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Abstract. Recent years have seen increasing volumes of data generated
by online systems, such as internet logs, physical access logs, transaction
records, email and phone records. These contain multiple overlapping
sequences of events related to different individuals and entities. Informa-
tion that can be mined from these event sequences is an important re-
source in understanding current behaviour, predicting future behaviour
and identifying non-standard patterns and possible security breaches.
Statistical machine learning approaches have had some success but do
not allow human insight to be included easily. We have recently presented
a framework for representing sequences of related events, with scope for
assistance from human experts. This paper describes the framework and
presents a new algorithm which (i) allows the addition of new event
sequences as they are identified from data or postulated by a human
analyst, and (ii) allows subtraction / removal of sequences that are no
longer relevant. Examination of the sequences can be used to further
refine and modify general patterns of events.
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1 Introduction

Collaborative intelligence aims to combine the power of machines with the in-
terpretive skills, insight and lateral thinking provided by human analysts. The
role of the computer in this partnership is to gather data, transform it algorith-
mically, and provide visualisation. The role of the human is to provide creativity
and insight in analysing and understanding the data, and to extract ”knowledge”
- which may be in the form of predictive rules, normal and unusual patterns in
the data, further insight into underlying mechanisms, etc.

In order to implement a successful collaborative intelligent system, it is nec-
essary to exchange knowledge between the components - in particular between
humans and machines, although in a multi-agent system we may also need to
consider human-human and machine-machine exchange. Typically, machine pro-
cessing is centred on well-defined entities and relations which may range from
the flat table structures of database systems through graph-based representations
and up to ontological approaches involving formal logics. Human language and
communication, on the other hand, is based on a degree of vagueness and ambi-
guity enabling efficient transmission of information between humans without the
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need for precise definition of every term used. There is a fundamental mis-match
between the representations used by machine and human components in a collab-
orative intelligent system. Even quantities that can be measured precisely (such
as height of a person or building, volume of a sound, amount of rainfall, colour of
an object, etc.) are usually described in human language using non-precise terms
such as tall, loud, quite heavy, dark green, etc. More abstract properties such as
beautiful landscape, delicious food, pleasant weather, clear documentation, corpo-
rate social responsibility, are fundamentally ill-defined, whether they are based
on a holistic assessment or reduced to a combination of lower-level, measurable
quantities. However, we are generally able to judge the degree to which a partic-
ular instance possesses such a property. Zadeh’s initial formulation of fuzzy sets
[1] was inspired primarily by the flexibility of definitions in natural language.

Large volumes of data are generated by monitoring and recording systems,
such as internet logs, phone records, GPS monitors and physical access logs
(e.g. to buildings), financial transactions, etc. Linking records together into se-
quences (whether within a single data source or across multiple sources) is a
complex task which is ideally suited to the notion of collaborative intelligence.
Specific problems in extracting sequences of related events include determina-
tion of what makes events “related’, how to find groups of “similar” sequences,
identification of typical sequences, and detection of sequences that deviate from
expected patterns, where the notion of “expected” can either be derived from
previous observations or from human analysis.

The ability to incorporate human knowledge and expertise is an area which
distinguishes collaborative intelligence from (widely used) statistical machine
learning approaches. In cases where insufficient data is available, or where the
data lead to incorrect conclusions, machine learning is not reliable and human
insight is required. For example, in the emergence of a previously unseen mal-
ware threat, a human analyst could use knowledge (e.g. of a zero-day exploit)
to identify the likely behaviour before a statistically significant body of data
has been gathered to train a machine learning system. An example of incorrect
conclusions could come from records of card-based entry / exit barriers where
“tailgating” occurs, i.e. an individual follows someone else through the barrier
without swiping their card. Such data will give misleading behaviour patterns.

