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ABSTRACT 

The presence of a tear in the subducting African slab has a strong effect on Neogene magmatism 

in western Turkey, but its influence on volcanism in the Quaternary Aegean arc to the west is unknown. In 

order to investigate to what extent arc volcanism can be affected by slab-parallel mantle flow from a slab 

window, we present new trace element and Nd-Pb isotope data for Nisyros and Santorini. Trace element 

modeling allows quantification of the infiltration of trace element enriched mantle of subslab provenance 

through the slab tear into the depleted Aegean mantle wedge. Primitive Nisyros magmas record melting 

of a mixed source that contains up to 10% of the enriched, subslab mantle component and a contribution 

of this component can be traced as far west as Santorini, ca. 250 km away from the slab tear. We 

conclude that trace element and Nd-Pb variations between Nisyros and Santorini do not require along-arc 

variations in subducting sediment composition, but reflect the heterogeneous nature of the Aegean 

mantle wedge related to infiltration of subslab mantle through the slab tear. Our geochemical evidence is 

in excellent agreement with predictions made on the basis of mantle tomography and anisotropy, which 

indicate toroidal mantle flow around the edge of the Aegean slab. This implies that suction related to slab 

rollback can lead to the infiltration of subslab mantle material and slab-parallel mantle flow, thus 

potentially strongly influencing arc volcanism, processes that perhaps need greater assessment in other 

arc systems. 

 

INTRODUCTION AND SETTING 

The Mediterranean region is unique as it is the only contemporary example of a subduction zone 

system with active arc volcanism on the verge of continent-continent collision of Africa and associated 

microplates with Eurasia. Rollback of the African slab caused back-arc extension, rotation and slab 

segmentation along the length of the Mediterranean (e.g., Wortel and Spakman, 2001; Van Hinsbergen et 

al., 2014). In the Aeolian island arc and the Italian peninsula, subduction zone volcanism is strongly 

influenced by interaction with trace element enriched sub-continental lithospheric mantle (SCLM) and 

asthenospheric upwelling through multiple tears in a fragmented African slab (Peccerillo et al., 2013). 

Further east, the Aegean is an extensional regime since the Oligocene, which led to the exhumation of the 

Cycladic and Menderes core complexes (Fig. 1). Differential movements between the Aegean and 



Publisher: GSA 

Journal: GEOL: Geology 

DOI:10.1130/G37627.1 

Page 2 of 11 

Anatolia, in response to jamming of the subduction zone south of Cyprus, caused splitting of the African 

slab into an Aegean and a Cyprus branch since ca. 15 Ma (Jolivet et al., 2013). This slab tear and 

associated rise of hot subslab mantle have been successfully imaged in tomographic studies (e.g., Biryol et 

al., 2011). Asthenospheric upwelling through this slab window has increasingly influenced magmatism in 

western Anatolia directly overlying the tear (Agostini et al., 2007; Dilek and Altunkaynak, 2010; Prelević et 

al., 2012; Ersoy and Palmer, 2013), culminating in the eruption of the Quaternary Kula alkali basalts (Fig. 

1; Grützner et al., 2013; Aldanmaz et al., 2015). Given the considerable distance of the central-eastern 

volcanic centers Nisyros (~100 km) and Santorini (~220 km) to the slab tear (Fig. 1), Quaternary Aegean 

arc volcanism is considered unaffected by a subslab asthenospheric component and along-arc 

geochemical variation is proposed to derive from heterogeneous subducting sediments (Ersoy and 

Palmer, 2013; Elburg et al., 2014). We present new geochemical data for Nisyros and Santorini that 

provide compelling evidence for mantle wedge heterogeneity and argue that Aegean arc volcanism is 

strongly controlled by the infiltration of subslab mantle, despite the >100 km distance to the slab tear. 

 

 

Figure 1. Map of the Eastern Mediterranean highlighting the main features discussed in this study. The 

translucent blue bands depict the location of the African slab at 150 km depth (Jolivet et al., 2013). The 

outline of the tear in the African slab is taken from Biryol et al. (2011). Black arrows show GPS determined 

plate velocities after Doglioni et al. (2002). Hatched areas indicate regions of Neogene extension: CCC – 
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Cycladic core complex, MCC – Menderes core complex. The shaded yellow area (AMUP – Anatolian 

Miocene (Ultra-)potassic province) shows the extent of Miocene shoshonitic to (ultra-)potassic volcanism 

in western Anatolia (Ersoy and Palmer, 2013; Prelević et al., 2015). DIV – Pliocene to Quaternary Denizli-

Isparta volcanism; KVP – Kula volcanic field (Quaternary alkali basalts); NAFZ – North Anatolian Fault 

Zone. The Quaternary volcanic centers of the Aegean arc are shown as blue triangles. 

