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KEY INSIGHTS
State-of-the-art tools from machine learning and artificial intelli-
gence are making inroads to automate parts of the peer review pro-
cess; however, many opportunities for further improvement remain.

Profiling, matching and open-world expert finding are key tasks
that can be addressed using feature-based representations commonly
used in machine learning.

Such streamlining tools also offer perspectives on how the peer re-
view process might be improved: in particular, the idea of profiling
naturally leads to a view of peer review being aimed at finding the
best publication venue (if any) for a submitted paper.

Creating a more global embedding for the peer review process which
transcends individual conferences or conference series by means of
persistent reviewer and author profiles is key, in our opinion, to a
more robust and less arbitrary peer review process.

1. INTRODUCTION
Peer review is the process by which experts in some discipline com-
ment on the quality of the works of others in that discipline. Peer
review of written works is firmly embedded in current academic
research practice where it is positioned as the gateway process and
quality control mechanism for submissions to conferences, jour-
nals and funding bodies across a wide range of disciplines. It is
probably safe to assume that peer review in some form will remain
a cornerstone of academic practice for years to come, evidence-
based criticisms of this process in computer science [33, 32, 45]
and other disciplines [28, 23] notwithstanding.

While parts of the academic peer review process have been stream-
lined in the last few decades to take account of technological ad-
vances, there are many more opportunities for computational sup-
port that are not currently being exploited. The aim of this arti-
cle is to identify such opportunities and describe a few early so-
lutions by ourselves and others for automating key stages in the
established academic peer review process. When developing these
solutions we have found it useful to build on our background in

machine learning and artificial intelligence: in particular, we utilise
a feature-based perspective in which the hand-crafted features on
which conventional peer review usually depends (e.g., keywords)
can be improved by feature weighting, selection and construction
(see [17] for a broader perspective on the role and importance of
features in machine learning).

Twenty-five years ago, at the start of our academic careers, sub-
mitting a paper to a conference was a fairly involved and time-
consuming process that roughly went as follows. Once an author
had produced the manuscript (in the original sense, i.e., manually
produced on a typewriter, possibly by someone from the Univer-
sity’s pool of typists), he or she would make up to seven photo-
copies, stick all of them in a large envelope and send them to the
program chair of the conference, taking into account that interna-
tional post would take 3-5 days to arrive. On their end, the program
chair would receive all those envelopes, redistribute them to the
various members of the program committee, and send them out for
review by post in another batch of big envelopes. Reviews would be
completed by hand on paper and posted back or brought to the pro-
gram committee meeting. Finally, notifications and reviews would
be sent back by the program chair to the authors by post. Submis-
sions to journals would follow a very similar process.

It is clear that we have moved on quite substantially from this
paper-based process – indeed, many of the steps we describe above
would seem arcane to our younger readers. These days, papers
and reviews are submitted on-line in some conference management
system (CMS), and all communication is done via e-mail or via
message boards on the CMS with all metadata concerning people
and papers stored in a database back-end. One could argue that this
has made the process much more efficient, to the extent that we
now specify the submission deadline up to the second in a partic-
ular timezone (rather than approximately as the last post round at
the program chair’s institution), and can send out hundreds if not
thousands of notifications at the touch of a button.

Computer scientists have been studying automated computational
support for conference paper assignment since pioneering work in
the nineties [14]. A range of methods have been used to reduce
the human effort involved in paper allocation, typically with the
aim of producing assignments that are similar to the ‘gold stan-
dard’ manual process [13, 16, 34, 18, 9, 37, 30]. Yet, despite many
publications on this topic over the intervening years, research re-
sults in paper assignment have made relatively few inroads into
mainstream CMS tools and everyday peer review practice. Hence,
what we have achieved over the last 25 years or so appears to be a
streamlined process rather than a fundamentally improved one: we



Table 1: A chronological summary of the main activities in peer review, with opportunities for improving the process through
computational support.

Actor Activity What can be done now What might be done in future
I Author Paper submission Recommender systems for publication

venue; papers carry full previous re-
viewing history

II Program chair Assembling program committee Expert finding (Section 4) PCs for an area rather than a single con-
ference; workload balancing

III Program chair Assigning papers for review Bidding and assignment sup-
port (Section 2)

Extending PCs based on submitted pa-
pers

IV Reviewer Reviewing papers Advanced reviewing tools that find re-
lated work and map the paper under re-
view relative to it

V Program chair Discussion and decisions Reviewer score calibration
(Section 3)

More outcome categories; recom-
mender systems for outcomes; more
decision time points

believe it would be hard to argue that the decisions taken by pro-
gram committees today are significantly better in comparison with
the paper-based process. But this doesn’t mean that opportunities
for improving the process don’t exist – on the contrary, there is, as
we demonstrate in this paper, considerable scope for employing the
very techniques that researchers in machine learning and artificial
intelligence have been developing over the years.

