, 

376 MHz) δ -82.22 (3F, t, J = 7.4 Hz), -83.98 - -84.15 (2F, m), -85.02 - -85.18 (2F, 

m), -115.81- -116.01 (2F, m), -124.45 - -124.61 (2F, m),  -123.03 - -123.17 (2F, 

m), -130.71 - -130.74 (2F, m); MS (PCI): 542 (M++1); C9H4F15OI (540.00) Calc. C 

20.02 H 0.75 F 55.67 Found C 20.18 H 0.63 F 56.95.   

 

 Ethylene (41.0 g, 1.46 mol) was introduced to an autoclave charged with 

C3F7OCF2CF2CF2CF2CF2CF2I  (500 g, 0.82 mol). The reactor was then heated at 

220 °C for 12 hours.  The product C3F7OCF2CF2CF2CF2CF2CF2CH2CH2I was 

purified via vacuum distillation (311.53 g, 60% yield).  b.p. 95-97 °C at 13 mmHg; 
1H NMR (CDCl3, 400 MHz) δ 3.24 (2H, t-t, 1J = 8.3 Hz, 2J = 2.0 Hz), 2.78 - 2.63 

(2H, m); 19F NMR (CDCl3, 376 MHz) δ -82.51 (3F, t, J = 7.2 Hz), -83.92 - -84.07 

(2F, m),  -85.19 - -85.34 (2F, m), -115.75 - -115.97 (2F, m), -122.56 - -122.82 (2F, 

m),  -123.06 - -123.30 (2F, m), -124.16 - -124.36 (2F, m), -126.29 - -126.46 (2F, 

m), -130.93 - -130.96 (2F, m);  MS (PCI): 640 ( M+); C11H4F19OI (639.90) Calc. C 

20.63; H 0.63 F 56.41; Found C 20.83 H 0.62 F 59.42.    
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4.6 Synthesis of 1-(3,3,4,4-tetrafluoro-4-(heptafluoropropoxy)butyl)pyridin-1-ium 

iodide [C3F7OCF2CF2CH2CH2py][I] (I-A) 

 

A 100 mL, three-neck round bottom flask was charged with 

C3F7OCF2CF2CH2CH2I (20.0 g, 0.0455 mol) and pyridine (17.4 g, 0.222 mol) 

under nitrogen. The reaction was allowed to reflux at 80 °C for 20 hours. The 

reaction mixture was cooled to room temperature before isolating the off-white 

solid product in a fritted funnel. The solid was washed with ethyl acetate (3 x 60 

mL), and dried under vacuum overnight to give 17.52 g (74%) of 

[C3F7OCF2CF2CH2CH2py][I] (I-A). m.p. 167 – 175 ˚C; 1H NMR (CDCl3, 400 MHz) 

δ 9.4 (2H, d, J = 5.9 Hz), 8.45 (1H, t-t, 1J = 1.3 Hz, 2J = 7.9 Hz), 8.13 (2H, t, J = 

7.2 Hz), 5.52 (2H, t, J = 6.2 Hz), 3.01 (2H, t-t, 1J = 17.8 Hz, 2J = 6.2 Hz); 19F NMR 

(CDCl3, 376 MHz) δ -83.58 (3F, t, J = 7.4 Hz), -84.66--84.81 (2F, m), -87.62 - -

87.72 (2F, m), -116.70 - -116.82 (2F, t, J = 18.2 Hz), -130.10 - -130.13 (2F, m); 

C12F11ONI (519.09) Calc. C 27.77 H 1.75 F 40.26; Found C 27.46 H 1.65 F 38.63. 

 

The synthesis of compound II-A to V-A were performed in in a similar 

manner and the experimental details can be found in supplementary data. 

 

4.7 1-(3,3,5,5,6,6,7,7,8,8,8-undecafluorooctyl)pyridin-1-ium iodide 

[C4F9CH2CF2CH2CH2py][I] (II-A) m.p. 174 - 185 ˚C 1H NMR (D2O, 400 MHz) δ 

8.95 (2H, d, J = 6.0 Hz), 8.60 (1H, t, J = 7.8 Hz), 8.11 (2H, t, J = 7.0 Hz), 4.96 

(2H, t, J = 6.9 Hz), 3.16 (2H, quintet, J = 17.1 Hz), 2.93 (2H, t-t, 1J = 17.7 Hz, 2J = 

6.9 Hz); 19F NMR (D2O, 376 MHz) δ -81.45 (3F, t, J = 9.6 Hz), -95.24 - -95.50 (2F, 

m), -112.67 - -112.97 (2F, m), -124.90 - -125.02 (2F, m), -126.15 - -126.30 (2F, 

m); C13H11F11NI (517.11) Calc. C 30.19 H 2.13 F 40.42. Found C 30.07 H 1.93 F 

39.89. 