 

ANALYTICAL TECHNIQUES 

We studied 17 samples from Santorini and Nisyros volcanoes (Fig. 1) for high-precision trace 

element and Pb-Nd isotope analysis following the procedures described in Klaver et al. (2015). In order to 

minimise the effects of fractional crystallization and assimilation of arc crust, samples are restricted to 

basalts and basaltic andesites with <57 wt.% SiO2. High-precision Pb isotope data were obtained using a 

207Pb-204Pb double spike to correct for mass fractionation (Klaver et al., 2016). Analytical results, internal 

and external standards are listed in the online supplementary material. Reproducibility of the trace 

element ratios shown in Fig. 2, as deduced from repeated analysis of USGS reference material BCR-2 over 

the course of this study, is better than 3.3% (2 RSD). 

 

RESULTS AND DISCUSSION 

The trace element data show marked differences between primitive samples from Santorini and 

Nisyros. In general, Nisyros has a HFSE and HREE signature that resembles trace element enriched ocean 

island basalts (OIB) with low Zr/Nb and high Zr/Hf, Nb/Yb, Nb/Ta, Dy/Yb and La/Yb, whereas Santorini 

largely overlaps with normal mid-ocean ridge basalts (N-MORB) for these ratios. In a Th/Yb versus Nb/Yb 

diagram (Fig. 2a), samples from both volcanic centers are displaced from the MORB-OIB array toward 

elevated Th/Yb, a characteristic of arc basalts. Trends defined by Santorini and Nisyros project toward a 

common component at higher Th/Yb and Nb/Yb, which comprises subducting Eastern Mediterranean Sea 

sediments that are delivered to the mantle wedge during subduction. As the differentiation trends for 

Nisyros and Santorini converge toward this component, it is unlikely that they arise from heterogeneity of 

the subducted sediment component. Instead, the two volcanoes appear to originate from different 

mantle wedge sources. Primitive Nisyros samples record derivation from a more trace element enriched 

mantle source compared to Santorini with lower Zr/Nb (~12; Fig. 2b) and higher Nb/Yb (~4; Fig. 2a), Dy/Yb 

(~1.8) and Nb/Ta (~19) compared to Santorini (~25, 1.5, 1.6 and 14 respectively) and typical N-MORB (32, 

0.76, 1.5 and 14; Sun and McDonough, 1989; Münker et al., 2003). In the trace element diagrams in Fig. 2, 

the Nisyros samples project toward the Kula alkali basalts that are unambiguously related to the 

upwelling of enriched subslab mantle, suggesting that Nisyros magmatism was also influenced by the slab 

tear beneath western Anatolia (Fig. 1). 
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Figure 2. Th/Yb versus Nb/Yb (a) and Zr/Nb versus Zr/Hf (a) diagrams showing the results of trace element 

modeling of primitive samples from Nisyros and Santorini (large symbols are new data from this study; 

open symbols are literature data. Miocene and younger Aegean and Anatolian volcanic rocks (<57 wt.% 

SiO2) are included – see Fig. 1 caption for a description of the various components; EMS – subducting 

Eastern Mediterranean Sea sediments. Data sources in the supplementary material. Nisyros and Santorini 

have distinct trace element systematics that reflect derivation from a heterogeneous mantle wedge 

beneath the Aegean arc. In (a), the addition of subducting sediment (green model curve) to a mantle 

source that is a mixture between Aegean Depleted Mantle (ADM) and Subslab Enriched Mantle (SSEM; 

blue model curve) is shown at a constant degree of melting (10%). In (b), the red model curve represent 

variations in degree of melting of a heterogeneous source (blue model curve) with a constant subducting 

sediment contribution of 0.25%. 