Table 1 recalls the main steps in the peer review process and high-
lights current and future opportunities for improving it through ad-
vanced computational support. In discussing these it will be help-
ful to draw a distinction between closed-world and open-world set-
tings. In a closed-world setting there is a fixed or pre-determined
pool of people or resources. For example, assigning papers for re-
view in a closed-world setting assumes that a program committee
or editorial board has already been assembled, and hence the main
task is one of matching papers to potential reviewers. In contrast,
in an open-world setting the task becomes one of finding suitable
experts. Similarly, in a closed-world setting an author has already
decided which conference or journal to send their paper to, whereas
in a open-world setting one could imagine a recommender system
that suggests possible publication venues. The distinction between
closed and open worlds is gradual rather than absolute: indeed,
the availability of a global database of potential publication venues
or reviewers with associated metadata would render the distinction
one of scale rather than substance. Nevertheless, it is probably fair
to say that, in the absence of such global resources, current opportu-
nities tend to be focus on closed-world settings. In the next sections
we review work by ourselves and others on steps II, III and V, start-
ing with the latter two which are more of a closed-world nature.

2. ASSIGNING PAPERS FOR REVIEW
In the currently established academic process, peer review of writ-
ten works depends on appropriate assignment to several expert peers
for their review. Identifying the most appropriate set of reviewers
for a given submitted paper is a time-consuming and non-trivial
task for conference chairs and journal editors – not to mention
funding program managers, who rely on peer review for funding
decisions. In this section we break the review assignment problem
down into its matching and constraint satisfaction constituents, and
discuss possibilities for computational support.

Formally, given a set P of papers with |P| “ p and a set R of review-
ers with |R| “ r, the goal of paper assignment is to find a binary ma-

trix Arˆp such that Ai j “ 1 indicates that the i-th reviewer has been
assigned the j-th paper, and Ai j “ 0 otherwise. The assignment
matrix should satisfy various constraints, the most typical of which
are: (i) each paper is reviewed by at least c reviewers (typically,
c“ 3); (ii) each reviewer is assigned no more than m papers, where
m“Oppc{rq; and (iii) reviewers should not be assigned papers for
which they have a conflict of interest (this can be represented by
a separate binary conflict matrix Crˆp). As this problem is under-
specified, we will assume that further information is available in the
form of a score matrix Mrˆp expressing for each paper-reviewer
pair how well they are matched by means of a non-negative num-
ber (higher means a better match). The best allocation is then the
one that maximises the element-wise matrix product

ř

i, j Ai jMi j
while satisfying all constraints [44].

This one-dimensional definition of best does not guarantee the best
set of reviewers if a paper covers multiple topics, e.g. a paper on
machine learning and optimisation could be assigned three review-
ers who are machine learning experts but none who are optimisa-
tion experts. This shortcoming can be addressed by replacing R
with the set Rc such that each c-tuple P Rc represents a possible
assignment of c reviewers [25, 24, 42]. Recent works add explicit
constraints on topic coverage to incorporate multiple dimensions
into the definition of best allocation [31, 26, 40]. Other types of
constraints have also been considered, including geographical dis-
tribution and fairness of assignments, as have alternative constraint
solver algorithms [2, 20, 20, 19, 43]. The score matrix can come
from different sources, possibly a combination. In the following
sections we review three possible sources: feature-based matching,
profile-based matching, and bidding.

2.1 Feature-based matching
To aid assigning submitted papers to reviewers a short list of sub-
ject keywords is often required by mainstream CMS tools as part of
the submission process, either from a controlled vocabulary, such
as the ACM Computing Classification System (CCS)1, or as a free-
text ‘folksonomy’. As well as collecting keywords for the submit-
ted papers, taking the further step of also requesting subject key-
words from the body of potential reviewers enables CMS tools to
make a straightforward match between the papers and the reviewers
based on a count of the number of keywords they have in common.
For each paper the reviewers can then be ranked in order of the
number of matching keywords.
1http://www.acm.org/about/class/

http://www.acm.org/about/class/


If the number of keywords associated with each paper and each
reviewer is not fixed then the comparison may be normalised by
the CMS to avoid overly favouring longer lists of keywords. If the
overall vocabulary from which keywords are chosen is small then
the concepts they represent will necessarily be broad and likely to
result in more matches; conversely, if the vocabulary is large, as in
the case of free-text or the ACM CCS, then concepts represented
will be finer grained but the number of matches is more likely to
be small or even non-existent. Also, manually assigning keywords
to define the subject of written material is inherently subjective. In
the medical domain, where taxonomic classification schemes are
commonplace, it has been demonstrated that different experts, or
even the same expert over time, may be inconsistent in their choice
of keywords [6, 5].

