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Abstract

Out-of-Autoclave (OoA) prepreg processing requires evacuation of volatiles

at the early stages of processing to achieve an acceptable final void content.

In this study, single prepreg plies were laid-up onto a glass tool to simulate a

ply-ply interface to gain an understanding of initial air entrapment and even-

tual removal mechanisms. The contact was recorded during processing with

various edge breathing configurations to identify the relationship between

evacuation pathways and contact evolution. The existence of preferential

flow channels along the fibre direction of the material was shown by char-

acterising the prepreg surface. Gas evacuation in those channels prevented

contact during an extended ambient temperature vacuum hold. The contact

between the prepreg and glass tool equilibrated around 80% during the am-

bient vacuum hold, and reached full contact at elevated temperature after

a brief loss in contact due to moisture vaporization when the resin pressure

decreased below the water vapour pressure.

Keywords: Prepreg, Porosity, Process Monitoring, Out of autoclave

processing.
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1. Introduction

Void formation in composite manufacturing remains one of the primary

processing defects because it is well known that they have a detrimental effect

on the mechanical properties of laminated composites [19]. Void formation in

prepreg processes is usually suppressed by applying high pressures in either

a press or an autoclave to dissolve volatiles into the resin. However, recent

demands for more sustainable manufacturing processes, including of Out-

of-autoclave (OoA) prepregs, have increased the scientific interest in void

phenomena because these processes use lower pressures that cannot suppress

voids to the same extent as in the autoclave process. Lower consolidation

pressure during vacuum-bag-only processing of OoA prepregs may be accom-

panied by an enhanced susceptibility to porosity.

In order to produce void free parts, processing parameters have to be chosen

carefully, based on a thorough understanding of void formation. Further-

more, a special prepreg microstructure is required to enhance gas evacuation

prior to cure. OoA prepregs are initially partly impregnated, consisting of a

dry central fibrebed surrounded by resin rich areas [2]. Before heating and

during the early stages of the cure cycle, the dry areas form permeable chan-

nels that allow gas evacuation. As heating begins, the dry microstructure is

infiltrated by the softening epoxy resin from the resin rich areas. Full prepreg

impregnation is desired before gelation, but concurrently, if evacuation chan-

nels remain permeable in the early heating stages they offer residual volatiles

extraction opportunities [21].

Various void generation and dissipation mechanisms will contribute to void

formation during processing based on the initial material structure, handling,

lay-up, and processing parameters. A general classification of voids has iden-

tified three major types [5]: intraply voids within a single fibre layer, resin

voids, and interply voids between adjacent plies. Intraply voids are initially

caused by insufficient impregnation of the dry areas within the OoA prepreg
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structure. These voids will remain in the finished laminate if the resin con-

tent is insufficient, the resin viscosity profile does not allow full wetting of the

dry fire regions, or the resin pressure is insufficient during processing. Resin

voids are induced during the prepregging process or during the cure reaction

as volatiles are released, or moisture is diffused out of the resin. Both intraply

and resin voids have been addressed in previous studies [8, 3, 14, 23]. Inter-

ply voids between layers are caused by mechanical entrapment of air pockets

during ply deposition. Material factors contributing to the initial interply

air entrapment and distribution include ply surface topology and premature

contact to the opposing surface due to tackiness [10]. Additional geometri-

cal or processing entrapment factors during lay-up include ply terminations,

material handling, lay-up conditions (temperature and humidity), and con-

tamination. Geometrical and processing factors are more difficult to capture

than material factors, but regardless of their origin, once entrapped between

plies, isolated air pockets will remain as interply voids within the final part if

they cannot be removed or consolidated during the manufacturing process.

The literature covering interply void formation in the OoA process is still

very limited compared to what is known about resin and intraply void for-

mation. To date, woven fabrics have been the primary focus of interply void

research, and they initially represent the greatest fraction of total void con-

tent [5]. These voids generally decrease to zero during processing, which is

attributed to air evacuation through gaps created by the interlaced structure.

