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Abstract

We establish conditions for an exponential rate of forgetting of the initial dis-

tribution of nonlinear filters in V -norm, allowing for unbounded test functions.

The analysis is conducted in an general setup involving nonnegative kernels in

a random environment which allows treatment of filters and prediction filters

in a single framework. The main result is illustrated on two examples, the first

showing that a total variation norm stability result obtained by Douc et al. [4]

can be extended to V -norm without any additional assumptions, the second

concerning a situation in which forgetting of the initial condition holds in V -

norm for the filters, but the V -norm of each prediction filter is infinite.
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V -norm
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1. Introduction

For Polish spaces X, Y equipped with their Borel σ-algebras X , Y, let µ be a

probability measure on X and let F : X × X → [0, 1] and G : X × Y → [0, 1] be

probability kernels. A hidden Markov model (HMM) is a bivariate process (X,Y )

where the signal process X = (Xn)n∈N is a Markov chain with initial distribution µ and

transition kernel F , and the observations Y = (Yn)n∈N are conditionally independent
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2 M. Gerber and N. Whiteley

given X, with the conditional distribution of Yn given Xn being G(Xn, ·). The filtering

problem is to compute, for each n, the conditional distribution of Xn given Y0, . . . , Yn.

Suppose that for each x ∈ X, G(x, ·) admits a density denoted g(x, y) w.r.t. some

σ-finite measure. Then for a probability measure λ on X , under mild conditions on

the density g the following recursion defines a sequence of probability kernels Πλ
n :

YN ×X → [0, 1], n ≥ 0,

Πλ
n(y,A) :=

´
1A(x)g(x, yn)F (x′,dx)Πλ

n−1(y,dx′)´
g(x, yn)F (x′,dx)Πλ

n−1(y,dx′)
, n ≥ 1,

Πλ
0 (y,A) :=

´
1A(x)g(x, y0)λ(dx)´

g(x, y0)λ(dx)
,

(1)

where y = (y0, y1, . . .) ∈ YN. In particular, Πµ
n(Y, ·) is a version of the conditional

distribution of Xn given Y0, . . . , Yn under the probability model described in the first

paragraph of this section. A distribution of the form Πλ
n(y, ·) is called a filtering

distribution, or simply a filter.

The question of stability w.r.t. initial conditions of the filter addresses whether or

not Πλ
n is, in some sense, insensitive to λ as n→ +∞. The reader is directed to [3, Ch.

4] for a collection of recent perspectives. What unifies much of the literature on filter

stability is that the insensitivity of Πλ
n to λ is described in terms of integrals w.r.t.

Πλ
n(y, ·) of bounded test functions, typically through decay as n → +∞ of the total

variation ‖Πλ
n(y, ·)−Πλ̃

n(y, ·)‖tv, where for a signed measure µ, ‖µ‖tv := sup|ϕ|≤1 |µ(ϕ)|,

µ(ϕ) :=
´
ϕ(x)µ(dx). Studies using the total variation norm include e.g., [8, 4, 11].

In many applications X is Rd or some other unbounded domain and the motive

for computing Πλ
n is statistical inference for the signal process, e.g. by calculating

moments of Πλ
n(y, ·). This situation leads naturally to the question of filter stability

for unbounded test functions, which to the knowledge of the authors has gone largely

unanswered except in some special cases, such as linear-Gaussian models [9]. The main

aim of the present article is to address this gap.

Our approach builds very directly upon that of [4], in turn drawing on techniques of

[8]. Under a collection of assumptions which we discuss in more detail later, Douc et al.

[4, Theorem 1] established path-wise exponential stability of the form: there exists a

strictly positive constant c such that for any two probability measures λ, λ̃:

lim sup
n→+∞

1

n
log ‖Πλ

n(Y, ·)−Πλ̃
n(Y, ·)‖tv < −c, P− a.s., (2)



Stability of nonlinear filters 3

where P is a probability measure on Y⊗N.

Our main contribution is to establish that under similar conditions, path-wise expo-

nential convergence as in (2) holds, but with ‖·‖tv replaced by a norm which allows for

unbounded test functions: for V an R+-valued function on X such that supx∈X V (x) ≤

+∞, we consider the norm on signed measures µ, ‖µ‖V := sup|ϕ|≤V |µ(ϕ)|. Other

details of our setup are given in Sections 2.1 and 2.2. Our main results, in Section 2.3,

concern certain sequences of measures which arise from the composition of nonnegative

kernels driven by an ergodic measure-preserving transform, along the lines considered

in the Perron-Frobenius theorem in random environments of [7]. This allows us to treat

stability of the filters Πλ
n and the prediction filters Π

λ

n(y, ·) :=
´
F (x, ·)Πλ

n−1(y,dx) in

a single framework. Examples are given in Section 3 and proofs in Section 4.

2. Nonnegative kernels in a random environment

2.1. Definitions and assumptions

We consider a complete probability space (Ω,F ,P) and a measurable space (X,X ),

where X is Polish and X is the Borel σ-algebra on X. For an integral kernel R :

Ω×X×X → [0,+∞], i.e. for (ω, x) ∈ Ω×X, R(ω, x, ·) is a measure on X , and for A ∈ X ,

R(·, ·, A) is measurable w.r.t. F ⊗ X , we shall write interchangeably R(ω, x,A) ≡

Rω(x,A). Similarly for ν : Ω × X → [0,+∞], ν(ω,A) ≡ νω(A); for ϕ : Ω × X → R,

ϕ(ω, x) ≡ ϕω(x); and Rωϕω(x) :=
´
X ϕ

ω(x′)Rω(x, dx′), νωRω(·) :=
´
X ν

ω(dx)Rω(x, ·),

νω(ϕω) :=
´
X ϕ

ω(x)νω(dx). By virtue of our completeness assumption about (Ω,F ,P)

and Polish assumption about X, for any measurable ϕ : Ω × X → R and A ∈ X , the

mappings ω 7→ supx∈A ϕ(ω, x) and ω 7→ infx∈A ϕ(ω, x) are each measurable w.r.t. F

[2, Corollary 2.13].

We fix a function V : X → [1,+∞) possibly unbounded (in the sense that we

allow supx∈X ≤ +∞), with which we associate the following norms. For ϕ : X → R,

‖ϕ‖V := supx∈X |ϕ(x)|/V (x); for a signed measure µ on X , ‖µ‖V := supϕ:|ϕ|≤V |µ(ϕ)|;

and for a signed kernel R on (X,X ), 9R9V := supx∈X ‖R(x, ·)‖V /V (x).