When a pair of keywords do not literally match, despite having
been chosen to refer to the same underlying concept, one technique
that is often used to improve matching is to also match their syn-
onyms or syntactic variants – as defined in a thesaurus or dictio-
nary of abbreviations, e.g., treating ‘code inspection’ and ‘walk-
through’ as equivalent; likewise for ‘SVM’ and ‘support vector
machine’ or ‘λ -calculus’ and ‘lambda calculus’. However, if such
simple equivalence classes are not sufficient to capture important
differences between subjects – e.g., if the difference between ‘code
inspection’ and ‘walk-through’ is significant – then an alternative
technique is to exploit the hierarchical structure of a concept tax-
onomy in order to representation the distance between concepts. In
this setting, a match can be based on the common ancestors of con-
cepts – either counting the number of shared ancestors or comput-
ing some edge traversal distance between a pair of concepts, e.g.,
the ACM CCS concept ‘D.1.6 Logic Programming’ has ancestors
‘D.1 Programming Techniques’ and ‘D. Software’, both of which
are shared by the concept ‘D.1.5 Object-oriented Programming’,
meaning that D.1.5 and D.1.6 have a non-zero similarity because
they have common ancestors.

Obtaining a useful representation of concept similarity from a tax-
onomy is challenging because the measures tend to assume uni-
form coverage of the concept space such that the hierarchy is a
balanced tree. The approach is further complicated as it is common
for certain concepts to appear at multiple places in a hierarchy, i.e.
taxonomies may be graphs rather than just trees, and consequently
there may be multiple paths between a pair of concepts. The situ-
ation grows worse still if different taxonomies are used to describe
the subject of written works from different sources because a map-
ping between the taxonomies is required. Thus it is not surprising
that one of the most common findings in the literature on ontology
engineering is that ontologies, including taxonomies, thesauri and
dictionaries, are difficult to develop, maintain and use [12].

So, even with good CMS support, keyword-based matching still
requires manual effort and subjective decisions from authors, re-
viewers and, sometimes, ontology engineers. One useful aspect of
feature-based matching using keywords is that it allows us to turn
a heterogeneous matching problem (papers against reviewers) into
a homogeneous one (paper keywords against reviewer keywords).
Such keywords are thus a simple example of profiles that are used
to describe relevant entities (papers and reviewers). In the next sec-
tion we take the idea of profile-based matching a step further by
employing a more general notion of profile that incorporates non-
feature-based representations such as bags of words.

The Vector Space Model
The canonical task in information retrieval is, given a query in the
form of a list of words (terms), to rank a set of text documents D
in order of their similarity to the query. In the vector space model,
each document d P D is represented as the multiset of terms (bag-
of-words) occurring in that document. The set of distinct terms in
D, vocabulary V , defines a vector space with dimensionality |V | and
thus each document d is represented as a vector ~d in this space. The
query q can also be represented as a vector~q in this space, assuming
it shares vocabulary V . The query and a document are considered
similar if the angle θ between their vectors is small. The angle can
be conveniently captured by its cosine ~q ¨ ~d{||~q|| ¨ ||~d||, giving rise
to the cosine similarity.
However, if raw term counts are used in vectors ~q and ~d then simi-
larity will: (i) be biased in favour of long documents and; (ii) treat
all terms as equally important, irrespective of how commonly they
occur across all documents. The term frequency – inverse document
frequency (tf-idf) weighting scheme compensates for (i) by normal-
ising term counts within a document by the total number of terms in
that document, and (ii) by penalising terms that occur in many doc-
uments, as follows. The term frequency of term ti in the document
d j is tfi j “ ni j{

ř

k nk j. The inverse document frequency of term ti
is idfi “ logp|D|{dfiq, where term count ni j is the number of times
term ti occurs in the document d j, and document frequency dfi of
term ti is the number of documents in D in which term ti occurs. A
term that occurs often in a document has high term frequency; if it
occurs rarely in other documents it has high inverse document fre-
quency. The product of the two, tf-idf, thus expresses the extent to
which a term characterises a document relative to other documents
in D.

2.2 Automatic feature construction
with profile-based matching

The main idea of profile-based matching is to automatically build
representations of semantically relevant aspects of both papers and
reviewers in order to facilitate construction of a score matrix. An
obvious choice of such a representation for papers is as a weighted
bag-of-words (see sidebar ‘The Vector Space Model’). We then
need to build similar profiles of reviewers. For this purpose we
can represent a reviewer by the collection of all their authored or
co-authored papers, as indexed by some online repository such as
DBLP [29] or Google Scholar. This collection can be turned into a
profile in several ways, including: (i) build the profile from a single
document or web page containing the bibliographic details of the
reviewer’s publications (see SubSift and MLj-Matcher sidebar); or
(ii) retrieve or let the reviewer upload full-text of (selected) papers,
which are then individually converted into the required representa-
tion and collectively averaged to form the profile (see Toronto Pa-
per Matching System (TPMS) sidebar). Once both the papers and
the reviewers have been profiled, the score matrix M can be popu-
lated with the cosine similarity between the term weight vectors of
each paper-reviewer pair.