The issues involved in discerning event sequences are strongly linked to the
concept of information granulation introduced by Zadeh [2] to formalise the
process of dividing a group of objects into sub-groups (granules) based on “in-
distinguishability, similarity, proximity or functionality”. In this view, a granule
is a fuzzy set whose members are (to a degree) equivalent. In a similar manner,
humans are good at dividing events into related groups, both from the temporal
perspective (event A occurred a few minutes before event B but involves the
same entities) and from the perspective of non- temporal properties (event C is
very similar to event D because both involve similar entities/activities).
However, at the same time it is necessary to recognise that most machine-based
algorithms require crisp, well-defined boundaries when processing data. In this
work, we use the X −µ method to translate consistently between the (generally
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fuzzy) human knowledge representation and the (generally crisp) data required
by machines. We describe a compact and expandable sequence pattern represen-
tation, which allows the addition of new event sequences as they are identified,
and subtraction of sequences that are no longer relevant. The main contribution
of the paper is the presentation of the incremental algorithms to add and remove
sequences. Although the algorithm for sequence addition was presented briefly in
[3], this paper contains a more detailed explanation. The algorithm for sequence
subtraction has not been previously published (other than patent [4]).

2 Background

2.1 X-Mu Approach - Conversion between Fuzzy and Crisp

Human intelligence includes the ability to identify a group of related entities (e.g.
physical objects, events, abstract ideas) and to subdivide them into smaller sub-
groups at an appropriate level of granularity for the task at hand. Such groups
are rarely specified by “necessary and sufficient” conditions, but are better mod-
elled by membership functions, where we can compare different entities and judge
whether one belongs more strongly to the set than another. In the classical fuzzy
approach, for any predicate on a universe U, we introduce a membership function

µ : U → [0, 1]
representing the degree to which each value in U satisfies the predicate. Within
a universal set, the absolute value of the membership function for an element
is generally less important than the relative value, compared to other elements.
Whilst the end points 0 and 1 obviously correspond to classical non-membership
and full membership in the set, other values are most useful in comparing the
strength of membership (e.g. Bill Gates belongs more strongly than Larry El-
lison to the set of rich people). In this interpretation of fuzzy sets, there is
an underlying assumption that membership values are commensurable, i.e. that
membership of (say) 0.8 in the set of rich people can be interpreted in the same
way as membership of 0.8 in the set of tall people or membership 0.8 for a tem-
perature value in the set of temperatures near-freezing. Such commensurability
is routinely assumed in fuzzy control applications (for example, an inverted pen-
dulum where a membership in a set of cart velocities might be combined with
membership in a set of angular accelerations). We adopt the commensurability
assumption in this paper. The interested reader is referred to [5], [6].

Fuzzy approaches typically require modification of crisp algorithms to allow
set-valued variables. This is most apparent in fuzzifications of arithmetic, where
a single value is replaced by a fuzzy interval. For example, calculating the average
age of four employees known to be 20, 30, 50 and 63 is inherently simpler than
when the ages are given as young, quite young, middle-aged and approaching
retirement. In the latter case, we must handle interval arithmetic AND member-
ship grades. In a similar fashion, querying a database to find employees who are
aged over 60 is simpler than finding employees approaching retirement age.

The X − µ method [6] recasts the fuzzy approach as a mapping from mem-
bership to universe, allowing us to represent a set, interval or single value that
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varies with membership, e.g. the mid-point of an interval. This natural idea is
difficult to represent in standard fuzzy theory, even though it arises frequently
e.g. the cardinality of a discrete fuzzy set or the number of answers returned in
response to a fuzzy query.

Since there is generally a set of values which satisfy the predicate to some
degree, we must modify algorithms to handle sets of values rather than single
values. These sets represent equivalent values - that is, values which cannot be
distinguished from each other. In this work, we are dealing with events that
are equivalent because their attributes are indiscernible - however, these sets of
events may vary according to membership, interpreted as the degree to which
elements can be distinguished from each other. The approach described in the
next section assumes we have crisp equivalence classes. We allow fuzziness in
the definition of sets used by human experts, and use the X − µ method to
ensure we have crisp sets, by working at a specific membership level. The X −µ
method also allows us to work with intensional definitions of equivalence classes
(parameterised by membership), but we do not cover this aspect here.