Let θ : Ω → Ω be a measurable mapping and with n ∈ N, let θn denote the n-fold

iterate of θ. Then denote:

Rω0 := Id, Rωn := RωRθω · · ·Rθ
n−1ω, n ≥ 1.
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Define a ∨ b := max{a, b}, a ∧ b := min{a, b}, log+(x) := log(1 ∨ x) and log−(x) :=

− log(1 ∧ x). The indicator function on a set A is denoted by 1A. The set of non-

negative integers is denoted N. We adopt the conventions 0/0 = +∞/+∞ = 1.

From henceforth we fix a distinguished nonnegative kernel Q : Ω×X×X → [0,+∞],

such that Qω(x,X) > 0 for all x ∈ X, P-a.s.

Definition 2.1. A set C ∈ X is a local Doeblin (LD) set for Q if there exist nonneg-

ative random variables ε−C , ε
+
C on (Ω,F), such that ε−C(ω) ≤ ε+C(ω) for all ω and both

ε+C and ε−C are valued in (0,+∞) P-a.s.; and a probability kernel µC : Ω × X → [0, 1]

such that µωC(C) = 1 for all ω and, for any (A, x, ω) ∈ X × C × Ω,

ε−C(ω)µωC(A ∩ C) ≤ Qω(x,A ∩ C) ≤ ε+C(ω)µωC(A ∩ C).

We shall consider the following assumptions.

(A1) θ preserves P and is ergodic;

(A2) E[log+ Υ] < +∞, where Υ(ω) := 9Qω9V ;

(A3) There exists a setD ∈ X such that E[log−Ψ] < +∞, where Ψ(ω) := infx∈D Q
ω(x,D);

(A4) There exist a setK ∈ F , a constant d ≥ 0, and a measurable, unbounded function

W : X→ [0,+∞) such that for any d ∈ [d,+∞),

(a) Cd := {x ∈ X : W (x) ≤ d} is a LD set for Q such that, with D is as in (A3),

inf
ω∈K

ε−Cd(ω)/ε+Cd(ω) ∈ (0, 1], E
[

log−
(
ε−CdµCd(Cd ∩D)

)]
< +∞;

(b) cd := supx∈Cd V (x) < +∞ and

Qω(V )(x)

V (x)
≤ exp

(
−W (x)

)
, ∀(ω, x) ∈ K × Ccd;

(A5) P(K) > 2/3, where K is as in (A4).

Let M(D,V ) be the collection of integral kernels ν : Ω × X → [0,+∞], such that

for any A ∈ X , the mapping ω 7→ νω(A) is measurable; for P-almost all ω, νω(·) is a

probability measure on X , νω(V ) < +∞ and νωQω(D) > 0, where D is as in (A3).

For a given integral kernel ν : Ω×X → [0,+∞] and n ∈ N, denote:

ηων,n(A) :=
νωQωn(A)

νωQωn(X)
, (ω,A) ∈ Ω×X . (3)
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The following preliminary lemma addresses some basic regularity properties of Q

and ην,n.

Lemma 1. Assume (A1), (A2), (A3) and let ν ∈M(D,V ). Then there exists Ω̄ ∈ F

with P(Ω̄) = 1 such that the following hold for all ω ∈ Ω̄. For all n ∈ N, 9Qωn9V < +∞,∏n
k=0 Υ(θkω) < +∞,

∏n
k=0 Ψ(θkω) > 0, and for all x ∈ X, Qωn(x,X) > 0. Also ηων,n(·)

is a probability measure on X and ηων,n(V ) < +∞ for all n ∈ N, and ηων,n(D) > 0 for

all n ≥ 1.

Proof. By the sub-multiplicative property of 9·9V , we have 9Qωn9V ≤
∏n−1
k=0 9Qθ

kω9V =∏n−1
k=0 Υ(θkω). For P-almost all ω, Υ(ω) < +∞ by (A2), Ψ(ω) > 0 by (A3), and

Qω(x,X) > 0 for all x ∈ X by definition. Combining these observations with the mea-

sure preservation part of (A1) gives the first four inequalities in the statement. For n ∈

N, ‖νωQωn‖V ≤ ‖νω‖V 9Qωn9V < +∞ and for n ≥ 1, νωQωn(X) ≥ νωQω(D)
∏n−1
k=0 1 ∧

Ψ(θkω) > 0, P-a.s. Putting these facts together with (3) completes the proof.

2.2. Instances of the general setup

Let (Y,Y), F , g, λ, Πλ
n and Π

λ

n be as in Section 1 and let P be some probability

measure on Y⊗N. Take Ω = YN. We note that the requirement of Section 2.1 to have a

complete probability space can always be satisfied by taking (Ω,F ,P) to be the unique

completion of (Ω,Y⊗N,P) in the sense of [1, p.39 and problem 3.5, p.43], where here

and in the examples of Section 3 we abuse notation slightly in using the symbol P to

represent both the original probability measure on Y⊗N and its extension to F .

Regard Y (ω) = (Y0(ω), Y1(ω), . . .) as the coordinate process on (Ω,F). Take θ as

the shift operator, Y (θω) = (Y1(ω), Y2(ω), . . .).

Filters If one takes

νω(dx) =
g(x, Y0(ω))λ(dx)´
g(x′, Y0(ω))λ(dx′)

, Qω(x,dx′) = F (x,dx′)g(x′, Y1(ω)), (4)

then ηων,n(·) ≡ Πλ
n(Y (ω), ·).

Prediction filters If one takes

νω(·) = λ(·), Qω(x, dx′) = g(x, Y0(ω))F (x,dx′), (5)

then ηων,n(·) ≡ Π
λ

n(Y (ω), ·).
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2.3. Statements of the main results

Theorem 2.1. Assume (A1)-(A5). Then there exists a ρ ∈ (0, 1) such that, for all

ν, ν̃ ∈M(D,V ), limn→+∞ ρ−n‖ηων,n − ηων̃,n‖V = 0, P-a.s.

The main ingredients in the proof of Theorem 2.1 are the following two propositions.

Proof of Proposition 2.1 is the main technical contribution of the paper and is given

in Section 4.2 through a sequence of lemmas. The proof of Proposition 2.2, given in

Section 4.3, follows quite closely some arguments of [5, Proof of Proposition 5], with

suitable modifications to accommodate the V -norm.