Profile-based methods for matching papers with reviewers exploit
the intuitive idea that the published works of reviewers, in some
sense, describe their specific research interests and expertise. By
analysing these published works in relation to the body as a whole,
discriminating profiles may be produced that effectively charac-
terise reviewer expertise from the content of existing heterogeneous
documents ranging from traditional academic papers to web sites,
blog posts and social media. Such profiles have applications in their



Experience from SIGKDD’09
Our own experience with bespoke tools to support the research pa-
per review process started when Flach was appointed, with Mo-
hammed Zaki from Rensselaer Polytechnic Institute, program co-
chair of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 2009 (SIGKDD’09). The initial Sub-
Sift tools were written by members of the Bristol Intelligent Sys-
tems Laboratory with external collaborators at Microsoft Research
Cambridge. As reported in [18] the SubSift tools assisted in the
allocation of 537 submitted research papers to 199 reviewers.
Using these tools, each reviewer’s bids were initialised using a
weighted sum of cosine similarity between the paper’s abstract and
the reviewer’s publication titles as listed in the DBLP computer
science online bibliography [29], and the number of shared subject
areas. The combined similarity scores were discretised into four
bins using manually chosen thresholds, with the first bin being a 0
(no-bid) and the other three being bids of increasing strength: 1 (at
a pinch), 2 (willing) and 3 (eager). These initial bids were exported
from SubSift and imported into the conference management tool
(Microsoft CMT, cmt.research.microsoft.com).
Based on the same similarity information, each reviewer was sent
an email containing a link to a personalised SubSift generated web
page listing details of all 537 papers ordered by initial bid allocation
or by either of its two components: keyword matches or similarity
to their own published works. The page also listed the keywords
extracted from the reviewer’s own publications and those from each
of the submitted papers. Guided by this personalised perspective,
plus the usual titles and abstracts, reviewers affirmed or revised
their bids recorded in the conference management tool.
To quantitatively evaluate the performance of the SubSift tools, the
bids made by reviewers were considered to be the ‘correct assign-
ments’ against which SubSift’s automated assignments were com-
pared. Disregarding the level of bid, a median of 88.2% of the
papers recommended by SubSift were subsequently included in the
reviewers’ own bids (precision). Furthermore, a median of 80.0%
of the papers on which reviewers bid for were ones initially recom-
mended to them by SubSift (recall). Combined, as the harmonic
mean of precision and recall, this gives an F-measure of 72.7%.
These results suggest that the papers eventually bid on by review-
ers were largely drawn from those that were assigned non-zero bids
by SubSift. These results on real-world data in a practical setting
are comparable with other published results using language models
[11, 34, 22].

own right but can also be used to compare one body of documents
to another, ranking arbitrary combinations of documents and, by
proxy, individuals by their similarity to each other.

From a machine learning point of view, profile-based matching dif-
fers from feature-based matching in that the profiles are constructed
in a data-driven way without the need to come up with a set of key-
words. However, the number of possible terms in a profile can be
huge and so systems like TPMS use automatic topic extraction as
a form of dimensionality reduction, resulting in profiles with terms
chosen from a limited number keywords (topics). As a useful by-
product of profiling, each paper and each reviewer is characterised
by a ranked list of terms which can be seen as automatically con-
structed features which could be further exploited, for instance to
allocate accepted papers to sessions or to make clear the relative
contribution of individual terms to a similarity score (see ‘SubSift
and MLj Matcher’ sidebar).

2.3 Bidding
A relatively recent trend is to transfer some of the paper allocation
task downstream to the reviewers themselves, giving them access to
the full range of submitted papers and asking them to bid on papers
they would like to review. Existing CMS tools offer support for
various bidding schemes, including: allocation of a fixed number
of ‘points’ across an arbitrary number of papers; selection of top
k papers; rating willingness to review papers according to strength
of bid; as well as combinations of these. Hence bidding can be
seen as an alternative way to come up with a score matrix that is
required for the paper allocation process. There is also the oppor-
tunity to register conflicts of interests, if a reviewer’s relations with
the authors of a particular paper are such that the reviewer is not a
suitable reviewer for that paper.

While it is in a reviewer’s self-interest to bid, invariably not all re-
viewers will do so, in which case the papers they are allocated for
review may well not be a good match for their expertise and in-
terests. This can be irritating for the reviewer but is particularly
frustrating for the authors of the papers concerned. The absence of
bids from some reviewers can also reduce the fairness of allocation
algorithms in CMS tools [19]. Default options in the bidding pro-
cess are unable to alleviate this: if the default is ‘I cannot review
this’ the reviewer is effectively excluded from the allocation pro-
cess, while if the default is to indicate some minimal willingness
to review a paper the reviewer is effectively used as a wildcard and
will receive those papers that are hardest to allocate.

A hybrid of profile-based matching and manual bidding was ex-
plored for the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining 2009. At bidding time the review-
ers were presented with initial bids obtained by matching reviewer
publication records on DBLP with paper abstracts (see sidebar ‘Ex-
perience from SIGKDD’09’ for details) as a starting point. Several
PC members reported that they considered these bids good enough
to relieve them from the temptation to change them, although we
feel that there is considerable scope to improve both the quality of
recommendations and of the user interface in future work. ICML
2012 further explored the use of a hybrid model and a pre-ranked
list of suggested bids2 . The TPMS software used at ICML 2012
offers other scoring models for combining bids with profile-based
expertise assessment [8, 7]. Effective automatic bid initialisation
would address the aforementioned problem caused by non-bidding
reviewers.