3 Directed Acyclic Sequence Graphs (DASG) : Graph
Representation of Event Sequences

For any sequence of events, we create a directed graph representation in which
each edge represents a set of indiscernible events. Clearly for reasons of storage
and searching efficiency it is desirable to combine event sequences with common
sub-sequences, as far as possible, whilst only storing event sequences that have
been observed. This problem is equivalent to dictionary storage, where we are
dealing with single letters rather than sets of events, and we can utilise efficient
solutions that have been developed to store dictionaries. In particular, we adopt
the notion of a DAWG (directed acyclic word graph) [7]. Words with common
letters (or events) at the start and/or end are identified and the common paths
are merged to give a minimal graph, in the sense that it has the smallest number
of nodes for a DAWG representing the set of words (event sequences). Several
algorithms for creating minimal DAWGs have been proposed. In the main, these
have been applied to creation of dictionaries and word checking, efficient storage
structure for lookup of key-value pairs and in DNA sequencing (viewed as a
variant of dictionary storage). Most methods (e.g. [8, 9] ) assume that all words
(letter sequences) are available and can be presented to the algorithm in a specific
order. Sgarbas [7] developed an incremental algorithm which allowed additional
data to be added to a DAWG structure, preserving the minimality criterion (i.e.
assuming the initial DAWG represented the data in the most compact way, then
the extended DAWG is also in the most compact form).

We assume that data is presented in a standard object-attribute-value table
format (e.g. CSV), with additional attributes calculated as necessary. We assume
that the data arrives in a sequential manner, either row by row or in larger groups
which can be processed row-by-row. Each row represents an event; there may be
several unrelated event sequences within the data stream but we assume events
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Table 1. Sample Data from the VAST 2009 MC1 Dataset

eventID Date Time Emp Entrance Direction

1 jan-2 7:30 10 b in
2 jan-2 13:30 10 b in
3 jan-2 14:10 10 c in
4 jan-2 14:40 10 c out
5 jan-2 9:30 11 b in
6 jan-2 10:20 11 c in
7 jan-2 13:20 11 c out
8 jan-2 14:10 11 c in
9 jan-2 14:30 11 c out
10 jan-3 9:20 10 b in
11 jan-3 10:40 10 c in
12 jan-3 14:00 10 c out
13 jan-3 14:40 10 c in
14 jan-3 16:50 10 c out
15 jan-3 9:00 12 b in
16 jan-3 10:20 12 c in
17 jan-3 12:30 12 c out
18 jan-3 14:30 12 c in
19 jan-3 15:00 12 c out

in a single sequence arrive in time order. It is not necessary to store the data
once it has been processed, unless required for later analysis.

An example, used throughout the rest of the paper, is shown in Table 1.
This is a small subset of benchmark data taken from mini-challenge 1 of the
VAST 2009 dataset1, which gives swipecard data showing employee movement
into a building and in and out of a classified area within the building. No data
is provided on exiting the building.

The DASG representation assumes that we can subdivide the attributes into
the following categories:

– Event identifier - a key value which uniquely identifies a row of the table. In
the example, eventID takes this role.

– Event Sequencer - one or more attributes with an associated total order,
used to determine whether one event precedes or succeeds another. In the
example, Date or Time or both could take this role.

– Event Linkage - one or more attributes with an equivalence relation that
determines whether two events are linked (part of the same sequence). For
example, in Table 1 we define a sequence of events involving the same em-
ployee, where there is no more than 8 hours between contiguous events.