Proposition 2.1. Assume (A1)-(A4), P(K) > 0, with K as in (A4). Then, for any

β ∈ (0, 1) and ν ∈M(D,V ), limn→+∞ βn‖ηων,n‖V = 0, P-a.s.

Proposition 2.2. Assume (A1)-(A4) and let ν, ν̃ ∈ M(D,V ). Let γ−, γ+, β be con-

stants such that 0 ≤ γ− < γ+ ≤ 1, β ∈ (γ−, γ+). Fix any d ∈ [d,+∞). Then for

P-almost any ω, if n−1
∑n−1
i=0 1K(θiω) ≥ (1− γ−) ∨ (1 + γ+)/2, with K as in (A4),

‖ηων,n − ηων̃,n‖V

≤ 2ρ
bn(β−γ−)c
Cd

‖ηων,n‖V ‖ηων̃,n‖V + 2
νω(V ) ν̃ω(V )

νωQω(D) ν̃ωQω(D)
e−d

bn(γ+−β)c
2

n−1∏
i=0

Z(θiω)2

< +∞

(6)

where ρCd := supω∈K
{

1−
(
ε−Cd(ω)/ε+Cd(ω)

)2} ∈ [0, 1) and Z(ω) :=
1 ∨Υ(ω)

1 ∧Ψ(ω)
.

We next summarize how our assumptions compare to those of Douc et al. [4,

Theorem 1], and how our Theorem 2.1 differs to a result of [12] which places restrictive

conditions on the observation sequence. An exhaustive comparison would be very

lengthy and tedious, so we just focus on some key issues.

Comparison with [4] Although [4] addressed stability of the filtering distributions,

comparison of assumptions is most notationally direct in the setting (5); all assertions

in the remainder of Section 2.3 are to be understood in that context.

The main feature of our assumptions which is stronger than those of [4, Theorem 1],

is that in (A4)a) we require Cd to be an LD set satisfying the integrability condition

E
[

log−
(
ε−CdµCd(Cd ∩ D)

)]
< +∞ for all d ∈ [d,+∞). This is in contrast to [4,

Theorem 1, eq. (14)], which requires that a similar condition is satisfied for only
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some LD set. Otherwise, our assumptions are very similar to those of [4, Theorem

1]. We note that we have taken Qω(x,X) > 0 for all x, P-a.s. by definition i.e.

g(x, Y0(ω)) > 0 for all x, P-a.s., which is essentially the same as [4, p.139, condition

(H1)]. Part b) of (A4) is very similar to [4, p.139, condition (H2)]. We note that

(A1) amounts to saying that the process (Yn)n∈N is stationary and ergodic. Combined

with (A2), (A3), and (A5), this implies lim supn→+∞ n−1
∑n−1
k=0 log Υ(θkω) < +∞,

lim infn→+∞ n−1
∑n−1
k=0 log Ψ(θkω) > −∞ and limn→+∞ n−1

∑n−1
k=0 1K(θkω) > 2/3,

which are very similar to [4, Theorem 1, conditions (12)-(14)]. Motivation for the

technical condition P(K) > 2/3 is given in [6, Remark 5].

Comparison with [12] In the notation of the present work, [12, Corollary 1] establishes

under certain conditions that there exist Y ⊆ Y and constants c < +∞, ρ < 1

depending on Y such that

y ∈ YN ⇒ ‖Πλ

n(y, ·)−Π
λ̃

n(y, ·)‖V ≤ c ρn, ∀n ∈ N. (7)

[12, Section 3.1.1] provides an example for which one can take Y = Y, but in other

cases one must resort to strict inclusion Y ⊂ Y and the condition y ∈ YN
becomes very

restrictive. Thus (7) does not satisfactorily extend (2).

3. Discussion

The examples below serve two main purposes. Firstly, we show that for one of the

models treated by [4], the tv-norm convergence as in (2) can be extended to convergence

in V -norm with no further assumptions. Secondly, we provide a simple example to

illustrate that under certain conditions on g, the filters can forget their initial condition

in V -norm for some V such that the V -norm of each prediction filter is infinite.

3.1. A nonlinear state-space model

Throughout Section 3.1 we take X = Rdx , Y = Rdy and we focus on the following

nonlinear model considered in [8], [4] and [12]: For n ≥ 0,

Xn+1 = Xn + b(Xn) + Σ(Xn)Vn, Yn = h(Xn) + βWn, (8)

where b : Rdx → Rdx and h : Rdx → Rdy are vectors of functions, Σ is a dx× dx matrix

of continuous functions, β > 0 is a constant and (Vn)n∈N and (Wn)n∈N are sequences



8 M. Gerber and N. Whiteley

of i.i.d. standard Gaussian vectors of appropriate dimension. The following conditions

are considered by [4, p.1245]:

(E1) b is locally bounded and limr→+∞ sup|x|≥r
∣∣x+ b(x)| − |x| = −∞;

(E2) With σ(τ, x) := τTΣ(x)Σ(x)T τ ,

0 < inf
(x,τ)∈R2dx , |τ |=1

σ(τ, x) ≤ sup
(x,τ)∈R2dx , |τ |=1

σ(τ, x) < +∞; (9)

(E3) h is locally bounded and lim sup|x|→+∞ |x|−1 log |h(x)| < +∞.

Remark 1. For an arbitrarily chosen c > 0, set V (x) = exp(c|x|). Let F be the

Markov transition kernel corresponding to the signal model (8). The following facts

are gathered together from [4, p.1246]. Under (E1)-(E2): there exists a constant

c′ < +∞ such that

F (V )(x)

V (x)
≤ c′ exp

(
c(|x+ b(x)| − |x|)

)
, ∀x ∈ X, (10)

and for any bounded Borel set C ∈ X of strictly positive Lebesgue measure, there are

constants 0 < ε̃−C ≤ ε̃
+
C < +∞ such that:

ε̃−C µ̃C(A ∩ C) ≤ F (x,A ∩ C) ≤ ε̃+C µ̃C(A ∩ C), ∀(x,A) ∈ C ×X , (11)

where µ̃C is the normalized restriction of Lebesgue measure to C. The Markov chain

(Xn)n∈N with transition kernel F is aperiodic and positive Harris recurrent with unique

invariant distribution, say π, such that π(V ) < +∞, and the Markov chain (Xn, Yn)n∈N

given by (8) is also aperiodic and positive Harris recurrent, with invariant distribution

π(dx)g(x, y)dy where dy is Lebesgue measure on Rdy and

g(x, y) ∝ exp(−[y − h(x)]T [y − h(x)]/2β2). (12)

The following proposition treats the correctly specified HMM, where (Yn)n∈N are dis-

tributed according to (8), but could be quite easily generalized to deal with misspecified

models.

