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Abstract 

We present data from an international survey of scientists working at volcanic observatories 

concerning eruption likelihoods. The scientists were asked a range of questions using different 

types of phrasing. The data suggest that the phrasing of questions affects the ways in which 

probabilities are estimated. In total, 71% of respondents (N=70) exhibited some form of 

inconsistency in their answers between and/or within different question formats. The data also 

allow for an analysis of the use of scaling in probabilistic assessment, and the use of quantitative 

versus verbal risk measurements. However, some respondents were uncomfortable with 
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providing any numerical probability estimate, perhaps suggesting that they considered the 

uncertainty too high for meaningful judgements to be made.  

Keywords: expert judgement; volcanic risk; probability 

1 INTRODUCTION 

Research in psychology on how individuals estimate probabilities (Tversky and Kahneman, 

1973,1974; Lichtenstein and Fischoff, 1980; Gigerenzer, 2008; Kynn, 2008) indicates that there 

are widespread issues in general populations with estimating probability that commonly results 

in inconsistencies, inaccuracies and biases. With the increasing use of expert judgement in 

forecasting of natural hazards and assessment of risk, this paper examines whether these issues 

are evident in groups of scientists1. We focus in particular on volcanologists who are working in 

volcano monitoring institutions and officially provide information for governments during 

volcanic crises. Training is very_m variable among volcanologists in statistics and probabilities. 

So although a technical group might be expected to have a better understanding of 

probabilities, there nonetheless may be deficiencies in education or other factors that lead to 

poor understanding of probabilities and similar problems to the wider population. Related to 

these issues is the matter of communicating probabilistic forecasts to a general public and 

decision-makers who do not necessarily have a technical background. Qualitative descriptors of 

probabilities, such as “very likely” or “unlikely” might be used to convey the forecast. Here a 

question arises as to whether numerical values of probability match qualitative descriptors 

consistently. In this paper, we survey 95 volcanologists, examining in particular responses 

relating to the probability of an eruption from the volcano that they were working on (specified 

                                                             
1 In this paper, “scientists” and “experts” refer to the volcanologists surveyed. The terms are used 
interchangeably. 



individually at the start of the survey). We examine the probability distributions that were 

produced, the ways in which different probabilities relate to one another, and some 

inconsistencies between the responses to some of the questions.  

2 THEORETICAL BACKGROUND 

Volcanic risk is highly uncertain. Many of the signals that are measureable at the surface are 

indicators that magma is moving, but do not guarantee that it will erupt. Forecasting volcanic 

eruptions is therefore challenging (e.g. Sparks, 2003; Cashman and Sparks, 2013) – but scientists 

are frequently asked for assessments because of the high stakes involved when a population is 

in danger. In many countries, volcano monitoring (where it is done at all) is the responsibility of 

particular agencies, often called “volcano observatories” (e.g. Donovan and Oppenheimer, 

2015). The day-to-day work of volcano observatories involves the collection and analysis of a 

range of datasets, usually focussed on measuring seismicity, ground deformation and volcanic 

gas emissions (e.g. Tilling, 2008). Staff at volcano observatories includes scientists and technical 

specialists, who may or may not have postgraduate qualifications. In referring to these scientists 

as “experts”, we take the view that formal qualification is not necessarily an indicator of 

expertise (e.g. Wynne, 1996). Volcano observatory scientists are therefore referred to as 

experts, because they study the activity of volcano on a daily basis and are the official source of 

information about the volcano to civil protection organisations and governments.  

 

The high levels of uncertainty associated with volcanic emergencies are well documented 

(Aspinall et al., 2003; Newhall and Hoblitt, 2002; Marzocchi et al., 2012; Marzocchi and Woo, 

2009; Sparks et al., 2013). The assessment of risk from volcanoes requires the compilation of 

multiple strands of evidence, datasets, models and methods (Aspinall et al., 2003). In order to 



make recommendations based on diverse forms of evidence, belief-based probabilistic methods 

such as expert elicitation and Bayesian methods (e.g. Aspinall et al., 2002; Aspinall, 2006; Hincks 

et al., 2014; Marzocchi et al., 2004, 2008; Neri et al., 2008; Donovan et al., 2012) are increasingly 

being advocated and applied. These methods have been effectively used on Montserrat over a 

long period (Aspinall et al., 2002; Donovan et al., 2012). Other forms of structured and 

unstructured probability estimation may also be used in an emergency. Yet questions remain 

about the ways in which experts perceive probabilities and respond to questions with different 

formulations (e.g. O’Hagan et al., 2006; Doyle et al., 2014).  This study explores volcanologists’ 

judgements of probabilities in an informal and theoretical context (as opposed to an operational 

setting), in order to assess the heuristics, role of framing and role of scaling in their responses. 