 

Source Modeling 

In order to constrain the infiltration of an enriched, subslab mantle component in the Aegean 

arc, we modeled the effects of melting of a heterogeneous mantle source on trace element systematics of 
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Santorini and Nisyros (Fig. 2a-b). A detailed account of our approach is provided in the online 

supplementary material and is summarized here. We modeled variable degrees of melting of a hybrid 

spinel-lherzolite source that is formed by bulk mixing of Aegean depleted mantle (ADM) with subslab 

enriched mantle (SSEM) to which a variable amount of subducting sediment has been added. The SSEM 

component has been obtained by calculating the source composition of the Kula alkali basalts, and agrees 

well with the West Anatolian Mantle source proposed by Aldanmaz et al. (2006). 

The composition of the most depleted Santorini samples (lowest Nb/Yb, highest Zr/Nb) can be 

explained by 10% melting of a depleted ADM source modified by the addition of ~0.5% of subducting 

sediments, consistent with previous studies (e.g., Bailey et al., 2009; Kirchenbaur and Münker, 2015; 

Klaver et al., 2015). Lower Zr/Nb and higher Nb/Yb of the primitive Nisyros samples suggest melting of an 

enriched, mixed ADM-SSEM source. It is impossible, however, to account for the high Zr/Hf in Nisyros by 

melting a mixed source to similar degrees as for Santorini (10%). Zr/Hf is strongly dependant on the 

degree of melting (Fig. 2b; Pfänder et al., 2007) and hence the elevated Zr/Hf in Nisyros suggest that these 

samples reflect a lower degree of melting. The best explanation of the integrated trace element signature 

of the primitive Nisyros samples, including the ratios shown in Fig. 2a-b and Nb/Ta and La/Yb, is 4% partial 

melting of an enriched source comprising 9% of the SSEM component with the addition of 0.15% of 

subducting sediments. 

The roughly linear array formed by Santorini, Nisyros and the Kula alkali basalts in a Zr/Hf - Zr/Nb 

diagram suggests that a continuum exists between high-degree melting of a depleted (ADM) source and 

low-degree melting of an enriched (SSEM) source in the central-eastern Aegean arc. Santorini lies toward 

the depleted end of this continuum but correlated variations in Zr/Nb, Nb/Yb and Zr/Hf indicate the 

involvement of up to 2% of the enriched SSEM component. Hence, the geochemical signature of the 

enriched subslab component is most pronounced in Nisyros in the eastern section of the Aegean arc but 

can be traced at least as far west as Santorini, over 250 km west from the slab tear. 
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Figure 3. 143Nd/144Nd (a) and 207Pb/204Pb (b) - 206Pb/204Pb diagrams showing the Pb-Nd isotope variation of 

Nisyros and Santorini. See Fig. 2 for symbols; data for EM1-type mantle component from N Africa and 

Sardinia from Lustrino and Wilson (2007). The mixing model based on trace element systematics is shown 

(black line with plusses), as are mixing curves between different mantle source compositions and 

subducting sediment (gray lines with dots). The mixed ADM-SSEM source (open circle) as obtained from 

trace element modelling, cannot reproduce the low 143Nd/144Nd and high 207Pb/204Pb of the Nisyros source 

inferred from Nd-Pb isotopes (filled circle). This offset can be explained by interaction of the upwelling 

SSEM component with an EM1-type African SCLM at the slab edge. 

 

Pb-Nd Isotope Constraints 

Radiogenic isotope variations in primitive Aegean arc magmas are ascribed to the addition of 

variable amounts of heterogeneous subducting sediment to a homogeneous ADM source, but have not 

been evaluated in the light of mantle wedge heterogeneity (Bailey et al., 2009; Elburg et al., 2014; 

Kirchenbaur and Münker, 2015). Variations in subducting sediments, however, fail to explain the 

unradiogenic 206Pb/204Pb (18.6–18.8) at relatively high 207Pb/204Pb (15.59–15.66) and low 143Nd/144Nd 

(<0.51285) of Nisyros (Fig. 3; Klaver et al., 2015). On the basis of the trace element modeling, we propose 
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that these features reflect the heterogeneous nature of the mantle wedge in the central-eastern Aegean 

associated with the slab tear. Addition of subducting sediment to the enriched source comprising 9 % of 

the SSEM component, as inferred from trace element modeling, fails to reproduce the Nd-Pb systematics 

of Nisyros (Fig. 3). A suitable source for Nisyros has an Enriched Mantle 1 (EM1) affinity, characterized by 

high 207Pb/204Pb and low 143Nd/144Nd. Such a component has been recognized in North African basalts and 

on Sardinia (Lustrino and Wilson, 2007) and could represent the sub-continental lithospheric mantle of 

the African continent. Interaction of rising asthenospheric mantle with African SCLM at the slab edge is a 

viable process to have modified the Pb-Nd isotope signature of the upwelling SSEM source. 