The same phenomena cannot be transferred to unidirectional prepregs, due

to smoother surfaces compared to woven prepregs, as well as lower out-of-

plane air permeability [16].

In-situ experimental techniques to characterise interply void formation are

currently limited. Micro-CT would be the ideal tool to capture the three di-

mensional evolution of interply voids during processing, but the current scan

times are too slow to capture the temporal change during the initial vacuum

application and scan resolutions needed to capture the spatial distribution of

interply voids are limited to small sample sizes. Since the interply void for-
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mation mechanisms resemble the entrapment and evacuation of air between

a tool-ply interface, a glass plate and optical camera may offer the speed and

resolution to monitor void evolution in processing conditions. Replicating a

multiple prepreg ply-ply interface in a laminate by a single ply applied to a

rigid mould will likely change the boundary conditions in this region of in-

terest. The contact mechanics between the resin at the tool-ply interface will

likely differ to those of an isolated bubble surrounded by resin. Additionally,

the complex nature of transverse compaction stresses transferred at different

angles through ply nesting may influence the contact and air flow pathways.

Clearly, this technique is not without limitations, but it can offer qualitative

insights to capture the void evolution in different processing conditions in

relevant time intervals.

The transparent mould approach has been used by Bloom et al. [1] to study

the effect of ply consolidation of different ply deposition techniques, such as

hand lay-up and roller assisted methods, and the influence of flexible bagging

consumables on the applied pressure distribution in prepreg processing. In

a separate study, Hamill et al. [10], also used a glass plate and camera to

investigate the influence of material and processing parameters on surface

porosity, and identified air entrapment as the primary source of large surface

pores after cure. Additional information about the height of the void can be

obtained by surface roughness measurements. Lukaszewicz and Potter mea-

sured the surface roughness of uncured autoclave and OoA fibre placement

grade prepreg tapes [18], and they concluded that rougher prepreg surfaces

will influence the cured laminate interply void content.

In light of the fact that interply voids contribute to the degradation of me-

chanical properties, coupled with a shift towards low pressure processing,

a need exists to capture the initial distribution of these voids and describe

how they evolve during processing in order to understand which gas evac-

uation mechanisms are available to minimise cured part porosity. In this

study, the surface roughness of an OoA prepreg was studied to evaluate the

texture and properties of the material in its uncured state to inform void
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formation in a unidirectional prepreg. This characterisation was followed by

measuring the contact evolution of the OoA prepreg ply on a glass tool using

different in-plane breathing configurations. The images were post-processed

to determine if the contact mechanisms changed during ambient and ele-

vated temperature processing to understand the air evacuation mechanisms

of interply voids during OoA prepreg consolidation.

2. Material constitution

OoA prepreg materials are supplied partly impregnated, consisting of

dry fibre and resin rich areas that will ideally become void free after elevated

temperature curing. Fig. 1 shows an example of a post-processed CT im-

age of an uncured Cytec Engineered Materials’ Cycom R© 5320 OoA prepreg

microstructure; this image was generated using the procedure outlined in

[12]. The carbon fibre prepreg, with a fibre density of 1.77 g

cm3 , was supplied

with an epoxy resin that accounts for roughly 33weight% of the material.

This particular prepreg was supplied with a relatively stiff single-sided paper

backing. The prepreg is a vacuum bag only curable prepreg allowing a curing

temperature of either 93 ◦C or 121 ◦C, according to the manufacturer’s data

sheet. Even though prepregs are machine made by a commercial process,

dry area resin rich area

prepreg surface 0.2mm

Figure 1: CT image of an uncured UD prepreg’s cross-section.

Fig. 1 reveals that the prepreg material has an irregular resin distribution on

the surface that can lead to variations in the cross-section of the prepreg.

This induces variations in the prepreg fibre volume fraction, which in-turn
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leads to variability in the in-plane air permeability. Variability in the out-of-

plane permeability may also occur. A Scanning Electron Microscopy (SEM)

image of the prepreg surface is shown in Fig. 2 and identifies point-to-point

variations in the resin distribution that may promote local areas of higher

out-of-plane air permeability compared to adjacent resin rich regions. Both

300µm 100µm
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Figure 2: SEM image of a UD prepreg surface before processing.