3. REVIEWER SCORE CALIBRATION
Assuming a high-quality paper assignment has been achieved by
means of one of the methods described in the previous section, re-
viewers are now asked to honestly assess the quality and novelty
of a paper and its suitability for the chosen venue (conference or
journal). There are different ways in which this assessment can
be expressed: from a simple yes/no answer to the question ‘if it
was entirely up to you, would you accept this paper?’, via a graded
answer on a more common five- or seven-point scale (e.g., Strong
Accept (3); Accept (2); Weak Accept (1); Neutral (0); Weak Reject
(´1); Reject (´2); Strong Reject (´3)), to graded answers to a set
of questions aiming to characterise different aspects of the paper
such as novelty, impact, technical quality, and so on.

Such answers require careful interpretation for at least two reasons.
The first is that reviewers, and even area chairs, do not have com-

2ICML 2012 reviewing – http://hunch.net/?p=2407

cmt.research.microsoft.com


Toronto Paper Matching System
The Toronto Paper Matching System TPMS (papermatching.
cs.toronto.edu/) originated as a standalone paper assign-
ment recommender for the NIPS 2010 conference and was sub-
sequently loosely integrated with Microsoft’s Conference Manage-
ment Toolkit (CMT) to streamline access to paper submissions for
ICML 2012. TPMS requires reviewers to upload a selection of
their own papers, reports and other self-selected textual documents
which are then analysed to produce their reviewer profile. This
places control over the scope of the profile in the hands of the
reviewers themselves so that they need only include publications
about topics they are prepared to review. Once uploaded, TPMS
persists the documents and resultant profile beyond the scope of a
single conference, allowing reviewers to reuse the same profile for
future conferences, curating their own set of characteristic docu-
ments as they see fit.
The scoring model used is similar to the vector-space model but
takes a Bayesian approach. In addition, profiles in TPMS can be
expressed over a set of hypothesised topics rather than raw terms.
Topics are modelled as hidden variables that can be estimated us-
ing techniques such as Latent Dirichlet Allocation [3, 7]. This in-
creased expressivity comes at the cost of requiring more training
data to stave off the danger of overfitting.

plete information about the full set of submitted papers. This mat-
ters in a situation where the total number of papers that can be
accepted is limited, as in most conferences (it is less of an issue
for journals). The main reason why raw reviewer scores are prob-
lematic is that different reviewers tend to use the scale(s) involved
in different ways. For example, some reviewers tend to stay to the
centre of the scale while others tend to go more for the extremes.
In this case it would be advisable to normalise the scores, e.g., by
replacing them with z-scores. This corrects for differences in both
mean scores and standard deviations among reviewers and is a sim-
ple example of reviewer score calibration.

In order to estimate a reviewer’s score bias (do they tend to err on
the accepting side or rather on the rejecting side?) and spread (do
they tend to score more or less confidently?) we need a represen-
tative sample of papers with a reasonable distribution in quality.
For single conferences this is often problematic as the number of
papers m reviewed by a single reviewer is too small to be repre-
sentative, and there can be considerable variation in the quality of
papers among different batches which should not be attributed to
reviewers. It is however possible to get more information about re-
viewer bias and confidence by leveraging the fact that papers are
reviewed by several reviewers. For SIGKDD’09 we used a gener-
ative probabilistic model proposed by colleagues at Microsoft Re-
search Cambridge with latent (unobserved) variables that can be
inferred by message-passing techniques such as Expectation Prop-
agation [35]. The latent variables include the true paper quality, the
numerical score assigned by the reviewer, and the thresholds this
particular reviewer uses to convert the numerical score to the ob-
served recommendation on the seven-point scale. The calibration
process is described in more detail in [18].

An interesting manifestation of reviewer variance came to light
through an experiment with NIPS reviewing in 2014 [27]. The PC
chairs decided to have one-tenth (166) of the submitted papers re-
viewed twice, each by three reviewers and one area chair. It turned
out that the accept/reject recommendations of the two area chairs
differed in about a quarter of the cases (43). Given an overall accep-

tance rate of 22.5%, roughly 38 of the 166 double-reviewed papers
were accepted following the recommendation of one of the area
chairs; about 22 of these would have been rejected if the recom-
mendation of the other area chair had been followed instead (as-
suming the disagreements were uniformly distributed over the two
possibilities), which suggests that more than half (57%) of the ac-
cepted papers would not have made it to the conference if reviewed
a second time.