This section reviews some of the literature on probability judgements.  

2.1 Measures of judgment 

 Individuals vary in their ability to judge probabilities (e.g. O’Hagan et al., 2006; Tversky and 

Kahneman 1983; Kahneman and Tversky, 1982; Gigerenzer et al., 2005, 2007), possibly 

associated with reliance on heuristics (Tversky and Kahneman, 1974), the interpretation of 

which may depend on views about the nature of probability itself (e.g. Kahneman and Tversky, 

1996; Gigerenzer, 1994; Vranas, 2000). In this section, we contextualise the following discussion 

in terms of how the accuracy of probability judgements may be measured, looking in turn at 

calibration, informativeness and reliability. Calibration is a measure of the relationship between 

a set of subjective probability judgements and the corresponding relative frequency of the 

events in question. It is affected by over/underconfidence, over-extremity and discrimination 

(see O’Hagan et al., 2006 for a detailed review). Overconfidence is defined as the view that an 

event is more likely than the relative frequency; over-extremity is the tendency to overestimate 

low probabilities and underestimate high probabilities; discrimination is the ability to 



discriminate between low and high probability events. There is some evidence that calibration 

of experts can be improved with training (e.g. with feedback; Ferrell, 1994; Fischoff, 1991). It 

may also be context-specific – there is evidence from some fields that the potential perceived 

impact of a particular event may affect judgements (e.g. see discussion in O’Hagan et al., 2006). 

In volcanology, calibration is difficult to determine empirically, because most of the events in 

which volcanologists are interested are single events without frequency data – such as the 

likelihood of an explosion on a particular volcano in the next six months. There are, however, 

other methods that can estimate calibration (e.g. Cooke 1991). 

 

 Calibration describes the accuracy of a judgement (whether or not it is correct); 

informativeness describes the precision of a judgement (how well resolved it is around the 

correct value). It refers to the uncertainty bounds on an expert’s response to a probability 

question, and therefore also reflects their confidence in their own estimate. Calibration and 

informativeness have been shown to be distinct from the level of disciplinary expertise that an 

individual may have: tests of knowledge do not correlate with calibration (e.g. Kahneman et al., 

1982), although in general experts may produce more convincing responses than lay people 

(e.g. Murphy et al., 1984). However, calibration is not the only issue involved in probability 

judgements. There are also broader questions about how experts interpret probability questions 

and probability theory: how consistent they are when different wordings are used, for example. 

We turn now to discuss the social psychology literature that seeks to explain the ways in which 

such judgements are made. 

 



2.2 Heuristics and biases 

Probability estimation by both experts and laypeople has been investigated within psychology 

(Tversky and Kahneman, 1973, 1974; Lichtenstein and Fischoff, 1982; Kynn, 2008; Kahneman et 

al., 1982; Kahneman and Tversky 1972; Plous, 1989; Gigerenzer, 2008; Goldstein and Rathschild, 

2014; Slovic, 2000). These studies have suggested that the estimation of probabilities relates to 

a series of heuristics and biases. Heuristics are rules that are applied in the decision to place a 

particular probability on an event: they are difficult to quantify and have varying degrees of 

effect in different individuals. In probability estimation, they may include “rules of thumb” about 

the reliability of certain types of data or the relative importance of types of data. Understanding 

the variability in the use of heuristics provides insights into the cognitive processes involved in 

assigning probabilities, which is important in risk assessment and communication. 