Fig. 1 and 2 expose the rough surface of the prepreg which may not only be af-

fected by variations in the resin distribution due to manufacturing techniques

but also due to material transport, storage, and handling before final usage.

For a better understanding of the surface properties, surface roughness scans

were conducted using an Alicona G5 optical micro coordinate measurement

system. A 50mm× 25mm sample was mounted to a glass slide and sputter

coated with 30 nm of gold prior to scanning. The centre surface topology

of a 10mm × 10mm region of both the backing paper and the non-backing

paper side of the prepreg are shown in Fig. 3.

The maximum volume entrapped by each sides was determined by a surface

scan. The void volume of the surface was subdivided into the core and valley

void volumes, as shown in the cross-section of a prepreg layer in Fig. 4, using

the bearing area curve. The values for each area are presented in Table 1

and indicate that there is a marked difference in surface roughness between

the backing paper and non-backing paper side of the prepreg. As a result,
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Figure 3: 10mm × 10mm surface of an uncured UD prepreg. Fibres are oriented in

x-direction.

the non-backing paper side of the material will entrap a larger volume of air

than smoother backing paper side. To capture the worst case scenario, cou-

pled with the likely manufacturing procedure of laying-up the non-backing

side of the prepreg, the non-backing side of the prepreg was placed onto the

glass tool. The surface roughness of the prepreg determines both the initial

core void volume

material surface

valley void volume

prepreg layer

Figure 4: Cross Section of void volume depending on the surface roughness. According

values in Table 1 are based on the bearing area curve (BAC) [6].

volume of entrapped air, but also the ability to evacuate air from the lay-up.

A corduroy surface structure running parallel to the fibre direction generated

interconnected pathways for air evacuation in the interply region until the

combined compaction and evacuation collapsed this structure.
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Table 1: Comparison of the prepreg’s backing paper and non-backing paper surfaces. Core and

valley void volume values refer to the prepreg surfaces shown in Fig. 3 and were determined

using the bearing area curve [13].

Prepreg side backing paper non-backing paper

Core void volume 12.5 ml
m2 24.3 ml

m2

Valley void volume 1.4 ml
m2 3.1 ml

m2

As represented in Fig. 5, the interply zone (1) may not be the only evacuation

possibility. Air may flow from the interply zone into the intermediate dry

layer based on the pressure differential between the regions and the opposing

resin viscosity. Subsequently, air can either be removed by the evacuation

channels (2), remain in the intermediate layer (3), or migrate in the out-of-

plane direction (4). Void compression (5) or dispersion (6) are also possible

and are governed by the applied pressure. According to Persson et al. [20],

(4)

(1)

(5)

(6)(2)
(3)

ply 1

ply 2

air
air

Figure 5: Interply void removal mechanisms.

the surface roughness determines the entrapped void volume and possible

evacuation pathways, but has also an enormous influence on tack, which in

turn has an influence on air entrapment [10]. Therefore, void spaces may

remain in the interply region because the prepreg fibres will oppose bending

and the high viscosity resin on the surface may not cold flow. The pressure

in these void spaces will depend on the resisting gas pressure at the ply-ply

interface, or whether the resin pressure can either dissolve the gas into the

resin or redistribute the gas within the ply, such as the dry region within a
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partially saturated prepreg.

3. Experimental approach

In this study, the contact evolution between a prepreg ply and a glass

plate was recorded in order to evaluate the interply void formation. The glass

surface does not have the same properties as a prepreg, but might correspond

more closely to a well debulked prepreg surface and, more importantly, this

technique enabled real time imaging of the contact evolution of a relatively

large sample area during processing conditions.