What can be concluded from what came to be known as the ‘NIPS
experiment’ beyond these basic numbers is up for debate. It is
worth pointing out that, while the peer review process eventually
leads to a binary accept/reject decision, paper quality most cer-
tainly isn’t: while a certain fraction of papers clearly deserves to
be accepted, and another fraction clearly deserves to be rejected,
the remaining papers have pros and cons which can be weighted
up in different ways. So if two reviewers assign different scores to
papers this doesn’t mean that one of them is wrong, but rather that
they picked up on different aspects of the paper in different ways.

We suggest that a good way forward is to think of the reviewer’s
job to ‘profile’ the paper in terms of its strong and weak points, and
separate the reviewing job proper from the eventual accept/reject
decision. One could imagine a situation where a submitted paper
could go to a number of venues (including the ‘null’ venue), and
the reviewing task is to help decide which of these venues is the
most appropriate one. This would turn the peer review process into
a matching process, where publication venues have a distinct pro-
file (whether it accepts theoretical or applied papers, whether it puts
more value on novelty or on technical depth, etc.) to be matched by
the submission’s profile as decided by the peer review process. In-
deed, some conferences already have a separate journal track which
implies some form of reviewing process to decide which venue is
the most suitable one.3

4. ASSEMBLING PEER REVIEW PANELS
The formation of a pool of reviewers, whether for conferences,
journals or funding competitions, is a non-trivial process that seeks
to balance a range of objective and subjective factors. In practice,
the actual process by which a program chair assembles a program
committee varies from, at one extreme, inviting friends and co-
authors plus their friends and co-authors, through to the other ex-
treme of a formalised election and representation mechanism. The
current generation CMSs do not offer computational support for
the formation of a balanced program committee; they assume prior
existence of the list of potential reviewers and instead concentrate
on supporting the administrative workflow of issuing and accepting
invitations.

4.1 Expert Finding
This lack of tool support is surprising considering the body of rel-
evant work in the long-established field of expert finding [47, 1,
15, 34, 11]. Over the years since the first Text Retrieval Confer-
ence (TREC) in 1992, the task of finding experts on a particular
topic has featured regularly in this long-running conference se-
ries and is now an active subfield of the broader text information
retrieval discipline. Expert finding has a degree of overlap with

3For example, the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD) has a journal track where accepted papers are pre-
sented at the conference but published either in the Machine Learn-
ing journal or in Data Mining and Knowledge Discovery.

papermatching.cs.toronto.edu/
papermatching.cs.toronto.edu/


SubSift and MLj-Matcher
SubSift, short for ‘submission sifting’, was originally developed to
support paper assignment at SIGKDD’09 and subsequently gen-
eralised into a family of web services and re-usable web tools
(www.simsift.com). The submission sifting tool composes
several SubSift web services into a workflow driven by a wizard-
like user interface that takes the Program Chair through a series
of web forms of a paper-reviewer profiling and matching process.
On the first form, a list of PC member names is entered. SubSift
looks up these names on DBLP and suggests author pages which,
after any required disambiguation, are used as documents to pro-
file the PC members. Behind the scenes, beginning from a list of
bookmarks (urls), SubSift’s harvester robot fetches one or more
DBLP pages per author, extracts all publication titles from each
page and aggregates them into a single document per author. In the
next form, the conference paper abstracts are uploaded as a CSV
file and their text is used to profile the papers. After matching PC
member profiles against paper profiles, SubSift produces reports
with ranked lists of papers per reviewer, and ranked lists of review-
ers per paper. Optionally, by manually specifying threshold simi-
larity scores or by specifying absolute quantities, a CSV file can be
downloaded with initial bid assignments for upload into a CMS.
For the Editor-in-Chief of a journal, the task of assigning a paper to
a member of the editorial board for their review can be viewed as a
special case of the conference paper assignment problem (without
bidding), where the emphasis is on finding the best match for one or
a few papers. We built an alternative user interface to SubSift that
supports paper assignment for journals. Known as MLj Matcher
in its original incarnation, this tool has been used since 2010 to
support paper assignment for the Machine Learning journal as well
as other journals.

the fields of bibliometrics, the quantitative analysis of academic
publications and other research-related literature [38, 21], and sci-
entometrics, which extends the scope to include grants, patents,
discoveries, data outputs and, in the UK, more abstract concepts
such as ‘impact’ [4]. Expert finding tends to be more profile-based
(e.g., based on the text of documents) than link-based (e.g., based
on cross-references between documents) although content analysis
is an active area of bibliometrics in particular and has been used
in combination with citation properties to link research topics to
specific authors [11]. Even though by comparison with bibliomet-
rics, scientometrics encompasses additional measures, in practice
the dominant approach in both domains is citation analysis of aca-
demic literature. Citation analysis measures the properties of net-
works of citation amongst publications and has much in common
with hyperlink analysis on the web, where these measures employ
similar graph theoretic methods designed to model reputation, with
notable examples including ‘Hubs and Authorities’ and PageRank.
Citation graph analysis, using a particle-swarm algorithm, has been
used to suggest potential reviewers for a paper on the premise that
the subject of a paper is characterised by the authors it cites [39].