 

4.8 1-(3,3,5,5,7,7,8,8,9,9,10,10,10-tridecafluorodecyl)pyridin-1-ium iodide 

[C4F9(CH2CF2)2CH2CH2py][I] (III-A) m.p. 131 -133 ˚C; 1H NMR (CDCl3, 400 MHz) 

δ 9.48 (2H, d, J = 6.1 Hz), 8.51 (1H, t, J = 8.1 Hz), 8.09 (2H, t, J = 6.76 Hz), 5.36 
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(2H, t, J = 6.4 Hz), 3.09 - 2.96 (2H, t-t, 1J = 17.5 Hz, 2J = 6.4 Hz), 2.95 - 2.77 (4H, 

m); 19F NMR (CDCl3, 376 MHz) δ -81.46 (3F, t-t, 1J = 9.7 Hz, 2J = 3.2 Hz), -90.04 

- -90.31 (2F, m), -93.92 - -94.17 (2F, m), -112.76 - -112.99 (2F, m), -124.61 - -

124.74 (2F, m), -126.16 - -126.29 (2F, m); C15H13F13NI (581.15) Calc. C 31.00 H 

2.25 F 42.50; Found C 30.81 H 2.06 F 41.41. 

 

4.9 1-(3,3,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluorodecyl)pyridin-1-ium iodide 

[C6F13CH2CF2CH2CH2py][I] (IV-A) m.p.: 188 - 193 °C; 1H NMR (DMSO-d6, 400 

MHz) δ 9.17 (2H, d, J = 6.2 Hz), 8.65 (1H, t-t, 1J = 7.8 Hz, 2J = 1.3 Hz), 8.21 (2H, 

t, J = 7.0 Hz), 4.92 (2H, t, J = 7.2 Hz), 3.47 - 3.28 (2H, m), 2.50 (2H, t-t, 1J = 17.7 

Hz, 2J = 6.9 Hz); 19F NMR (DMSO-d6, 376 MHz) δ -80.67 (3F, t, J = 9.8 Hz), -

95.38 - -95.59 (2F, m), -111.58 - -111.80 (2F, m), -121.86 - -122.10 (2F, m), -

122.90 - -123.14 (2F, s), -123.19 - -123.40 (2F, m), -126.05 - -126.24 (2F, m); 

C15H11F15NI (617.13) Calc. C 29.19 H 1.80 F 46.18; Found C 29.00 H 1.66 F 

47.34.  

 

4.10 1-(3,3,5,5,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl)pyridin-

1-ium iodide [C6F13(CH2CF2)2CH2CH2py][I] (V-A) m.p. 138 -145 ˚C; 1H NMR 

(CDCl3, 400 MHz) δ 9.49 (2H, d, J = 5.8 Hz), 8.50 (1H, t, J = 7.7 Hz), 8.09 (2H, t, 

J = 7.1 Hz), 4.93 (2H, t, J = 6.3 Hz), 3.03 (2H, t-t, 1J = 17.6 Hz, 2J = 6.5 Hz), 2.95 

- 2.76 (4H, m); 19F NMR (CDCl3, 376 MHz) δ -81.19(3F, t-t, 1J = 9.9 Hz, 2J = 2.2), 

-89.83 - -90.04 (2F, m), -94.10 - -94.30 (2F, m), -112.54 - -112.74 (2F, m), -

121.96 - -122.18 (2F, m), -123.09 - -123.27 (2F, m), -123.65 - -123.81 (2F, m), -

126.41 - -126.54 (2F, m); C17H13F17NI (680.98) Calc. C 29.96 H 1.92 F 47.43; 

Found C 30.02 H 1.73 F 47.89.  

 

4.11 Synthesis of   1-(3,3,4,4-tetrafluoro-4-(heptafluoropropoxy)butyl)pyridin-1-

ium 4-methylbenzenesulfonate [C3F7OCF2CF2CH2CH2py][p-CH3 C6H4SO3] (I-B) 

 

  A 100 mL, three-neck round bottom flask equipped with a distillation 

column was charged with [C3F7OCF2CF2CH2CH2py][I] (10.0 g, 0.019 mol) and 
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methanol (6.4 g, 0.20 mol) under nitrogen and heated to 60 ˚C. A solution of p-

toluenesulfonic acid (4.28 g, 0.023 mol) in methanol (4.0 g, 0.122 mol) was 

added dropwise into the reaction flask. The reaction was heated to 60 ˚C for 76 

hours (until CH3I could no longer be detected by GC in the distillate), while 

additional methanol was added periodically to replenish the distilled solvent. 