– Event Categorisation - one or more attributes with an equivalence relation
that determines whether two events (in different sequences) can be consid-
ered as examples of the same event category. For example, we might group

1 http://hcil2.cs.umd.edu/newvarepository/benchmarks.php
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Table 2. Allowed Actions (row = first action, column = next action)

b,in c,in c,out

b,in x x
c.in x

c,out x x

together events that happen at approximately the same time, and/or involv-
ing the same swipecard actions (building+in, classified+in or classified+out).
The definition of approximately the same time can be fuzzy, but must be
made crisp (via X − µ ) to define the equivalence relation.

– Recorded Data - for subsequent analysis, we can record one or more of the
attributes associated with an event. This may be as simple as counting the
number of instances, or may involve more sophisticated processing such as
association rules between events.

There is no restriction on the number of attributes. We have selected three
employees for illustration purposes; rows in the initial table were ordered by
date/time, but have been additionally sorted by employee here to make the
sequences obvious. In this data,

Emp = set of employee ids = {10, 11, 12}
Date,Time = date / time of event
Entry points = {B - building, C - classified section}
Access direction = {in, out}

We first define the linkage relations, to detect candidate sequences. Here, for a
candidate sequence of n events:

S1 = (o11, o12, o13, . . . , o1n)

we define the following computed quantities :

ElapsedT ime ∆Tij = Time (oij)− Time (oij−1)

with ∆Ti1 = Time (oi1)

and restrictions ( for j > 1) :

Date (oij) = Date (oij−1)

0 < Time (oij)− Time (oij−1) ≤ Tthresh
Emp (oij) = Emp (oij−1)

(Action (oij−1) , Action (oij)) ∈ AllowedActions
where Action (oij) = (Entrance (oij) , Direction (oij))

where the relation AllowedActions is specified in Table 2. These constraints can
be summarised as

– events in a single sequence refer to the same employee
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Fig. 1. DASG representation of the first sequence (events 1-2-3-4) from Table 1. The
labels show the categorisation attributes, namely the equivalence class of the event
time and the entrance and direction.

– successive events in a single sequence conform to allowed transitions between
locations and are on the same day, within a time (Tthresh) of each other

We choose a suitable threshold e.g. Tthresh = 8, ensuring anything more than 8
hours after the last event is a new sequence. We identify candidate sequences by
applying the linkage relations. Any sequence has either been seen before or is a
new sequence. In Table 1, candidate sequences are made up of the events:

1− 2− 3− 4,
5− 6− 7− 8− 9,
10− 11− 12− 13− 14,
15− 16− 17− 18− 19

We also define the EventCategorisation equivalence classes used to compare
events in different sequences. Here,

EquivalentAction = IAction

For direction In, EquivalentEventT ime = {[7] , [8] , . . .}
For direction Out, EquivalentElapsedT ime = {[0] , [1] , [2] , . . .}

where I is the identity relation and the notation [7] represents the set of start
times from 7:00-7:59. As mentioned in Section 2.1, fuzzy equivalence classes are
converted to crisp sets at a specific membership or to intensional definitions,
parameterised by membership. We represent each identified sequence as a path
labelled by its event categorisations (Fig 1 ) The algorithms presented in the next
section allow us to incrementally add unseen sequences into a minimal DASG
which represents exactly the set of sequences seen so far (Fig 2). Nodes are la-
belled by unique numbering; since the graph is deterministic, each outgoing edge
is unique. An edge can be specified by its start node and event categorisation,
or by its event categorisation if there is no ambiguity about its start node.