Proposition 3.1. Assume (E1)-(E3) hold for the nonlinear state-space model. Let

P be the probability measure on Y⊗N which is the law of (Yn)n∈N when the bivariate
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process (Xn, Yn)n∈N satisfies (8) and X0 ∼ π. Then for any constant c > 0 there exists

a constant ρ ∈ (0, 1) such that, with V (x) = exp(c|x|),

lim
n→+∞

ρ−n‖Πλ
n(Y, ·)−Πλ̃

n(Y, ·)‖V = 0, P− a.s.

for any two probability measures λ, λ̃ such that λ(V ) < +∞ and λ̃(V ) < +∞.

Proof. Let V (x) = exp(c|x|) with some arbitrary c > 0. Fix any two probability

measures λ, λ̃ on X such that λ(V ) ∨ λ̃(V ) < +∞. Consider the scenario (4), let ν, ν̃

be the probability kernels associated with λ, λ̃ as per (4), so ηων,n(·) ≡ Πλ
n(Y (ω), ·),

ηων̃,n(·) ≡ Πλ̃
n(Y (ω), ·). To apply Theorem 2.1 we need to verify (A1)-(A5) and check

that ν, ν̃ are members ofM(D,V ).

For (A1), the measure preservation part holds since (Yn)n∈N is by assumption a

stationary process under P. For the ergodicity part, by Remark 1, the (Xn, Yn)n∈N

chain is aperiodic and positive Harris recurrent, so by [10, Theorem 2.6, Chapter 6,

p.167] the tail σ-algebra for the process (Xn, Yn)n∈N is P-a.s. trivial, from which it

follows that the σ-algebra of events which are invariant w.r.t. the shift operator θ, i.e.,

{A ∈ F : θ−1(A) = A}, is P-trivial. (A2) readily holds, since it follows from (E1), (10)

and (12) that

sup
ω

Υ(ω) = sup
ω,x

Qω(V )(x)/V (x) ≤ sup
x,y

g(x, y) sup
x
F (V )(x)/V (x) < +∞.

Consider now (A3) and (A4). For brevity, write

ψ(x) := c(|x+ b(x)| − |x|) + log c′ + log sup
x′,y

g(x′, y), x ∈ X

and then setW (x) = 0∨−ψ(x). It follows from (E1) that limr→∞ inf |x|≥rW (x) = +∞,

therefore for any d ∈ [0,+∞), the set Cd = {x : W (x) ≤ d} is bounded. There must

exist d ∈ [0,+∞) such that {x : |x| ≤ 1} ⊆ Cd, otherwise W would not be locally

bounded, which would contradict the local boundedness of b in (E1). Thus for each

d ∈ [d,+∞), Cd is a bounded Borel set of strictly positive Lebesgue measure. Set

D = Cd.

Let Y ∈ Y be any compact set and take K = {ω : Y1(ω) ∈ Y}. For part a) of (A4),

using (11), we find that Cd is a LD-set for Q with:

ε−Cd(ω) = ε̃−Cd inf
x∈Cd

g(x, Y1(ω)), ε+Cd(ω) = ε̃+Cd sup
x∈Cd

g(x, Y1(ω)),
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and µωCd(·) = µ̃Cd(·). Since ε̃−C ≤ ε̃+C , we have ε−Cd(ω) ≤ ε+Cd(ω) for all ω ∈ Ω, as

required. We also have infω∈K
(
ε−Cd(ω)/ε+Cd(ω)

)
∈ (0, 1] since Y is compact, Cd is

bounded and h is locally bounded under (E3).

To complete the verification of part a) of (A4), it remains to check that for any

d ≥ d,

E
[

log−
(
ε̃−Cd µ̃Cd(D) inf

x∈Cd
g(x, Y1)

)]
< +∞, (13)

where we note that ε̃−Cd , µ̃Cd(D) are strictly positive constants by construction. Since

for any a, b > 0, log−(ab) ≤ log−(a) + log−(b); [y−h(x)]T [y−h(x)] ≤ 2(|y|2 + |h(x)|2);

and, since h is locally bounded, supx∈Cd |h(x)|2 < +∞; to establish (13) it suffices to

show that E
[
|Y1|2

]
< +∞, or equivalently,

ˆ
X

ˆ
Y
g(x, y)|y|2 dy π(dx) < +∞. (14)

To establish (14) we follow [4, p.1246]. Let c∗ > 0 and V ∗(x) = exp(c∗|x|). Then, ele-

mentary manipulations give
´
Y g(x, y)|y|2 dy = |h(x)|2+const., and supx(|h(x)|2/V ∗(x)) <

+∞ by (E3) as long as c∗ > 2 lim sup|x|→+∞ |x|−1 log |h(x)|, which we may assume

since c∗ > 0 was arbitrary. By Remark 1, π(V ∗) < +∞, so (14) holds, and then (13)

does too, completing the verification of part a) of (A4). It is easily checked that the

conditions of (A4)b) hold by construction of V , W , and Cd and by (E1). To verify

(A3), recall we have taken D = Cd and apply (13) with d = d. (A5) is easily achieved

since Y ∈ Y was an arbitrary compact set.

Finally, we need to check ν, ν̃ ∈M(D,V ). Since supx,y g(x, y) < +∞ and g(x, y) >

0,
´
X g(x, Y0(ω))λ(dx) ∈ (0,+∞), hence νω(·) is a probability measure on X for all ω.

The measurability of ω 7→ νω(A) is immediate. By assumption λ(V ) < +∞, hence

νω(V ) ≤ supx,y g(x, y)λ(V )/
´
X g(x, Y0(ω))λ(dx) < +∞ for all ω, and νωQω(D) > 0

for all ω since g(x, y) > 0 and F (x, ·) has a strictly positive density w.r.t. Lebesgue

measure. The same arguments apply to ν̃.