Methanol was then evaporated off to yield [C3F7OCF2CF2CH2CH2py][p-CH3 

C6H4SO3] as a beige solid (10.84 g, 100%). The product was then dissolved in 

methanol to obtain a 50% solution, and neutralized to a pH of 5.5 ± 0.5 with 3.5% 

NaOH aqueous solution. 1H NMR (CDCl3, 400 MHz) δ 9.20 (2H, d, J = 5.9 Hz), 

8.46 (1H, t, J = 7.8 Hz), 8.06 (2H, t, J = 7.3 Hz), 7.70 (2H, d, J = 8.2 Hz), 7.17 

(2H, d, J = 8.1 Hz), 5.22 (2H, t, J = 6.4 Hz), 2.93 (2H, t-t, 1J = 18.2 Hz, 2J = 6.2 

Hz), 2.35 (3H, s); 19F NMR (CDCl3, 376 MHz) δ -81.73 (3F, t, J = 7.5 Hz), -84.80 

- -84.96 (2F, m), - 87.83 - -87.95 (2F, m), -117.37 (2F, t, J = 18.3 Hz), -130.25 - -

130.29 (2F, m). 

 

The synthesis and formulation of compound II-B to VI-B were performed 

in a similar manner and the experimental details can be found in supplementary 

data. 

 

4.12 1-(3,3,5,5,6,6,7,7,8,8,8-undecafluorooctyl)pyridin-1-ium 4-

methylbenzenesulfonate [C4F9CH2CF2CH2CH2py][p-CH3C6H4SO3] (II-B) 1H NMR 

(CDCl3, 400 MHz) δ 9.20 (2H, d, J = 5.6 Hz), 8.43 (1H, t, J = 8.0 Hz), 8.03 (2H, t, 

J = 8.0 Hz), 7.70 (2H, t, J = 8.2 Hz), 7.16 (2H, d, J = 8.0 Hz), 5.11 (2H, t, J = 6.2 

Hz), 3.01-2.76 (4H, m), 2.33 (3H, s); 19F NMR (CDCl3, 376 MHz) δ -81.58 (3F, t-t, 
1J = 9.8 Hz, 2J = 2.6 Hz), -94.82 - -95.09 (2F, m), -112.80 - -113.10 (2F, m), -

124.60 - -124.78 (2F, m), -126.28 - -126.44 (2F, m) 

  

4.13 1-(3,3,5,5,6,6,7,7,8,8,8-undecafluorooctyl)pyridin-1-ium 4-

methylbenzenesulfonate [C4F9(CH2CF2)2CH2CH2py][CH3C6H4SO3] (III-B) 1H 

NMR (CDCl3, 400 MHz) δ 9.28 (2H, d, J = 6.0 Hz), 8.31 (1H, t, J = 7.8 Hz), 7.89 

(2H, t, J = 7.3 Hz), 7.67 (2H, d, J = 8.1 Hz), 7.12 (2H, d, J = 8.1 Hz), 5.10 (2H, t, J 
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= 6.6 Hz), 2.90 - 2.71 (6H, m), 2.30 (3H, s); 19F NMR (CDCl3, 376 MHz) δ -81.59 

(3F, t-t, 1J = 9.9 Hz, 2J = 3.7 Hz), -91.07 - -91.31 (2F, m), -94.26 - -94.50 (2F, m), 

-112.79 - -113.10 (2F, s), -124.63 - -124.86 (2F, m),  -126.25 - -126.50 (2F, m). 

 

4.14 1-(3,3,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluorodecyl)pyridin-1-ium 4-

methylbenzenesulfonate [C6F13CH2CF2CH2CH2py][CH3C6H4SO3] (IV-B) 1H NMR 

(DMSO-d6, 400 MHz) δ 9.17 (2H, d, J = 6.3 Hz), 8.64 (1H, t, J = 7.8 Hz), 8.20 (2H, 

t, J = 7.2 Hz), 7.48 (2H, d, J = 8.2 Hz), 7.10 (2H, d, J = 8.0 Hz), 4.91 (2H, t, J = 

6.9 Hz), 3.48 - 3.31 (2H, m), 2.90 (2H, t-t, 1J = 17.6 Hz, 2J = 6.8 Hz), 2.29 (3H, s); 
19F NMR (DMSO-d6, 376 MHz) δ -80.65 (3F, t-t, 1J = 9.6 Hz, 2J = 2.7 Hz), -95.35 

- -95.63 (2F, m), -111.46 - -111.85 (2F, m), -121.85 - -122.10 (2F, m), -122.90 - -

123.13 (2F, s), -123.19 - -123.39 (2F, m), -126.03 - -126.23 (2F, m). 