Harvard’s Profiles Research Network Software (RNS)4 exploits both
graph-based and text-based methods. By mining high-quality bibli-
ographic metadata from sources like PubMed, Profiles RNS infers
implicit networks based on keywords, co-authors, department, lo-
cation and similar researchers. Researchers can also define their
own explicit networks and curate their list of keywords and pub-
lications. Profiles RNS supports expert finding via a rich set of

4http://profiles.catalyst.harvard.edu

searching and browsing functions for traversing these networks.
Profiles RNS is a noteworthy open source example of a growing
body of research intelligence tools that compete to provide defini-
tive databases of academics that, while varying in scope, scale and
features, collectively constitute a valuable resource for a program
chair seeking new reviewers. Well-known examples include free-
to-use sites like academia.edu, Google Scholar, Mendeley, Microsoft
Academic Search, ResearchGate and numerous others that mine
public data or solicit data directly from researchers themselves, as
well as pay-to-use offerings like Elsevier’s Reviewer Finder.

4.2 Data Issues
There is a wealth of publicly available data about the expertise
of researchers that could, in principle, be used to profile program
committee members (without requiring them to choose keywords
or upload papers) or to suggest a ranked list of candidate invitees
for any given set of topics. Obvious data sources include aca-
demic home pages, online bibliographies, grant awards, job titles,
research group membership, events attended as well as member-
ship of professional bodies and other reviewer pools. Despite the
availability of such data, there are a number of problems in using it
for the purpose of finding an expert on a particular topic.

If the data is to be located and used automatically then it is neces-
sary to identify the individual or individuals described by the data.
Unfortunately a person’s name is not guaranteed to be a unique
identifier (UID): often not being globally unique in the first place,
they can also be changed through title, choice, marriage and so on.
Matters are made worse because many academic reference styles
use abbreviated forms of a name using initials. International varia-
tions in word ordering, character sets and alternative spellings make
name resolution even more challenging for a peer review tool. In-
deed, the problem of author disambiguation is sufficiently challeng-
ing to have merited the investment of considerable research effort
over the years, which has in turn led to practical tool development
in areas with similar requirements to finding potential peer review-
ers. For instance, Profiles RNS supports finding researchers with
specific expertise and includes an Author Disambiguation Engine
using factors such as name permutations, email address, institution
affiliations, known co-authors, journal titles, subject areas and key-
words. To address these problems in their own record systems, pub-
lishers and bibliographic databases like DBLP and Google Scholar
have developed their own proprietary UID schemes for identify-
ing contributors to published works. However, there is now con-
siderable momentum behind the non-proprietary Open Researcher
and Contributor ID (ORCID)5 and publishers are increasingly map-
ping their own UIDs onto ORCID UIDs. A subtle problem remains
for peer review tools when associating data, particularly academic
publications, with an individual researcher because a great deal of
academic work is attributed to multiple contributors. Hope for re-
solving individual contributions comes from a concerted effort to
better document all outputs of research, including not only papers
but also websites, datasets and software, through richer metadata
descriptions of Research Objects [10].

4.3 Balance and Coverage
Finding candidate reviewers is only part of a program chair’s task
in forming a committee – attention must also be paid to coverage
and balance. It is important to ensure that more popular areas get
proportionately more coverage than less popular ones whilst also
not excluding less well known but potentially important new areas.

5http://orcid.org
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There is thus a subjective element to balance and coverage that is
not entirely captured by the score matrix. Recent work seeks to
address this for conferences by refining clusters, computed from
a score matrix, using a form of crowdsourcing from the program
committee and from the authors of accepted papers [?] Another
example of computational support for assembling a balanced set
of reviewers comes not from conferences but from a US funding
agency, the National Science Foundation (NSF).

The NSF presides over a budget of over $7 billion (FY 2015) and
receives 40,000 proposals per year, with large competitions attract-
ing 500-1500 proposals; peer review is part of the NSF’s core busi-
ness. Around a decade ago, the NSF developed Revaide, a data
mining tool to help them find proposal reviewers and to build pan-
els with expertise appropriate to the subjects of received proposals
[22]. In constructing profiles of potential reviewers the NSF de-
cided against using bibliographic databases like Citeseer or Google
Scholar, for the same reasons we discussed in Section 4.2. Instead
they took a closed-world approach by restricting the set of potential
reviewers to authors of past (single-author) proposals that had been
judged ‘fundable’ by the review process. This ensured the avail-
ability of a UID for each author and reliable metadata, including
the author’s name and institution, which facilitated conflict of inter-
est detection. Reviewer profiles were constructed from the text of
their past proposal documents (including references and resumes)
as a vector of the top 20 terms with the highest tf-idf scores. Such
documents were known to be all of similar length and style, which
improved the relevance of the resultant tf-idf scores. The same is
also true of the proposals to be reviewed and so profiles of the same
type were constructed for these.