3.2. Stability for filters but not for prediction filters

It can be shown by arguments almost identical to those in the proof of Proposition

3.1 that the claim of that proposition also holds with the prediction filters Π
λ

n,Π
λ̃

n in

place of the filters Πλ
n,Π

λ̃
n. We omit the details to avoid repetition. However, as we

shall illustrate next, if V (x) grows suitably quickly as |x| → +∞, it can occur that the
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filters are stable in V -norm where as the prediction filters are not, in the sense of the

following proposition. To demonstrate this phenomenon with a simple and short proof,

we consider a specific linear state-space model. The result could easily be generalized

to a broader class of models, at the expense of a proof which involves lengthier technical

manipulations.

Proposition 3.2. Consider the model of Section 3.1 in the case dx = dy = 1, and

Xn+1 = αXn + Vn, Yn = Xn +Wn, (15)

where |α| < 1. Let P be the probability measure on Y⊗N which is the law of (Yn)n∈N

when the bivariate process (Xn, Yn)n∈N satisfies (15) and X0 ∼ π. Then there exist

constants c ∈ (1, 2) and ρ ∈ (0, 1) such that, with V (x) = exp(c x2/2),

‖Πλ

n(y, ·)‖V = +∞, ∀(n, y) ∈ N× YN,

for any probability measure λ, whereas, for any two probability measures λ, λ̃ such that

λ(V ) ∨ λ̃(V ) < +∞, we have limn→+∞ ρ−n‖Πλ
n(Y, ·)−Πλ̃

n(Y, ·)‖V = 0, P-a.s.

Proof. First note that for any c ∈ (1, 2) and x ∈ X,
ˆ
X
F (x, dz)V (z) ∝

ˆ
X

exp
(z2

2
(c− 1) + αzx− α2x2

2

)
dz = +∞,

where dz denotes Lebesgue measure on R, hence ‖Πλ

n(y, ·)‖V = +∞ as claimed.

The proof is completed by applying Theorem 2.1 in the scenario (4). In verifying

(A1)-(A5) and checking that ν, ν̃ are members of M(D,V ), where ν, ν̃ are the prob-

ability kernels associated with λ, λ̃ as per (4), we can re-use some but not all of the

arguments in the proof of Proposition 3.1. Condition (A1) is verified exactly as in the

proof of Proposition 3.1. For the condition (A2), it follows by elementary manipulations

that

V (x)−1

ˆ
X
F (x, dz)g(z, y)V (z) = exp

(
ψ(x, y)

)
,

where

ψ(x, y) := −κα
2x2

2
+

αxy

2− c
+
y2

2

(
1

2− c
− 1

)
− log 2π + log(2− c)

2
,

and we assume c ∈ (1, 2) is such that 0 < 1 + c/α2 − 1/(2 − c) =: κ; note that

it is easily checked that such a c ∈ (1, 2) indeed exists for any α ∈ (−1, 1). Also,
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Υ(ω) ∝ exp
[
c̃ Y1(ω)2

]
, where c̃ is a finite constant depending on c and α. It is easily

seen from (15) that π is Gaussian and the law of Y1 under P is also Gaussian, so

E[log+ Υ] < +∞, as required for (A2). Take Y ⊂ Y as any compact set and set

W (x) = 0∨− supy∈Y ψ(x, y). Then W is locally bounded and limr→∞ inf |x|≥rW (x) =

+∞. The definitions and arguments used in verifying conditions (A3)-(A5) then follow

exactly as in the proof of Proposition 3.1, as does the verification that ν, ν̃ are members

ofM(D,V ).

4. Proofs and auxiliary results

4.1. Preliminaries

We proceed with some further definitions. Define

Mω(x,A) :=
Qω(x,A)

Qω(x,X)
, (ω, x,A) ∈ Ω× X×X . (16)

Throughout Sections 4.1 and 4.2, we fix some ν ∈M(D,V ) and define for n ∈ N,

λωn := ηων,nQ
θnω(X), ω ∈ Ω (17)

and for 0 ≤ k ≤ n, functions hk,n : Ω× X→ R according to

hωn,n(x) := 1, hωk,n(x) :=
Qθ

kω
n−k(x,X)∏n−1
i=k λ

ω
i

, (ω, x, k) ∈ Ω× X× {0, . . . , n− 1}. (18)

Also for 1 ≤ k ≤ n, define vk,n : Ω× X→ R,

vωk,n(x) :=
V (x)

hωk,n(x)
, (ω, x) ∈ Ω× X,

with V is as in (A4), and

Sωk,n(x,A) :=
Qθ

k−1ω(1Ah
ω
k,n)(x)

λωk−1h
ω
k−1,n(x)

, (ω, x,A) ∈ Ω× X×X . (19)

Lemma 2. Assume (A1), (A2), (A3) and let ν ∈M(D,V ). Then there exists Ω̄ ∈ F

with P(Ω̄) = 1 such that the following hold for all ω ∈ Ω̄. For all 0 ≤ k ≤ n,

λωn ∈ (0,+∞), ‖hωk,n‖V < +∞ and for all x ∈ X, hωk,n(x) > 0. For all 1 ≤ k ≤ n and

x ∈ X, vωk,n(x) ∈ (0,+∞), Sωk,n(x, ·) is a probability measure on X , and

ηων,n(A) =

ˆ
X

(Sω1,n · · ·Sωn,n)(x,A)hω0,n(x)νω(dx), ∀A ∈ X . (20)
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Proof. Let Ω̄ ∈ F be the event of probability 1 in Lemma 1. Pick any ω ∈ Ω̄. Then

for any n ∈ N, Qθnω(x,X) > 0 for all x ∈ X, and infx∈D Q
θnω(x,X) ≥ Ψ(θnω) > 0,

hence λωn > 0. Also λωn = ηων,nQ
θnω(X) ≤ ‖ηων,n‖V 9Qθ

nω9V < +∞.

Then, again using Lemma 1, ‖hωk,n‖V = 9Qθ
kω
n−k 9V /

∏n−1
i=k λ

ω
i < +∞ and the

inequality hωk,n(x) > 0 holds since Qω(x,X) > 0 for all x ∈ X. By definition,

V (x) ∈ [1,+∞), so ‖hωk,n‖V < +∞ implies hωk,n(x) < +∞ for all x, and we have

already established hωk,n(x) > 0, hence vωk,n(x) ∈ (0,+∞). It follows from (18) that

Qθ
k−1ω(hωk,n) = λωk−1h

ω
k−1,n, so S

ω
k,n(x, ·) is a probability measure.