3.1. Test Setup and Postprocessing

Multiple trials with different edge breathing conditions were carried out

by laying up a single 300mm × 300mm prepreg ply on a 10mm thick un-

treated glass tool. The prepreg plies were at the same time and stored in

a freezer at −20 ◦C in individually sealed bags to maintain the same initial

material conditions between trials. The prepreg ply was laid-up by hand and

pressed against the glass tool before placing the consumables and installing

the vacuum bag. The bagging arrangement consisted of a non-perforated

release film, vacuum bag, four layers of breather, a 4mm thick heater pad,

4 thermocouples, an aluminium caul sheet of 3mm used to even out heat

distribution from the heater pad and consistently apply transverse pressure

to the prepreg ply in each trial, avoiding the variations in pressure encoun-

tered with a flexible membrane bag [1]. Edge breathing dams were made of

sealant tape wrapped in fiberglass (unless otherwise specified) and located

around the edge of the ply. A cure cycle corresponding to the manufacturer’s

specification was applied using a closed loop controller for the heater pad,

while a vacuum port adjacent to the ply was connected to a vacuum pump.

The experimental set-up is shown in Fig. 6.

A DMK 2 mega-pixel monochrome digital camera was placed underneath

the glass tool to capture images during the process. Lighting conditions of
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light
frame

set up including:
vacuum bag
breather
heater pad
thermo couples
aluminum sheet
release film
prepreg

glass tool
camera
images

heat control device

Figure 6: Glass tool set up used for contact experiments.

the images were improved by an additional light installed above the glass tool

to provide the most diffuse illumination possible around the edge of the ply

while avoiding reflections from placing direct lighting underneath the sam-

ple. Images were post-processed in MATLAB R©. First, edges were cropped,

reducing the raw 260mm × 220mm images to 210mm × 170mm in order

to eliminate fish-eye effects at the corners. Second, an invariable threshold

value was used for each sequence to convert images into binary images, con-

sisting of black and white pixels. The contact area was determined for every

image by counting the number of black pixels, excluding the circular camera

reflection located in the middle of the images. The contact area was related

to the total pixel count of each image, and given as a percentage.

3.2. Test matrix

To investigate the air evacuation pathways described in Fig. 5, air removal

was evaluated using four different configurations. The first configuration

consisted of full edge breathing placed around all four prepreg sides using

edge breathing dams consisting of sealant tape wrapped in fibreglass. Out-

of-plane air evacuation was restricted by a non-perforated release film (Fig. 7

(a)). In the second configuration, all four edges as well as the release film were

sealed to the glass tool, restricting air to relocation or compression within

the prepreg ply (Fig. 7 (b)). In the third configuration, evacuation pathways

were sealed by 0.025mm thick flash tape wrapped around the prepreg edges
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to restrict gas flow to the glass tool-ply interface region (Fig. 7 (c)). Finally,

edge breathing was placed on one side only, sealing the other three edges

with sealant tape and closing off the surface with non-perforated release film

(Fig. 7 (d)). Although similar in-plane flow should occur between the one-

sided and the full edge breathing experiments, the one-sided configurations

were used to determine if a contact gradient was present during evacuation.

Three repeats were conducted for each boundary condition.

glass tool

glass tool

sealed

(a) (b)

(c) (d)
vacuum bag

prepreg

prepregprepreg

prepreg

tape

edge breathing

sealed

sealed

vacuum port

Figure 7: Four different experimental set-ups used to investigate air evacuation pathways:

(a) full edge breathing, (b) sealed edges, (c) evacuation channels sealed and (d) one-sided

edge breathing.

4. Results and discussion

4.1. Contact evolution over time

At the beginning of each experiment almost no contact points are present.

A rapid increase in contact occurs after the vacuum was applied. Contact

patterns after 10 min, 1 hour and 10 hours into the vacuum hold are pre-

sented as binary images in Fig. 8 for one repeat from each configuration.