At first sight, the involvement of a high 206Pb/204Pb SSEM component and metasomatized SCLM 

to generate the lower 206Pb/204Pb in Nisyros seems counterintuitive. The explanation lies in the higher Pb 

content of the enriched source. In conjunction with an overall lower sediment contribution deduced from 

Th/Yb systematics, the higher Pb content of the mantle source provides an efficient buffer for Pb released 

from the subducting slab. Hence, these two processes work in tandem and result in a smaller shift toward 

the Pb isotope composition of subducting sediment in magmas at Nisyros compared to Santorini. In 

addition, the higher Pb content of the Nisyros mantle wedge suppresses the curvature of the hyperbolic 

mixing lines (Fig. 3). Thus, the lower 206Pb/204Pb characteristic for Nisyros can be explained by derivation 

from a more enriched mantle source and lower sediment contribution, and does not necessitate along-arc 

variations in subducting sediment composition, for which there is no evidence (Klaver et al., 2015). 

 

Geodynamical Implications 

Rollback of a subducting slab creates a pressure gradient within the asthenospheric and 

lithospheric mantle as the subslab mantle is compressed whereas a tensional regime develops in the 

mantle wedge. The latter is accommodated by asthenospheric flow towards the retreating slab. Beneath 

the Aegean and western Anatolia, pronounced NE-SW anisotropy of the asthenospheric mantle suggests 

mantle flow toward the Aegean arc (Evangelidis et al., 2011; Olive et al., 2014). The opening of a slab tear 

as the result of differential movement between the Aegean and Anatolia (Biryol et al., 2011; Jolivet et al., 

2013) causes buoyant upwelling of subslab mantle of African provenance, which is enhanced by suction 

exerted by slab rollback (Sternai et al., 2014). This interpretation is consistent with the regional seismic 

anisotropy. Paul et al. (2014) noted that the area in SW Anatolia overlying the slab tear is characterized by 

NW-SE mantle anisotropy, which forms a sharp contrast with the dominant NE-SW direction seen in the 

Aegean and Anatolia (Fig. 4). This counter clockwise rotation in mantle anisotropy can be directly related 

to toroidal mantle flow around the edge of the Aegean slab toward the arc front, analogous to, for 

instance, the Juan de Fuca slab in the western United States (Zandt and Humphreys, 2008) and the 

Aeolian arc (Peccerillo et al., 2013). Thus, we argue that the geochemical signature of the enriched 

subslab mantle is not restricted to the area directly overlying the slab tear but will also influence the 
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Aegean region to the W and SW. Due to SW flow away from the slab tear, the subslab mantle component 

infiltrates the melt depleted mantle wedge such that the pure SSEM component is only manifested in the 

center of the tear (Kula alkali basalts). Jolivet et al. (2015) proposed that asthenospheric flow from the 

slab tear toward the SW is responsible for the formation of late Miocene high-temperature metamorphic 

domes and magmatism in the northern Cyclades, but its involvement in magma generation in the Aegean 

arc was not previously proposed. The recognition of an enriched component in the source of Nisyros and 

Santorini is, however, fully consistent with the presence of a slab tear beneath western Anatolia and 

toroidal mantle flow around the edge of the Aegean slab, transporting enriched subslab mantle of African 

provenance into the mantle wedge underlying the central-eastern Aegean arc. Data presented here 

indicate that the subslab mantle component can be recognized as far west as Santorini, ~250 km from the 

slab tear. 

 

 

 

Figure 4. Schematic model showing the toroidal flow of subslab enriched mantle of African provenance 

around the edge of the Aegean slab. The Kula volcanic province (KVP) is dominated by the upwelling of 

subslab mantle. Infiltration of this component in the Aegean mantle wedge can be traced as far west 

Santorini. 
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