By (19), for any 1 ≤ k < n and A ∈ X ,

Sωk,nS
ω
k+1,n(x,A) =

Qθ
k−1ωQθ

kω(1Ah
ω
k+1,n)(x)

λωk−1λ
ω
kh

ω
k−1,n(x)

=
Qθ

k−1ω
2 (1Ah

ω
k+1,n)(x)

λωk−1λ
ω
kh

ω
k−1,n(x)

.

It can be checked similarly that (Sω1,n · · ·Sωn,n)(x,A) = Qωn(x,A)/(hω0,n(x)
∏n−1
i=0 λ

ω
i )

noting hωn,n = 1, and from (3) and (17) that
∏n−1
i=0 λ

ω
i = νωQωn(X), from which (20)

follows.

4.2. Proof of Proposition 2.1

Lemma 3. Assume (A1)-(A4), let Z(ω) be as in Proposition 2.2 and

Td(ω) := 1 ∧ ε−Cd(ω)µωCd(Cd ∩D), (ω, d) ∈ Ω× [d,+∞).

Then, for any d ≥ d, n ≥ 1, we have, for P-almost any ω,

ηων,n(V ) ≤ νω(V )

νωQω(D)
e−dI

ω
0,n−1

n−1∏
i=0

Z(θiω) + cd e
d

n∑
k=1

e−dI
ω
k−1,n−1

Td(θk−1ω)

n−1∏
i=k−1

Z(θiω) < +∞

where for 0 ≤ p ≤ q, we use the shorthand Iωp,q :=
∑p
i=q 1K(θiω).

Proof. For ω ∈ Ω and 1 ≤ k ≤ n, let ρωk,n and Bωk,n be as in Lemma 4, and let

Ω̄ be as in this latter. Then, noting that vωn,n = V and using Lemma 4, elementary

manipulations show that for any (ω, x) ∈ Ω̄× X,

(Sω1,n · · ·Sωn,n)(V )(x) ≤ v0,n(x)

n∏
k=1

ρωk,n +

n∑
k=1

Bωk,n

n∏
i=k+1

ρωi,n < +∞, (21)

with the convention that the right-most product equals 1 when k = n.
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For 0 ≤ k < n and still with ω ∈ Ω̄,

n−1∏
i=0

λωi = νωQωn(X) ≥ νωQω(D)

n−1∏
i=0

1 ∧Ψ(θiω) > 0,

n∏
i=k+1

ρωi,n = e−dI
ω
k,n−1

n−1∏
i=k

1 ∨Υ(θiω)

λωi
< +∞,

and for 1 ≤ k < n,

Bωk,n

n∏
i=k+1

ρωi,n = cd e
−dIωk,n−1

1 ∨Υ(θk−1ω)

Td(θk−1ω)

n−1∏
i=k

Z(θiω)

≤ cd ed
e−dI

ω
k−1,n−1

Td(θk−1ω)

n−1∏
i=k−1

Z(θiω) < +∞.

Then, plugging these into (21), multiplying by hω0,n, integrating w.r.t. νω, and noting

(20) and the fact that νω(hω0,n) = 1 completes the proof.

Lemma 4. Assume (A1)-(A4). Then there exists Ω̄ ∈ F such that P(Ω̄) = 1 and for

all (ω, x, d) ∈ Ω̄×X×[d,+∞) and any 1 ≤ k ≤ n, Sωk,n(vωk,n)(x) ≤ ρωk,nvωk−1,n(x)+Bωk,n,

where

ρωk,n :=
1 ∨Υ(θk−1ω)

λωk−1

e−d1(θk−1ω∈K) < +∞,

Bωk,n := cd
1 ∨Υ(θk−1ω)

Td(θk−1ω)

n−1∏
i=k

λωi
1 ∧Ψ(θiω)

< +∞,

with the convention that the product is unity when k = n, Td as in Lemma 3 and with

the dependence of ρωk,n and Bωk,n on d suppressed in the notation.

Proof. Let Ω̄ be the intersection between the set of P-probability 1 in Lemma 1 and

the set of P-probability 1 in Lemma 2. Pick any ω ∈ Ω̄. Let d ≥ d, x ∈ X, 1 ≤ k ≤ n

and note that

Sωk,n(vωk,n)(x) =
Qθ

k−1ω(V )(x)

λωk−1h
ω
k−1,n(x)

.

If x 6∈ Cd, we have under (A4),

Sωk,n(vωk,n)(x) =
V (x)

λωk−1h
ω
k−1,n(x)

Qθ
k−1ω(V )(x)/V (x) = vωk−1,n(x)

Qθ
k−1ω(V )(x)/V (x)

λωk−1

≤ vωk−1,n(x)ρωk,n,
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where ρωk,n is finite by Lemma’s 1 and 2.

Replace Ω̄ by its intersection with the set of ω′ such that ε−Cd(θkω′)µθ
kω′

Cd
(Cd∩D) > 0

for all k, the latter being a set of probability 1 by (A1) and (A4). Then let ω be any

point in this new Ω̄.

If x ∈ Cd, noting that λωk−1h
ω
k−1,n(x) = Qθ

k−1ω(hωk,n)(x),

λωk−1h
ω
k−1,n(x) ≥

ε−Cd(θk−1ω)µθ
k−1ω
Cd

(1CdQ
θkω
n−k(X))∏n−1

i=k λ
ω
i

≥ ε−Cd(θk−1ω)µθ
k−1ω
Cd

(Cd ∩D)

n−1∏
i=k

Ψ(θiω)

λωi
> 0

with the convention here and in the remainder of the proof that the products are unity

when k = n, and when k < n,
∏n−1
i=k Ψ(θiω) > 0 by Lemma 1 and

∏n−1
i=k λ

ω
i < +∞ by

Lemma 2.

Consequently, for x ∈ Cd,

Sωk,n(vωk,n)(x) ≤ Qθ
k−1ω(V )(x)

Td(θk−1ω)

n−1∏
i=k

λωi
Ψ(θiω)

≤ V (x)
Υ(θk−1ω)

Td(θk−1ω)

n−1∏
i=k

λωi
Ψ(θiω)

< +∞.

To conclude the proof, note that cd < +∞ under (A4) and so for all x ∈ X,

Sωk,n(vωk,n)(x) ≤ ρωk,nvωk−1,n(x) +Bωk,n < +∞.