Close inspection of these images shows the temporal contact evolution. Con-

tact initiates at random locations and then evolves from these initial contact

points. Contact areas were more likely to grow from these initial points
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Figure 8: Percentaged contact evolution during the vacuum hold for the four edge breath-

ing conditions - binary images (210mm × 170mm). Black areas indicate the contact

between glass plate and prepreg, while the black circle in the centre of each image is the

reflection of the camera.

rather than the smaller areas of contact preferentially growing to become

connected. This offers some insight into how the entrapped air migrates in

the interply region to create void spaces in the non-contact areas. Further-

more, the non-contact regions seem to stay interconnected, running parallel

to the prepreg fibre direction, which remained identifiable throughout every

experiment, regardless of the edge breathing configuration. Overall, these

observations suggest that the non-contact areas contribute to the air evacu-

ation in the interply region. An initial visual examination of Fig. 8 revealed

no distinct difference in contact patterns between different edge breathing

conditions. In order to identify if a preferential contact pattern occurred

between test configurations, an amplitude density function of the mean con-
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tact area along and across the fibre direction was plotted. No statistically

significant difference was observed between the width of the interconnected

non-contact regions.

Fig. 9 shows the contact evolution during a 12 hour ambient temperature vac-

uum hold for all three repeats for the four edge breathing conditions. Contact

increases with time and reaches equilibrium after about 6 hours where the

final contact area remains between 70% and 90% for all edge breathing con-

ditions. The variability between trials does not allow for a clear distinction

between the effect of the different edge breathing conditions on ambient evac-

uation mechanisms. The inconsistent and localized nature of air entrapment

was also observed on the tool ply interface [10, 1] and confirms the random

nature of prepreg surfaces.

After the 12 hour ambient vacuum hold, the prepreg was heated at 2 ◦C/min
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Figure 9: Contact evolution during vacuum hold for different edge breathing conditions.

to 93 ◦C, and the contact evolution is shown in Fig. 10. Each trial reached
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full contact during the elevated temperature processing stage of the study,

however, after approaching 100% contact, all configurations showed a drop

in contact at around 90 ◦C, before eventually returning to full contact again.

Moisture was considered as a possible cause of the loss in contact, therefore

the effect of moisture devolution was considered by comparing estimates of

the water vapour pressure to the resin pressure. If the resin pressure is higher

than the water vapour pressure, moisture will remain in solution [14]. The

dashed vertical line in Fig. 10 is the cross-over point where the resin pressure

becomes lower than the water vapour pressure, and a loss in contact was

observed.

The changes in water vapour and resin pressures during elevated tem-
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Figure 10: Contact evolution during heat application for different edge breathing condi-

tions.

perature processing are shown in Fig. 12. The water vapour pressure was

estimated by the model developed by Kardos et al. [14], which describes the
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relationship between water vapour pressure, P , in bar and temperature, T ,

in ◦C:

P = 502774 · exp
(

−4892

T

)

. (1)

The resin pressure, Pr, during processing depends on the load sharing of the

applied pressure, Papplied, between the resin and fibres (Fig. 11) according to

Pr + σf = Papplied, (2)

and is governed by the fibre bed compaction curve,

σf = f(Vf ) (3)

which relates the effective stress σf carried by the fibre bed to the fibre vol-

ume fraction Vf [9]. The load shared between the resin and fibre regions of

Papplied

Papplied

Pr = 1bar

Pr = 1bar

σf = 1bar

Pr = 1bar− σf

early stage of processing elevated temperature processing

resin

Figure 11: Load share between fibres and resin during processing where σf is determined

by the fibrebed compaction curve.

an OoA prepreg was described by a previously developed model [11], which

relates the thickness change of a prepreg to the resin flow into dry fibre ar-

eas. The initial resin pressure in OoA laminates is much higher than would

be expected for autoclave prepreg processing because the partially impreg-

nated nature of OoA materials effectively places the resin in series with the

fibrebed. As the semi-solid resin film softens during elevated temperature

processing, the resin saturates the fibrebed, and the applied load is shared.

As a result, the resin pressure in Fig. 12 becomes constant after 1.5 hours

into the heating due to the termination of the model as soon as full resin

impregnation is reached. The resin pressure would be expected to decrease
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as the resin shrinks after gelation [7]. However, the resin is in a pre-gelled

state for the results shown in Fig. 10 and Fig. 11, therefore, the effects of

chemical shrinkage are not encountered in this study.