Standard definitions are used for InDegree, OutDegree, IncomingEdges and
OutgoingEdges of a node, giving respectively the number of incoming and out-
going edges, the set of incoming edges and the set of outgoing edges. We also
apply functions Start and End to an edge, to find or set its start and end nodes
respectively and EdgeCategorisation to find its categorisation class.
Finally, let the function ExistsSimilarEdge(edge, endnode) return true when:

edge has end node endnode, event categorisation L and start node S1
AND
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a second, distinct, edge has the same end node and event categorisation L
but a different start node S2
AND

S1 and S2 have OutgoingEdges(S1) == OutgoingEdges(S2)
If such an edge exists, its start node is returned by the function
StartOfSimilarEdge(edge, endnode)

The function MergeNodes(Node1, Node2) deletes Node2 and merges its in-
coming and outgoing edges with those of Node1.
The function CreateNewNode(Incoming,Outgoing) creates a new node with
the specified sets of incoming and outgoing edges.
The algorithm proceeds in three distinct phases (corresponding to the three while
loops in Figure 2. In the first and second parts, we move step-by-step through
the new event sequence and the graph, beginning at the start node S. If an event
categorisation matches an outgoing edge, we follow that edge to the next node
and move on to the next event in the sequence. If the new node has more than
one incoming edge, we must copy2 it; the copy takes the incoming edge that
was just followed, and the original node retains all other incoming edges. Both
copies have the same set of output edges. This part of the algorithm finds other
sequences with one or more common starting events. If at some point, we reach a
node where there is no outgoing edge matching the next event’s categorisation,
we create new edges and nodes for the remainder of the sequence, eventually
connecting to the end node F . Note that as the sequence is new, we must reach
a point at which no outgoing edge matches the next event’s categorisation; if
this happens at the start node S then the first stage is (effectively) omitted.
Finally, in the third stage, we search for sequences with one or more common
ending events. Where possible, the paths are merged.

The advantage of this algorithm is that it allows incremental modification,
so that new sequences can be added at any time. Although the example shows
the sequence patterns derived from data, it is also possible for a human expert
to specify and add a sequence pattern without it having been seen in the data.
Hence (for example) a previously unseen cyber-attack sequence could be added
to the DASG and the matching event sequence would be detected as soon as
it occurred. In contrast, a purely data-driven method would first flag the new
sequence as unknown (not matching any pattern in the graph), and would only
recognise subsequent occurrences after graph updating.

The representation also allows straightforward removal of sequences. For ex-
ample, if it is known that a sequence will never be seen again because it is
screened out by a different process, or because external changes make it im-
possible, then processing and storage efficiency are improved by removing the
sequence pattern from the graph. However, we must take care not to remove
any edge which is part of another pattern. Figure 4 shows the algorithm. The
process is straightforward - we consider nodes where the indegree ≥ 1 , and the
outdegree ≥ 1 (four possibilities).

2 The copy and merge operations are also used when removing sequences
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Fig. 2. Algorithm to extend a minimal graph by incremental addition of a sequence of
edges
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Fig. 3. Adding further sequences : (left) graph after phase 1 of adding the second
sequence, dotted lines indicate nodes which are identical in phase 3; (centre) final
graph (after identical nodes have been merged) representing sequences 1 and 2; (right)
graph representing all four sequences
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Fig. 4. Algorithm to reduce a minimal graph by incremental removal of an existing
sequence of edges
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– If a node has indegree one and outdegree greater than one, then the path up
to and including this node must be retained, because it contributes to paths
other than the path to be deleted. In this case, any potential duplicates up
to this point can be discarded as the nodes are not altered.

– If a node has indegree greater than one and outdegree equal to one, then the
path from this node to the end must be retained, because it contributes to
paths other than the path to be deleted.

– If a node has indegree one and outdegree one, it (and its incoming and
outgoing edges) can potentially be removed, depending on the path.

– Finally a node with both in- and out- degree greater than one might require
modification and is marked as a potential duplicate.

4 Summary

The DASG representation allows us to store event sequence patterns in a com-
pact directed graph format, with efficient incremental algorithms to add a pre-
viously unseen pattern to the graph, and to remove a pattern from the graph.
Sequence patterns can be generated from data or by a human expert. The DASG
representation allows fuzzy specification of categories and equivalence relations,
which are converted to crisp relations using the X − µ approach. An efficient
implementation of the DASG is possible by compiling the graph into a set of
instructions for a virtual machine (described in [4], [10]).
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