 

We consider here three examples of heuristics that are relevant to the estimation of 

probabilities: base-rate neglect, anchoring and availability. Base-rate neglect occurs when 

individuals partly neglect base-rate frequencies, while relying on cues or informal decision rules 

(‘heuristics’), which may have dubious validity. The problem with base-rate neglect is that it is 

not meaningful to have two probabilities for the same event, one that is based solely on 

frequency and one that incorporates new information such as volcano monitoring data. For 

example, the probability of an eruption in the next year at a particular volcano is 0.2 based on 

historical frequency. If a seismic swarm occurs, however, we may consider that the probability 

of an eruption in the next year has increased above the base-rate. Gigerenzer (1991) has 

emphasised the distinction between single-event probabilities and frequencies as a subset of 

the belief-based–frequentist divide. He notes that “Probability theory is about frequencies, not 

about single events. To compare the two means comparing apples with oranges” (1991: 88). 



This comment sums up the need for belief-based methods: they allow the evaluation of the 

probability of individual events based on a wide range of evidence. The comparison of 

probabilities obtained from frequency analysis and those obtained from belief-based analysis is 

not conceptually meaningful (Dawid, 1982; Hacking, 2001) for a single event (though belief-

based analysis may take frequencies into account). The relationship between frequency-based 

and belief-based probabilities is not straightforward, and depends upon individual philosophies 

of probability: “strong frequentists” argue, with (Gigerenzer, 1991), that only frequencies are 

valid and that single-event probabilities are meaningless and vulnerable to heuristics such as 

base-rate neglect, while Bayesians argue that frequencies are limited in their usefulness for real-

world problems and decision-making under uncertainty. 

 

In addition to base-rate neglect, the availability bias occurs when subjects base their estimation 

on previous experience – something that is “available” to them in their memory (Tversky and 

Kahneman, 1973). Anchoring occurs when individuals base their estimates on scaling up or 

down from a “set” value that they have decided upon, and may result in systematically imposed 

probability distributions based on scaling. The use of heuristics provides some explanation of 

the variability in belief-based probability estimates, and has been applied in a slightly different 

way to issues around expert judgement (MacGillivray 2014).  

 

There have been a number of studies dealing with potential differences in heuristics between 

“lay” and “expert” groups. Many of these studies suggest that experts are susceptible to the 

same heuristics and biases as laypeople: O’Hagan et al., 2006 state that “substantive expertise in 

a specialist area is no guarantee of normative expertise in providing coherent probability 

assessment” (p.58; see also for example reviews in Doyle et al., 2014; Smith and Kida, 1991; 



Burgman et al., 2011). A distinction may be drawn between expertise in a particular discipline 

(such as volcanology), and expertise in the provision of probability estimates (e.g. Doyle et al., 

2014; Cooke, 1991; Burgman et al, 2011; Martin et al., 2012). Since probability estimation is 

increasingly used to inform volcanic risk assessment, it is important to understand the variability 

of experts’ abilities to provide uncertain judgements, and any factors that affect that variability. 

 

2.3 Issues of framing in probability estimation 

There are several ways in which probability judgement may be affected by the wording of the 

question that is asked and how the question is therefore conceptually represented, known as 

“framing” (e.g. O’Hagan et al., 2006; Gigerenzer, 1991; Hoffage et al., 2000). 

Some studies have examined in particular the language that is used in framing probability 

estimates (e.g. Doyle et al., 2014; Brun and Teigen, 1988; Teigen and Brun, 1999, 2003; Risbey 

and Kandlikar, 2007; Doyle et al., 2011). Positive and negative framing, for example, may impact 

the response to probability questions (Teigen and Brun, 1999). Probability questions can also be 

phrased to help or hinder respondents in the avoidance of typical “traps” (Teigen and Brun, 

1999). 

 

In addition to issues of language, the framing of questions in terms of time is important in 

determining probability judgements. Questions can be expressed as a likelihood of an event in 

particular time period, or as the time period in which the event has a particular likelihood of 

occurring, for example. People may be shy of giving a probabilistic frequency estimate of “1 in 

1” (ie, with stating that an event will certainly occur), but be more content with estimating a 

number of days or years within which the event will occur. The use of different time periods that 

show some kind of scaling (in this paper, we use 3, 30 and 300 years) can also have an impact on 



the heuristics applied by individuals. Doyle et al (2011, 2014) explored some of the implications 

of time frames on estimates, and showed that estimates were biased over the longer time 

periods due to anchoring in the shorter periods.  