In Fig. 12, the resin pressure exceeds the water vapour pressure at around
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Figure 12: Water vapour and resin pressure development during heat and vacuum ap-

plication compared to the contact evolution under full edge breathing conditions. The

cross-over point of the water vapour and resin pressures caused a loss in contact due to

moisture diffusion out of the material.

90 ◦C, and simultaneously, a decrease in contact between the prepreg ply and

glass tool was observed. This suggests that absorbed moisture is released by

the material into the interply zone, which may contribute to the drop in con-

tact. The temperature where the water vapour and resin pressure cross-over

are indicated in Fig. 10. The loss in contact in the sealed edges configura-

tion starts earlier than the other trials in Fig. 10 because of the additional

entrapped air at the tool-ply interface.

The final interply void content appears to be independent of the edge breath-

ing conditions. This was an unexpected result, especially for the completely

sealed edges configuration. Since air cannot be evacuated out of the prepreg,

air removal options (1), (2) and (4) in Fig. 5 are not available, therefore air

initially located in the interply region must relocate to the intraply dry area

of the prepreg (3), be compressed (5), or dispersed (6).

The air initially entrapped in the interply region has likely relocated to the

intraply dry area in the sealed configuration. This assumption is supported
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by a quality study of OoA laminates conducted by Centea and Hubert [4].

They processed prepregs with sealed edges and when compared to laminates

processed with full edge breathing, the laminates with sealed edges had an

increased void content in the dry intraply area. After we processed plies with

sealed edges, the removal of the cured ply from the glass tool was different

compared to other configurations. Fibres that were located in the middle of

the prepreg remained dry after processing and induced ply splitting during

removal.

4.2. Contact evolution with temperature

The contact evolution is plotted as a function of temperature in Fig. 13 in

order to analyse the relationship between temperature, resin viscosity, and

ply contact. The resin viscosity was calculated by published cure kinetics

and viscosity models [15]. For all four edge breathing conditions, the initial

contact at room temperature stagnates between 70% to 90%. Full contact

was eventually achieved in all four configurations, but contact of set-ups with

breathable edges evolved almost steadily after 35 ◦C, whereas the contact for

the sealed edge configurations remained constant up to about 50 ◦C. This

behaviour indicates that entrapped volatiles remain at the tool-ply interface,

preventing resin flow into the interply region. If the areas of non-contact were

empty spaces, with an equivalent pressure to the vacuum bag, resin would

flow into the non-contact areas at the same rate as the other experiments.

As a result, in the sealed edge configuration air relocation cannot occur until

the viscosity is sufficiently low enough to allow air flow into the intermediate

layer [22, 17].

4.3. Directional contact evolution

The contact images were analysed for a spatial gradient in order to iden-

tify if the contact preferentially initiates at the edge of the ply and temporally

increases towards the centre, or vice-versa. The images were subdivided into

three different areas depending on the breathing configuration being tested,

as shown in Fig. 14. The one-sided edge breathing trials were evaluated by

17



co
n
ta
ct

ar
ea

[%
]

temperature [◦C]

co
n
ta
ct

ar
ea

[%
]

temperature [◦C]

temperature [◦C]

co
n
ta
ct

ar
ea

[%
]

co
n
ta
ct

ar
ea

[%
]

v
is
co
si
ty

[P
a
·
s] Sealed edges

Sealed evacuation channels One edge breathing side

v
is
co
si
ty

[P
a
·
s]

v
is
co
si
ty

[P
a
·
s]

Full edge breathing

temperature [◦C]

1

10

0
20
40
60
80
100

20 40 60 80 100
1

10

0
20
40
60
80
100

20 40 60 80 100

1

10

102
103
104
105

0

20

40

60

80

100

20 40 60 80 100
1

10

0

20

40

60

80

100

20 40 60 80 100

102
103
104
105

102
103
104
105

102
103
104
105

viscosity
trial 1-3

viscosity
trial 4-6

viscosity
trial 7-9

viscosity
trial 10-12

v
is
co
si
ty

[P
a
·
s]

Figure 13: Contact evolution with temperature for different edge breathing conditions.