 

4.15 1-(3,3,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl)pyridin-1-

ium 4-methylbenzenesulfonate [C6F13(CH2CF2)2CH2CH2py][CH3C6H4SO3] (V-B) 
1H NMR (CDCl3, 400 MHz) δ 9.22 (2H, d, J = 5.9 Hz), 8.31 (1H, t, J = 7.9 Hz), 

7.92 (2H, t, J = 7.1 Hz), 7.68 (2H, d, J= 8.3 Hz), 7.12 (2H, d, J= 8.0 Hz), 5.11 (2H, 

t, J = 6.5 Hz), 2.93 - 2.68 (6H, m); 19F NMR (CDCl3, 376 MHz) δ -81.30 (3F, t-t, 1J 

= 9.9 Hz, 2J = 2.2), -90.87 - -91.13 (2F, m), -94.49 - -94.13 (2F, m), -112.53 - -

112.87 (2F, m), -122.08 - -122.35 (2F, m), -123.16 - -123.43 (2F, m), -123.66 - -

123.91 (2F, m), -126.48 - -126.74 (2F, m). 

 

4.16 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)pyridin-1-ium 4-

methylbenzenesulfonate [C6F13CH2CH2py][CH3C6H4SO3] (VI-B) 1H NMR (D2O, 

400 MHz) δ 8.87 (2H, d, J = 6.0 Hz), 8.54(1H, t, J = 8.0 Hz), 8.04 (2H, t, J = 7.2 

Hz), 7.68 (2H, d, J = 8.0 Hz), 7.13 (2H, d, J = 8.3 Hz), 4.90 (2H, t, J= 6.9 Hz), 

2.95 - 2.76 (2H, m), 2.16 (3H, s); 19F NMR (D2O, 376 MHz) δ -85.16 - -85.29 (3F, 

m), -116.09 - -116.80 (2F, m), -124.75 - -125.30 (2F, m), -125.89 - -126.53 (4F, 

m), -129.55 - -130.10 (2F, m) 
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4.17 Synthesis of 4-azido-1,1,2,2-tetrafluoro-1-(heptafluoropropoxy)butane    

C3F7OCF2CF2CH2CH2N3 (I-C) 

 

Sodium azide (33.2 g, 0.511 mol) was dissolved in 100 mL of water and 

charged into a three-neck round bottom flask under nitrogen along with 

tetrabutylammonium bromide (3.3 g, 0.010 mol).  C3F7OCF2CF2CH2CH2I (150 g, 

0.340 mol) was charged into the flask and the reaction was heated to 100 °C for 

28 hours. Based on results from GC monitoring, additional NaN3 was added to 

the reaction flask (5.0 g, 0.077 mol) to drive the reaction the completion. After 28 

hours, the reaction was cooled to room temperature and the organic layer was 

isolated. NaI was removed from the product through gravity filtration, and the 

organic layer was washed five times with 100 mL of 60 °C water. Distillation gave 

85.17 g (70%) of C3F7OCF2CF2CH2CH2N3 (I-C) as a colorless liquid. b.p.: 44 - 

45 °C at 10 mmHg; 1H NMR (CDCl3, 400 MHz) δ 3.58 (2H, t, J = 7.3 Hz), 

2.31(2H, t-t, 1J = 17.7 Hz, 2J = 7.4 Hz); 19F NMR (CDCl3, 376 MHz) δ -82.00 (3F, 

t, J = 7.5 Hz), -85.10 - -85.26 (2F, m), -85.56 - -85.67 (2F, m), -118.55 (2F, t, J = 

17.5 Hz), -130.56 - -130.59 (2F, m); C7H4F11ON3 (355.02) Calc. C 23.73 H 1.08; 

Found C 23.66 H 1.14. 

 

The synthesis of compound II-C, III-C, V-C to IX-C were performed in a 

similar manner and the experimental details can be found in supplementary data.  

 

4.18 6-azido-1,1,2,2,3,3,4,4-octafluoro-1-(heptafluoropropoxy)hexane    

C3F7O(CF2CF2)2CH2CH2N3  (II-C) 1H NMR (CDCl3, 400 MHz) δ 3.57 (2H, t, J = 

7.2 Hz), 2.35 (2H, t-t, 1J = 18.2 Hz, 2J = 7.2 Hz); 19F NMR (CDCl3, 376 MHz) δ -

82.62 (3F, t, J = 7.4 Hz), -84.28 - -84.44 (2F, m), -85.31 - -85.47 (2F, m), -115.11 

- -115.33 (2H, m), -124.82 - -124.97 (2F, s), -126.25 - -126.40 (2F, m), -131.04 - -

131.07 (2H, m); MS (PCI): 456 (M++ 1); HRMS Calcd for C9H5F15ON (M+ - N2 + 

H): 428.0132 Found: 428.0110. 
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4.19 8-azido-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoro-1-(heptafluoropropoxy)octane 

C3F7O(CF2CF2)3CH2CH2N3 (III-C) 1H NMR (CDCl3, 400 MHz) δ 3.59 (2H, t, J = 

7.3 Hz), 2.37(2H, t-t, 1J = 18.2 Hz, 2J = 7.3 Hz); 19F NMR (CDCl3, 376 MHz) δ -

82.54 (3F, t, J = 6.7 Hz), -83.92 - -84.10 (2F, m), -85.20 - -85.36 (2F, m), -114.78 

- -115.02 (2H, m), -122.55 - -122.85 (2F, m), -123.06 - -123.30 (2H, m), -124.31 - 

-124.50 (2H, m), -126.27 - -126.48 (2F, m), -130.34 - -130.99 (2H, m); MS (PCI): 

556 (M+ + 1); C11H4F19ON3 (555.13) Calc. C 23.93 H 0.65; Found C 23.80 H 0.73.