Lemma 5. Let (Yn)n≥0 be a sequence of nonnegative, equi-distributed random vari-

ables defined on a common probability space. If the expected value of log− Y0 is finite,

then for any β ∈ (0, 1), infn≥0 β
−nYn > 0, a.s.

Proof. See [5, Lemma 7].

Proof of Proposition 2.1. Let

Uωd,n :=

n∑
k=1

e−dI
ω
k−1,n−1

Td(θk−1ω)

n−1∏
i=k−1

Z(θiω), (d, ω, n) ∈ [d,+∞)× Ω× N+

with Td as in Lemma 3 and Z as in Proposition 2.2. Note that Lemma 3 implies that

for any d ≥ d,

Uωd,n < +∞, ∀n ∈ N+, P-a.s. (22)

We shall show that there exists a d∗ ≥ d such that, for any β ∈ (0, 1) and d > d∗,

lim
n→+∞

βnUωd,n = 0, P-a.s. (23)
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and

lim
n→+∞

βne−dI
ω
0,n−1

n−1∏
i=0

Z(θiω) = 0, P-a.s., (24)

which, combined with Lemma 3, are enough to establish limn→+∞ βn‖ηων,n‖V = 0,

P-a.s.

Under (A2) and (A3), 0 ≤ E
[

logZ
]

= E
[
| logZ|

]
= E

[
log+ Υ

]
+E

[
log−Ψ

]
< +∞,

so with l := E
[

logZ
]
and γ := P(K), by (A1) and by Birkhoff’s ergodic theorem,

ξωn := n−1
n−1∑
k=0

logZ(θkω)− l → 0, P-a.s. (25)

ξ̃ωn := n−1Iω0,n−1 − γ → 0, P-a.s. (26)

both as n→ +∞, where we note that γ > 0 by hypothesis of the proposition.

Now define d∗ := l/γ ∨ d and set arbitrarily d > d∗; the main ideas of the proof

are to show that under this condition and the assumptions of the proposition, with

probability 1, the terms e−dI
ω
k−1,n−1

∏n−1
i=k−1 Z(θiω) and 1/Td(θ

k−1ω) appearing in Uωd,n
cannot grow “too fast” as n− k → +∞ and k → +∞, respectively.

Let β ∈ (0, 1) be as in the statement of the lemma, and pick c ∈ (0, dγ − l)

and β̃ ∈ (β, 1) such that (β/β̃) exp(2c) < 1. Under (A4), we have E
[
| log Td|

]
=

E
[

log−
(
ε−CdµCd(Cd ∩D)

)]
< +∞ so by Lemma 5 and under (A1) we have

Tω
d,β̃

:= inf
n∈N

β̃−nTd(θ
nω) > 0, P-a.s. (27)

and by (25)-(26), there exists Nω
c,d ∈ N such that

n ≥ Nω
c,d ⇒ |ξωn − dξ̃ωn | ≤ c, P-a.s. (28)

Now let ω be any point in a set of probability 1 on which (22), (25), (26), (27) and

(28) all hold. Since we are interested in the limit as n→ +∞, we assume for the rest

of the proof that n > Nω
c,d+ 1. Consider the decomposition Uωd,n = Uωd,n,1 +Uωd,n,2 with

Uωd,n,1 :=

Nωc,d∑
k=1

e−dI
ω
k−1,n−1

Td(θk−1ω)

n−1∏
i=k−1

Z(θiω), Uωd,n,2 :=

n∑
k=Nωc,d+1

e−dI
ω
k−1,n−1

Td(θk−1ω)

n−1∏
i=k−1

Z(θiω).

To prepare to bound these two quantities, note that

e−dI
ω
k−1,n−1

n−1∏
i=k−1

Z(θiω) = e−(n−k+1)(dγ−l)en(ξn−dξ̃n)+(k−1)(dξ̃k−1−ξk−1) (29)

≤ e−(n−k+1)(dγ−l−c)e2nc, (30)
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where the equality holds for any k ≤ n and the inequality holds if additionally k > Nω
c,d.

To bound Uωd,n,1,

Uωd,n,1 = e
−dIωNω

c,d
,n−1

n−1∏
i=Nωc,d

Z(θiω)

Nωc,d∑
k=1

e
−dIωk−1,Nω

c,d
−1

Td(θk−1ω)

Nωc,d−1∏
i=k−1

Z(θiω)

≤ e−(n−Nωc,d)(dγ−l−c)e2nc Uωd,Nωc,d

≤ e2ncUωd,Nωc,d

where (30) has been used and where Uωd,Nωc,d does not depend on n and is finite by (22).

For Uωd,n,2, applying (30) gives,

Uωd,n,2 ≤
n∑

k=Nωc,d+1

β̃−(k−1)

Tω
d,β̃

e−(n−k+1)(dγ−l−c)e2nc ≤ e2ncβ̃−n

Tω
d,β̃

1

1− e−(dγ−l−c) .

Combining these upper bounds for Ud,n,1 and Ud,n,2, and recalling (β/β̃) exp(2c) < 1,

βnUωn,d ≤ βne2nc
(
Uωd,Nωc,d +

β̃−n

Tω
d,β̃

1

1− e−(dγ−l−c)

)
→ 0, as n→ +∞,

which completes the proof of (23). In order to establish (24) and thus complete the

proof of the proposition, (29) applied with k − 1 = 0 gives:

βne−dI
ω
0,n−1

n−1∏
i=0

Z(θiω) ≤ βne−n(dγ−l−c) → 0, as n→ +∞.

4.3. Proof of Proposition 2.2

Proof of Proposition 2.2. We first introduce some additional notation. For x̄ :=

(x, x′) ∈ X2 =: X̄, let V̄ (x̄) := V (x)V (x′), for functions ψ1, ψ2 : X → R, let ψ1 ⊗

ψ2(x̄) := ψ1(x)ψ2(x′), and for any two measures µ1, µ2 let µ1 ⊗ µ2 denote their direct

product. Then let Q̄ω(x̄, ·) := Qω(x, ·)⊗Qω(x′, ·).