subtracting the left area from the middle area (Fig. 15(a)) and the middle

area from the right area (Fig. 15(b)), according to the regions defined in

Fig. 14(a). The configurations with full edge breathing were also subdivided

into three regions, but the contact regions were arranged as concentric rect-

angles, as shown in Fig. 14 (b), since air could be extracted around all four

edges of the ply. Fig. 16 depicts the difference between the outer and mid-

dle regions, and the difference between the middle and inner regions. From

the analysis in Fig. 15 and Fig. 16 it appears that the ply contact evolves

slower in areas close to the edge of the ply that allows air evacuation. This

indicates that the non-contact areas create air evacuation pathways, which

in turn inhibits contact. In the case of full edge breathing, contact evolves

from the middle of the ply, whereas contact for the one-sided edge breathing

initiates from the side opposite the edge breathing. Overall, contact evolved

faster in the middle, but this could be related to local phenomena within the
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Figure 14: Areal subdivision for directional contact evolution: (a) for one-sided edge

breathing tests and (b) for full edge breathing.
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Figure 15: Gradient in contact evolution for one-sided (left) edge breathing.

ply that influence property variations. For example, variations in the surface

roughness, or the in-plane and out-of-plane air permeability coefficients could

influence how contact forms between the ply and the glass plate.

The linear contact gradient used in Fig. 14(a) was applied to both the one

sided edge breathing and full edge breathing trials. This analysis allowed

us to compare whether the contact gradient observed in Fig. 15(left) was an

anomaly created by the experimental set-up. The results of this analysis are

shown in Fig. 17, and confirms that the experimental set-up did not create

the linear gradient because a contact gradient was always observed in the

one-sided edge breathing configurations, whereas contact was observed to

evolve from both sides in the full edge breathing configuration. The contact

gradient disappeared as soon as heat was applied to both breathing configura-

tions. The evacuation pattern of unidirectional OoA prepregs was evaluated

19



co
n
ta
ct

d
iff
er
en

ce
[%

]

co
n
ta
ct

d
iff
er
en

ce
[%

]

time [h] time [h]

Middle-outer Inner-middle

-2

2

6

10

14

18

0 5 10 15 20 -2

2

6

10

14

18

0 5 10 15 20

trial 1-3 trial 1-3
heat starts

heat starts

Figure 16: Contact gradient evolution for the full edge breathing configuration.
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Figure 17: Comparison of the contact gradients in the full edge breathing and one sided

edge breathing configurations.

for contact evolution along and across the fibre direction, in the x and y

directions indentified in Fig. 3. For contact across the fibres (y-direction),

pixel columns were averaged and for contact along the fibres (x-direction),

pixel rows were averaged. Results along the fibre direction are shown in

Fig. 18(a) for full edge breathing and Fig. 18(b) for sealed evacuation chan-

nels, meanwhile the contact along the fibre direction is shown in Fig. 18(c)

and (d). Higher variability was observed across the fibres (in the y-direction)

than along the fibres (in the x-direction) from Fig. 18(a) and (c) as well as

Fig. 18(b) and (d). This variability reflects the air evacuation pattern of uni-

directional prepregs. Interconnected valleys along the fibre direction serve as

evacuation pathways and entrapped air impedes contact until heat is applied
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to soften the resin, and enable a combination of resin and air flow. A direct
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Figure 18: Contact in x- and y-directions for 10 minutes, 1 hour, 10 hours, and after

heating.

comparison between the full edge breathing and sealed evacuation channels

after 10 hours into the vacuum hold is shown in Fig. 19 to accentuate the

difference in contact across the fibres between these two configurations. In

general, the contact profile for sealed evacuation channels is rougher com-

pared to the full edge breathing profile. Expanded non-contact areas are

present, which is in agreement with wider white bands within the binary

images (Fig. 8). This observation supports the assumption that air has to

be evacuated between the glass tool-prepreg interface when the intraply air
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evacuation channels of the prepreg are sealed. Accordingly, forcing air evac-

uation in the interply zone decreased the percentage of ply contact before

heating.
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Figure 19: Contact in y-direction for full edge breathing and sealed evacuation channels

after 10 hours into the ambient temperature vacuum hold.