  

4.20 6-azido-1,1,2,2,3,3,4,4-octafluoro-1-(pentafluoroethoxy)hexane 

C2F5O(CF2CF2)2CH2CH2N3 (V-C)  1H NMR (CDCl3, 400 MHz) δ 3.59 (2H, t, J = 

7.1 Hz), 2.37 (2H, t-t, 1J = 18.3 Hz, 2J = 7.3 Hz); 19F NMR (CDCl3, 376 MHz) δ -

84.07 - -84.24 (2F, m), -87.63 - -87.66 (3F, t), -89.13 - -89.23 (2F, m), -114.73 - -

114.96 (2H, m), -124.52 - -124.65 (2F, s), -125.97 - -126.11 (2F, m); MS (PCI): 

406 (M+ + 1); C8H4F13ON3 (405.11) Calc. C 23.86 H 0.87. Found C 23.72 H 1.00.  

 

4.21 8-azido-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoro-1-(pentafluoroethoxy)octane 

C2F5O(CF2CF2)3CH2CH2N3 (VI-C) 1H NMR (CDCl3, 400 MHz) δ 3.59 (2H, t, J = 

7.1 Hz), 2.37 (2H, t-t, 1J = 18.2 Hz, 2J = 7.2 Hz); 19F NMR (CDCl3, 376 MHz) δ -

84.04 - -84.20 (2F, m), -87.97 - -88.00 (3F, m), -89.36 - -89.47 (2F, m), -114.75 - 

-114.97 (2F, m), -122.51 - -122.76 (2H, m), -123.05 - -123.25 (2F, s), -124.27 - -

124.47 (2F, m), -126.31 - -126.47 (2H, m); MS (PCI): 506 (M++ 1);  C10H4F17ON3 

(505.13) Calc. C 24.14 H 0.68; Found C 23.78 H 0.80.  

 

4.22 10-azido-1,1,1,2,2,3,3,4,4,5,5,6,6,8,8-pentadecafluorodecane 

C6F13CH2CH2N3   (VII-C) b.p. 59 - 61 °C @ 10 mmHg; 1H NMR (CDCl3, 400 MHz) 

δ 3.60 (2H, t, J = 7.2 Hz), 2.38 (2H, t-t, 1J = 18.3 Hz, 2J = 7.2 Hz); 19F NMR (D2O, 

376 MHz) δ -81.80 (3F, t-t, 1J = 10.0 Hz, 2J = 2.4 Hz), -114.58 - -114.81 (2F, m), -

122.44 - -122.73 (2F, m), -123.45 - -123.69 (2F, m), -124.27 (2F, s), -126.83 - -

127.07(2F, m); MS (PCI): 390 (M++1); C8F13H4N3  (389.12); Calc. C 24.60 H 1.01 

Found C 24.69 H 1.04; The NMR results are consistent with literature reported 

value[35].  
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4.23 12-azido-1,1,1,2,2,3,3,4,4,5,5,6,6,8,8-pentadecafluorododecane 

C6F13CH2CH2CH2CH2N3 (VIII-C) 1H NMR (CDCl3, 400 MHz) δ 3.32 (2H, t, J = 6.3 

Hz), 2.16 - 2.01 (2H, m),  1.76 - 1.62 (4H, m); 19F NMR (CDCl3, 376 MHz) δ -

82.02 (3F, t, J = 10.0 Hz), -115.20 - -115.44 (2F, m), -122.58 - -122.86 (2F, m), -

123.58 - -123.86 (2F, m), -124.29 - -124.54 (2F, m),  -126.99 - -127.18 (2F, m); 

MS (PCI): 418 (M++1); C10F13H8N3  (417.17) Calc. C 29.52 H 1.81 Found C 28.79 

H 1.93; HRMS Calcd for C10F13H9N (M+ - N2 + H) 390.0528; Found 390.0509.  