Let ω be any point in the set of probability 1 defined in Lemma 1 and ν, ν̃ ∈

M(D,V ). We keep this ω fixed throughout the proof, so to slightly economise on

notation we suppress the dependence of ν and ν̃ on ω. Independently of ω, fix d ≥ d

and ϕ : X → R a measurable function such that |ϕ| ≤ V . Then, with ϕ+ ≥ 0 and

ϕ− ≥ 0 being respectively the positive and negative parts of ϕ, i.e. ϕ = ϕ+ − ϕ−, we

have

|ηων,n(ϕ)− ηων̃,n(ϕ)| ≤ |ηων,n(ϕ+)− ηων̃,n(ϕ+)|+ |ηων,n(ϕ−)− ηων̃,n(ϕ−)|.
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Using the fact that V ≥ 1, 0 ≤ ϕ− ≤ V and 0 ≤ ϕ+ ≤ V , it is readily checked,

following very similar arguments to Douc and Moulines [5, Proof of Proposition 5, pp.

2712-2713], that

|ηων,n(ϕ)− ηων̃,n(ϕ)|ν ⊗ ν̃Q̄ωn(X̄)

≤ 2

ˆ
X̄n+1

V̄ (x̄n)ρ
∑n−1
j=0 1C̄d×C̄d

(x̄j ,x̄j+1)1K(θjω)

Cd
ν ⊗ ν̃(dx̄0)

n−1∏
i=0

Q̄θ
iω(x̄i,dx̄i+1). (31)

Then, writing MC̄cd,n
(x̄0:n−1) :=

∑n−1
i=0 1C̄d×C̄d(x̄i) and following again the compu-

tations of [5, Proof of Proposition 5, p.2714], we have, for any β ∈ (γ−, 1] and under

the assumptions on Iω0,n−1,

ρ
∑n−1
j=0 1C̄d×C̄d

(x̄j ,x̄j+1)1K(θjω)

Cd
≤ ρbn(β−γ−)c

Cd
+ 1
{
MC̄cd,n

(x̄0:n−1) ≥ (n− bnβc)/2
}
. (32)

Substituting (32) into (31) and noting ν⊗ν̃Q̄ωn(X̄) ≥ νQω(D)ν̃Qω(D)
∏n−1
i=0 1∧Ψ(θkω)2,

|ηων,n(ϕ)− ηων̃,n(ϕ)|

≤ 2ρ
bn(β−γ−)c
Cd

‖ηων,n‖V ‖ηων̃,n‖V +
2Γων,ν̃,n

νQω(D)ν̃Qω(D)
∏n−1
i=0 1 ∧Ψ(θkω)2

, (33)

where Γων,ν̃,n can be written as follows

Γων,ν̃,n =

n−1∏
i=0

1 ∨Υ(θiω)2

ˆ
X̄n+1

V̄ (x̄0)ν ⊗ ν̃(dx̄0)1
{
MC̄cd,n

(x̄0:n−1) ≥ (n− bnβc)/2
}

× e−d
∑n−1
i=0 1C̄c

d
(x̄i)1K(θiω)

n−1∏
i=0

Q̄θ
iω(x̄i,dx̄i+1)V̄ (x̄i+1)

V̄ (x̄i)e
−d1C̄c

d
(x̄i)1K(θiω)

1 ∨Υ(θiω)2
.

Using the arguments of [5, Proof of Proposition 5, p.2715] it is readily checked that,

under the hypothesis on Iω0,n−1, we have for any β ∈ (0, γ+),

e
−d

∑n−1
i=0 1C̄c

d
(x̄i)1K(θiω)

1
{
MC̄cd,n

(x̄0:n−1) ≥ (n− bnβc)/2
}
≤ e−dnb(γ

+−β)c/2,

and it follows from (A4) that

sup
x̄i∈X̄

´
X̄ Q̄

θiω(x̄i,dx̄i+1)V̄ (x̄i+1)

V̄ (x̄i)e
−d1C̄c

d
(x̄i)1K(θiω)

1 ∨Υ(θiω)2
≤ 1.

The proof is completed by applying these last two inequalities to bound Γων,ν̃,n in (33).
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4.4. Proof of Theorem 2.1

Proof of Theorem 2.1. By (A5), P(K) > 2/3, implying that there exist 0 < γ− <

γ+ < 1 such that P(K) > (1−γ−)∨(1+γ+)/2 [see 6, Remark 5]. Consequently, under

(A1) and by Birkhoff’s ergodic theorem, there exists Nω ∈ N such that

n ≥ Nω ⇒ n−1|Iω0,n−1| ≥ (1− γ−) ∨ (1 + γ+)/2, P-a.s.

With Z(ω) as in Proposition 2.2, and under (A1), (A2), (A3), there exists l ≥ 0 such

that

ξωn := n−1
n−1∑
k=0

logZ(θkω)− l → 0, as n→ +∞, P-a.s. (34)

Now fix any β ∈ (γ−, γ+) and d ≥ d such that

d(γ+ − β)/2 > 2l, (35)

and with ρCd := supω∈K{1 − (ε−Cd(ω)/ε+Cd(ω))2} ∈ [0, 1) as in Proposition 2.2, then

also fix ρ ∈ (0, 1) such that

ρ > ρβ−γ
−

Cd
∨ e−d(γ+−β)/2+2l. (36)

By Proposition 2.2, for P-almost any ω and n ≥ Nω,

ρ−n‖ηων,n − ηων̃,n‖V ≤ 2ρ−nρ
bn(β−γ−)c
Cd

‖ηων,n‖V ‖ηων̃,n‖V (37)

+ 2
νω(V )

νωQω(D)

ν̃ω(V )

ν̃ωQω(D)
ρ−ne−dbn(γ+−β)c/2

n−1∏
i=0

Z(θiω)2, (38)

with νω(V )/νωQω(D) < +∞ and ν̃ωQω(V )/ν̃ω(D) < +∞, P-a.s., since ν, ν̃ ∈M(D,V ).

For the term in (37),

ρ−nρ
bn(β−γ−)c
Cd

‖ηων,n‖V ‖ηων̃,n‖V ≤ ρ−1
Cd

(
ρβ−γ

−

Cd

ρ

)n/2
‖ηων,n‖V

(
ρβ−γ

−

Cd

ρ

)n/2
‖ηων̃,n‖V

→ 0, as n→ +∞, P-a.s.,

where the convergence is due to (36) and Proposition 2.1, while for the term in (38),

ρ−ne−dbn(γ+−β)c/2
n−1∏
i=0

Z(θiω)2 ≤ ed/2ρ−ne−dn(γ+−β)/2
n−1∏
i=0

Z(θiω)2

= ed/2ρ−ne−n(d(γ+−β)/2−2l)e2nξn

→ 0, as n→ +∞, P-a.s.,

where the convergence is due to (34), (35) and (36). The proof is complete.
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