5. Summary

In this paper, the surface of OoA prepregs was investigated in order to

establish an understanding of air entrapment between plies. The contact evo-

lution between a glass plate and a prepreg ply was measured during the con-

solidation process under various edge breathing conditions in order to identify

the interply air evacuation mechanisms in unidirectional OoA prepregs.

The surface roughness of the prepreg ply was influenced by the nature of the

unidirectional fibrebed: surface valleys form a corduroy texture along the

fibre direction. As a result, contact was more pronounced along the fibre

direction than across the fibres. Contact was observed to evolve from the

initiation points into larger contact areas, instead of many smaller contact

areas connecting. In fact, non-contact areas (considered to be interply voids)

relocated into the valleys of the prepreg surface, and remained mostly visi-

ble throughout the ambient vacuum hold. These observations indicate that

surface roughness valleys serve as interply air evacuation pathways for en-

trapped air.

In order to investigate the effect of a region of a ply becoming isolated from
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the vacuum source during processing, the contact evolution of completely

sealed plies was measured, and the results suggest that air relocates into the

dry intraply region of partially saturated prepregs, and does not remain in

the interply region. However, the variability in contact between repeats of

the same test configuration suggests that local phenomena are likely to occur.

This can be attributed to property variations within the prepreg: random

resin and fibre volume fraction distributions influence the surface structure

as well as the permeability in the in-plane and out-of-plane directions. The

out-of-plane permeability determines the amount of entrapped air, whereas

the in-plane air permeability mainly influences the evacuation time frame

and the corresponding contact evolution.

A drop in contact at around 90 ◦C suggests that the contact evolution in the

interply zone was not solely determined by air initially entrapped between

plies, but is also affected by absorbed moisture, which was released by the

material at elevated temperatures.

Overall, a test method was established to investigate the interaction of the

phenomena that define the final part quality in regards to air entrapment be-

tween plies. The results presented here are an important first step towards a

better understanding of the phenomena associated with the interply void for-

mation in OoA prepregs. This study provides a basis for a more widespread

analysis of interply void formation.
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[14] Kardos JL, Duduković MP and Dave R (1986) Void growth and resin

transport during processing of thermosettingmatrix composites. In:

Epoxy resins and composites IV. Springer, pp. 101–123.

[15] Kratz J, Hsiao K, Fernlund G and Hubert P (2012) Thermal models for

mtm45-1 and cycom 5320 out-of-autoclave prepreg resins. Journal of

Composite Materials 47(3): 341–352.

[16] Kratz J and Hubert P (2013) Anisotropic air permeability in out-of-

autoclave prepregs: Effect on honeycomb panel evacuation prior to cure.

Composites Part A: Applied Science and Manufacturing 49: 179–191.

25



[17] Kratz J and Hubert P (2015) Vacuum bag only co-bonding prepreg

skins to aramid honeycomb core. part i. model and material properties

for core pressure during processing. Composites Part A: Applied Science

and Manufacturing 72: 228–238.

[18] Lukaszewicz DHJA and Potter KD (2011) The internal structure and

conformation of prepreg with respect to reliable automated processing.

Composites Part A: Applied Science and Manufacturing 42(3): 283–292.

[19] Olivier P, Cottu JP and Ferret B (1995) Effects of cure cycle pressure

and voids on some mechanical properties of carbon/epoxy laminates.

Composites 26(7): 509–515.

[20] Persson BNJ, Albohr O, Tartaglino U, Volokitin AI and Tosatti E (2005)

On the nature of surface roughness with application to contact mechan-

ics, sealing, rubber friction and adhesion. Journal of Physics: Condensed

Matter 17(1): R1.

[21] Ridgard C (18-21 May 2009) Out of autoclave composite technology for

aerospace, defense and space structures. In: Proceedings of the SAMPE

Conference, Baltimore, MD, USA. pp. 1–10.

[22] Tavares SS, Michaud V and Månson JAE (2009) Through thickness
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