  

4.24 10-azido-1,1,1,2,2,3,3,4,4,5,5,6,6,8,8-pentadecafluorodecane 

C6F13CH2CF2CH2CH2N3 (IX-C) 1H NMR (CDCl3, 400 MHz) δ 3.55 (2H, t, J = 6.9 

Hz), 2.85 - 2.67(2H, m), 2.30 (2H, t-t, 1J = 16.8 Hz, 2J = 7.2 Hz); 19F NMR (CDCl3, 

376 MHz) δ -81.58 (3F, t-t, 1J = 9.9 Hz, 2J = 2.3 Hz), -92.81 - -93.05 (2F, m), -

112.89 - -113.15 (2F, m), -122.07 - -122.31 (2H, m), -123.24 - -123.44 (2F, m), -

123.89 - -124.05 (2F, m), -126.57 - -126.72 (2H, m); MS (PCI) 454 (M+ +1).   

 

4.25 Synthesis of 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoro-7-methyl-7-nitro-1-

(heptafluoropropoxy)octane C3F7O(CF2CF2)3C(CH3)2NO2 (IV-C) 
 

  A three-neck round bottom flask under a nitrogen blanket was equipped 

with a stir bar and a Dean Stark trap. Tetrabutylammonium hydroxide as a 40% 

solution in water (50 mL, 0.077 moles),   2-nitropropane (7.48 g, 0.084 moles), 

and benzene (125 mL) were added to the round bottom and the mixture was 

heated to 85 – 90 °C to azeotropically distill water (30 mL) and benzene (50 mL). 

The product solution was then cooled to room temperature and used immediately 

in the next step.  

 

C3F7O(CF2CF2)3I (42.84 g, 0.07 moles) was added dropwise at room 

temperature to the solution of tetrabutylammonium nitropropanide (22.77 g, 

0.077 moles) described above. An exotherm to 68 °C was noted. Following the 

addition, the reaction was stirred overnight at room temperature. Ether (200 mL) 
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was added and the salt byproduct was filtered through a fritted funnel. After ether 

removal the filtrate was distilled under high vacuum to yield 15.32 g (38%) of 

C3F7O(CF2CF2)3C(CH3)2NO2 as an off-white waxy solid. b.p. 52 - 53 °C at 0.2 

mmHg; 1H NMR (CDCl3, 400 MHz) δ 1.79 (6H, t, J = 1.2 Hz); 19F NMR (CDCl3, 

376 MHz) δ -81.12 (3F, t, J= 7.2 Hz), -83.61 - -83.77 (2F, m), -84.88 - 85.04 (2F, 

m), -115.68 - -115.92 (2F, m), -84.54 - -84.69 (2F, m), -118.68 - -118.90 (2F, m), 

-122.19 - -122.46 (2F, m), -122.62 - -122.86 (2F, m), -125.98 - -126.17 (2F, m), -

130.58 - -130.62 (2F, m);  MS (PCI) 572 (M+-H); C12F19H6NO3 (573.14) Calc. C 

25.15 H 1.06 N 2.44; Found C 28.13 H 1.72 N 2.68. Although this compound did 

not provide satisfactory elemental analysis result, it was successfully used in the 

subsequent step. 

 

4.26 Synthesis of 3,3,4,4-tetrafluoro-4-(heptafluoropropoxy)butan-1-amine 

hydrochloride [C3F7OCF2CF2CH2CH2NH3][Cl] (I-D) 

 

  A three-neck round bottom flask under nitrogen was charged with 

C3F7OCF2CF2CH2CH2N3 (35.0 g, 0.0986 mol), 42.5% Raney Ni solution in water 

(0.72 g, 0.012 mol) and 30 mL of water. Hydrazine monohydrate (7.39 g, 0.148 

mol) was added dropwise to the reaction flask in order to prevent the reaction 

temperature from rising above 40 °C. The reaction was slowly heated to 60 °C 

and held there for 6 hours. Upon cooling to room temperature the organic layer 

was separated, dissolved in 150 mL of diethyl ether, and washed with DI water (4 

x 50mL). The organic layer was charged into a 250 mL 3-neck round bottom flask 

and 12 M HCl was added (13 mL, 0.15 mol) dropwise, with ice cooling, over a 

period of 30 minutes. Cyclohexane (50mL) was added to the reaction flask to 

promote precipitation of product. The solid precipitate was collected by vacuum 

filtration and washed with cyclohexane (5 x 100 mL), and subsequently with ether 

(5 x 50mL) to give  21.65 g (60 %) of C3F7OCF2CF2CH2CH2NH3+Cl- (I-D) as a 

colorless solid. m.p. 206 - 209 °C; 1H NMR (D2O, 400 MHz) δ 3.47 (2H, t, J = 7.2 

Hz),  2.73 (2H, t-t, 1J = 18.3 Hz, 2J = 7.1 Hz); 19F NMR (D2O, 376 MHz) δ -83.58 

(3F, t-t, 1J = 7.1 Hz), -86.73 - -86.89 (2H, m), -90.28 - -90.38 (2F, m), -120.06 (2F, 
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t, J= 17.8 Hz), -132.15 - -132.18 (2F, m); C7H7F11ONCl  (365.00) Calc. C 23.07 H 

1.79; Found C 23.01 H 1.93. 