For a machine learning researcher, an obvious next step towards
forming panels with appropriate coverage for the topics of the sub-
missions would be to cluster the profiles of received proposals and
use the resultant clusters as the basis for panels, for example match-
ing potential reviewers against a prototypical member of the cluster.
Indeed, prior to Revaide the NSF had experimented with the use of
automated clustering for panel formation but those attempts had
proved unsuccessful for a number of reasons: the sizes of clusters
tended to be uneven; clusters exhibited poor stability as new pro-
posals arrived incrementally; there was a lack of alignment of pan-
els with the NSF organisational structure; and, similarly, no align-
ment with specific competition goals, such as increasing participa-
tion of under-represented groups or creating results of interest to
industry. So, eschewing clustering, Revaide instead supported the
established manual process by annotating each proposal with its top
20 terms as a practical alternative to manually-supplied keywords.

Other ideas for tool support in panel formation were considered.
Inspired by conference peer review, NSF experimented with bid-
ding but found that reviewers had strong preferences towards well-
known researchers and this approach failed to ensure that there
were reviewers from all contributing disciplines of a multidisci-
plinary proposal – a particular concern for NSF. Again, manual
processes won out. However, Revaide did find a valuable role for
clustering techniques as a way of checking manual assignments of
proposals to panels. To do this Revaide calculated an “average”
vector for each panel, by taking the central point of the vectors
of its panel members, and then compared each proposal’s vector
against every panel. If a proposal’s assigned panel is not its clos-
est panel then the program director is warned. Using this method,
Revaide proposed better assignments for 5% of all proposals. Us-
ing the same representation, Revaide was also used to classify or-

phaned proposals, suggesting a suitable panel. Although the clas-
sifier was only 80% accurate, which is clearly not good enough for
a fully automated assignment, it played a valuable role within the
NSF workflow: so, instead of each program director having to sift
through, say, 1,000 orphaned proposals they received an initial as-
signment of, say, 100 of which they would need to reassign around
20 to other panels.

5. CONCLUSIONS AND OUTLOOK
We have demonstrated that state-of-the-art tools from machine learn-
ing and artificial intelligence are making inroads to automate and
improve parts of the peer review process. Allocating papers (or
grant proposals) to reviewers is an area where much progress has
been made. The combinatorial allocation problem can easily be
solved once we have a score matrix assessing for each paper-reviewer
pair how well they are matched.6 We have described a range of
techniques from information retrieval and machine learning that
can produce such a score matrix. The notion of profiles (of re-
viewers as well as papers) is useful here as it turns a heterogeneous
matching problem into a homogeneous one. Such profiles can be
formulated against a fixed vocabulary (bag-of-words) or against a
small set of topics. Although it is fashionable in machine learn-
ing to treat such topics as latent variables that can be learned from
data, we have found stability issues with latent topic models (i.e.,
adding a few documents to a collection can completely change the
learned topics) and have started to experiment with hand-crafted
topics (e.g., encyclopaedia or Wikipedia entries) which extend key-
words by allowing their own bag-of-words representations.

A perhaps less commonly studied area where nevertheless progress
has been achieved concerns interpretation and calibration of the in-
termediate output of the peer reviewing process: the aspects of the
reviews that feed into the decision making process. In their simplest
form these are scores on an ordinal scale, that are often simply av-
eraged. However, averaging assessments from different assessors –
which is common in other areas as well, e.g., academic marking – is
fraught with difficulties as it makes the unrealistic assumption that
each assessor scores on the same scale. It is possible to adjust for
differences between individual reviewers, particularly when a re-
viewing history is available that spans multiple conferences. Such
a global reviewing system which builds up persistent reviewer (and
author) profiles is something that we support in principle, although
many details need to be worked out before this is viable.

We also believe that it would be beneficial if the role of individual
reviewers shifted away from being an ersatz judge attempting to
answer the question ‘would you accept this paper if it was entirely
up to you?’ towards a more constructive role of characterising –
and indeed, profiling – the paper under submission. Put differently,
besides suggestions for improvement to the authors, the review-
ers attempt to collect metadata about the paper that is used further
down the pipeline to decide the most suitable publication venue. In
principle this would make it feasible to decouple the reviewing pro-
cess from individual venues, something that would also enable bet-
ter load balancing and scaling [46]. In such a system, authors and
reviewers would be members of some central organisation which
has the authority to assign papers to multiple publication venues
– a futuristic scenario, perhaps, but it is worth thinking about the
peculiar constraints that our current conference- and journal-driven
system imposes, and which clearly leads to a sub-optimal situation

6This holds for the simple version stated in Section 2, but further
constraints might complicate the allocation problem.



in many respects.

The computational methods we described in this article have been
used to support other academic processes outside of peer review,
including a personalised conference planner app for delegates7, an
organisational profiler [36] and a personalised course recommender
for students based on their academic profile [41]. The table in the
introductory section lists a few other possible future directions for
computation support of academic peer review itself. We hope that
they, and this article, stimulate our readers to think about ways in
which the academic peer review process – this strange dance in
which we all participate in one way or another – can be future-
proofed in a sustainable and scalable way.
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