 

The synthesis of compound II-D, III-D V-D to X-D were performed in a 

similar manner and the experimental details can be found in supplementary data.  

 

4.27 3,3,4,4,5,5,6,6-octafluoro-6-(heptafluoropropoxy)hexan-1-amine 

hydrochloride [C3F7O(CF2CF2)2CH2CH2NH3][Cl] (II-D) m.p.: 220 – 227 °C; 1H 

NMR (CD3OD, 400 MHz) δ 3.39 - 3.37 (2H, m), 2.73 (2H, t-t, 1J = 18.7 Hz, 2J = 

7.4 Hz); 19F NMR (CD3OD, 376 MHz) δ -85.18 (3F, t, J = 7.3 Hz), -86.76 - -86.92 

(2F, m), -87.79 - -87.94 (2F, m), -117.54 - -117.77 (2H, m), -127.15 - -127.30 (2F, 

s), -128.76 - -128.90 (2F, m), -133.55 - -133.57 (2H, m); C9H7F15ONCl (465.58) 

Calc. C 23.07 H 1.37; Found C 23.22 H 1.52.  

 

4.28 3,3,4,4,5,5,6,6,7,7,8,8-dodecafluoro-8-(heptafluoropropoxy)octan-1-amine 

hydrochloride [C3F7O(CF2CF2)3CH2CH2NH3][Cl] (III-D) m.p. 216 - 228 °C; 1H 

NMR (CD3OD, 400 MHz) δ 3.39 (2H, t, J = 7.2 Hz), 2.76 (2H, t-t, 1J = 18.6 Hz, 2J 

= 7.6 Hz); 19F NMR (CD3OD, 376 MHz) δ -83.30 (3F, t, J = 7.4 Hz), -85.82 - - 

85.98 (2F, m), -84.56 - -84.73 (2F, m), -115.39 - -115.63 (2F, m), -123.09 - -

123.35(2F, m) -123.54 - -123.75 (2F, m), -124.78 - -124.97 (2F, m), -126.90 - -

127.09 (2F, m), -131.62 - 131.65 (2F, m); C11H7F19ONCl (565.59) Calc. C 23.86 

H 0.87; Found C 23.36 H 1.25.  

 

4.29 Synthesis of 3,3,4,4,5,5,6,6,7,7,8,8-dodecafluoro-2-methyl-8-

(heptafluoropropoxy)octan-2-amine hydrochloride 

[C3F7O(CF2CF2)3C(CH3)2NH3][Cl] (IV-D) 

 

C3F7O(CF2CF2)3C(CH3)2NO2 (30 g, 0.052 moles), 10% palladium on 

carbon catalyst (4 g), and ethanol (200 mL) was charged into vessel and then 

pressurized with 1000 psi of hydrogen.  The vessel was heated at 80 °C for 16 

hours. The crude product was gravity filtered twice to remove the remaining 
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catalyst to yield a green filtrate. 12M HCl (13 mL, 0.156 moles) was slowly added 

to the filtrate. The solvent was removed though rotary evaporation yielding a 

yellow powder. The powder was further dried using a high vacuum pump and 

treated with 1N KOH (120 mL). The solution was transferred into a separatory 

funnel, and the organic layer was removed. The basic layer was extracted twice 

with 50 mL of ether. The organic layers were combined and gently washed with 

water (20 mL) to prevent emulsification. The organic layer was dried with 

magnesium sulfate. The solvent was removed and the product was distilled 

under vacuum to yield a colorless liquid distillate (21.01 g, 0.037 moles) of 

C3F7O(CF2CF2)3C(CH3)2NH2 b.p.: 85-87 °C at  12 mmHg. The distillate was 

dissolved in 100 mL of ethanol and the solution was treated with a ten molar 

excess of 12M HCl (9.2 mL, 0.33 moles). The ethanol was removed through 

rotary evaporation yielding 20.80 g (69%) of [C3F7O(CF2CF2)3C(CH3)2NH3][Cl] 

(IVD) as a colorless powder. m.p. 165 - 167°C; 1H NMR (CD3OD, 400 MHz) δ 

1.68 - 1.66 (6H, m); 19F NMR (CD3OD, 376 MHz) δ -83.22 (3F, t, J = 7.2 Hz), -

84.47 - -84.67 (2F, m), -85.74 - -85.91(2F, m),   -119.73 - -120.01 (2F, m), -

120.20 - -120.47 (2F, m), -122.78 - -123.10 (2F, m), -123.25 - -123.51 (2F, m), -

126.80 - -126.91 (2F, m), -131.56 (2F, s); C12F19H9NOCl  (579.62) Calc. C 24.94 

H 1.47 N 2.39; Found C 24.87 H 1.57 N 2.42. 

 

4.30 3,3,4,4,5,5,6,6-octafluoro-6-(pentafluoroethoxy)hexan-1-amine 

hydrochloride C2F5O(CF2CF2)2CH2CH2NH3][Cl] (V-D) m.p. 235 – 239 °C; 1H 

NMR (CD3OD, 400 MHz) δ 3.31 (2H, t, J = 7.6 Hz), 2.69 (2H, t-t, 1J = 18.4 Hz, 2J 

= 7.5 Hz); 19F NMR (CD3OD, 376 MHz) δ -84.96 - -85.12 (2F,m), -88.86 - -

88.88( 3F, m), -90.07 - - 90.17 (2F, m), -115.56 - -115.78 (2F, m), -125.18 - -

125.33 (2F, m), -126.86 - -127.00 (2F, m); C8H7F13ONCl (415.57) Calc. C 23.01 

H 1.53; Found C 23.12 H 1.70.  

 

4.31 3,3,4,4,5,5,6,6,7,7,8,8-dodecafluoro-8-(pentafluoroethoxy)octan-1-amine 

hydrochloride [C2F5O(CF2CF2)3CH2CH2NH3][Cl] (VI-D) m.p. 242 – 251 °C; 1H 

NMR (CD3OD, 400 MHz) δ 3.32 (2H, t, J = 7.2 Hz), 2.67 (2H, t-t, 1J = 18.8 Hz, 2J 
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= 7.4 Hz); 19F NMR (CD3OD, 376 MHz) δ -86.63 - - 86.81(2F, m), -90.79 - -90.84 

(3F, m), -91.98 - -92.10 (2F, m), -117.22 - -117.65 (2F, m), -124.85 - -125.33 (2F, 

m), -125.47 - -125.79 (2F, m) -126.64 - -127.03 (2F, m), -128.79 - -129.24 (2F, 

m); C10H7F17ONCl (515.59) Calc. C 23.28 H 1.20; Found C 23.30 H 1.37.  

 

4.32 3,3,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluorodecan-1-amine 

hydrochloride [C6F13CH2CH2NH3][Cl] (VII-D) m.p. 235 - 240 °C; 1H NMR (D2O, 

400 MHz) δ 3.50 (2H, t, J = 7.1 Hz),  2.79 (2H, t-t, 1J = 18.7 Hz, 2J = 7.2 Hz); 19F 

NMR (D2O, 376 MHz) δ -81.18 (3F, t-t, 1J = 9.9 Hz, 2J = 2.8 Hz), -113.96 - -

114.18 (2F, m), -122.16 - -122.35 (2F, m), -123.10 - -123.33 (2F, m), -124.05 (2F, 

s), -126.32 - -126.46 (2F, m); C8H7F13NCl  (399.57) Calc. C 23.85 H 1.65; Found 

C 24.05 H 1.77. 

 

4.33 5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluoro-N-methyldecan-1-amine 

hydrochloride [C6F13CH2CH2CH2CH2NH3][Cl] (VIII-D) m.p. 229 – 232 °C; 1H NMR 

(CD3OD, 400 MHz) δ 2.98 (2H, t, J = 6.8 Hz),  2.26 (2H, t-t, 1J = 19.0 Hz, 2J = 7.9 

Hz), 1.83 - 1.67 (4H, m); 19F NMR (CD3OD, 376 MHz) δ -82.89 (3F, t-t, 1J = 10.3 

Hz, 2J = 2.4 Hz), -115.82 - -116.07 (2F, m), -123.28 - -123.57 (2F, m), -124.27 - -

124.54 (2F, m), -124.88 - -125.09 (2F, m), -127.74 - -127.96 (2F, m); 

C10H11F13NCl (427.63) Calc. C 28.08 H 1.81; Found C 28.06 H 1.93.  

  
4.34 3,3,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-N-methyldecan-1-amine 

hydrochloride [C6F13CH2CF2CH2CH2NH3][Cl] (X-D) m.p. sublime at 170 °C; 1H 

NMR (CDCl3, 400 MHz) δ 3.23 (2H, t, J = 7.3 Hz), 3.18 - 3.03 (2H, m), 2.50 (2H, 

t-t, 1J = 17.8 Hz, 2J = 7.5 Hz); 19F NMR (CDCl3, 376 MHz) δ -82.84 (3F, t-t, 1J = 

10.3 Hz, 2J = 2.5 Hz), -96.81 - -97.07 (2F, m), -113.42 - -113.64 (2F, m), -123.02 

- -123.28 (2F, m), -124.10 - -124.38 (2F, m), -124.61 - -124.71 (2H, s), -127.60 - -

127.75 (2F, m). C10F15H9NCl (463.61) Calc. C 25.91 H 1.96 N 3.02; Found C 

25.88 H 1.86 N 3.04. 
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