 

2.4 Verbal versus numerical risks 

There are two primary ways of providing forecasts – numerical and verbal. Verbal assessments 

may involve a verbal scale, such as “very high chance” to “very low chance” or even “no chance 

at all”. Individual judgements about the use of such scales have been shown to depend on their 

perception of the scale itself (Parducci, 1965; Eiser and White, 1974). Verbal scales cannot be 

related easily to numerical estimates, since the perception that something is a “high” risk may 

depend on subjective, social factors. People react to the wording of the scale (Eiser and 

Hoepfner, 1991) and to the perceived consequences of the risk being realised (Teigen and Brun, 

2003; Bruine de Bruin et al.2000; Karelitz and Budescu, 2004). The interpersonal variability in 

reactions to a verbal scale is a significant issue for risk communication, since the wording of risk 

assessments affects their impact on policymakers and the public.  

 

In this paper, we use different phrasings of questions with regard to time period to investigate 

the role of scaling and other heuristics in the estimation of probabilities of eruption.  

3. METHODS 

3.1 Survey design 

A survey of scientists working at volcano observatories was carried out in 2011. The use of a 

quantitative survey was judged the best method to obtain a statistically useful sample of 



scientists from a large number of volcanoes. While the size of the sample allows only explorative 

statistics, it provides valuable insights. Scientists were asked a range of questions about a 

volcano that they work on – which they specified early in the survey. In this paper, we report the 

results from the questions regarding the likelihood of eruptions at ‘their’ volcano within 

different time-frames, using different question formats.  Specifically, these response formats 

involved (a) likelihood ratings – “How likely is it that [volcano name] will have a major eruption 

within the next [N] years?”, with responses on a 7-point scale from ‘extremely unlikely (1) to 

‘extremely likely’ (7); (b) chance estimates – “Please express your estimate in terms of “1 chance 

in...” (E.g. “1 chance in 10”, “1 chance in 1000” – fill in ANY number you wish. If you are 

absolutely certain an eruption will occur, say, “1 chance in 1”)” ; these pairs of questions were 

repeated for N = 3, 30 and 300 years; and (c) timescale forecasts – “I believe that [volcano 

name] will certainly have a major eruption some time within.... years” and “I believe that there 

is at least a 50:50 chance that [volcano name] will have a major eruption within the 

next...years”, respondents being required to fill in the number of years (d) confidence – “How 

confident are you in the estimates you have given above (taken as a whole)?” (extremely 

unconfident (1) to extremely confident (7)). Additional responses from the survey are published 

elsewhere (Donovan et al., 2014). 

 

In addition to these questions, respondents were also asked for their age, nationality, gender, 

highest level of education and experience working in their current role. These variables were 

used as predictor variables in the statistical analyses in order to assess demographic factors that 

might affect the result. Unless stated, demographic variables had no significant effect on the 

responses. 

The questions are summarised in Table 1. 



 

 Question Response type 

S3 How likely is it that [volcano name] will have a major 

eruption within the next 3 years? 

Scale from ‘extremely unlikely 

(1) to ‘extremely likely’ (7) 

C3 Please express your estimate in terms of “1 chance 

in...” (E.g. “1 chance in 10”, “1 chance in 1000” – fill 

in ANY number you wish. If you are absolutely certain 

an eruption will occur, say, “1 chance in 1”) 

Chance estimate 

S30 How likely is it that [volcano name] will have a major 

eruption within the next 30 years? 

Scale from ‘extremely unlikely 

(1) to ‘extremely likely’ (7) 

C30 Please express your estimate in terms of “1 chance 

in...” (E.g. “1 chance in 10”, “1 chance in 1000” – fill 

in ANY number you wish. If you are absolutely certain 

an eruption will occur, say, “1 chance in 1”) 

Chance estimate 

S300 How likely is it that [volcano name] will have a major 

eruption within the next 300 years? 

Scale from ‘extremely unlikely 

(1) to ‘extremely likely’ (7) 

C300 Please express your estimate in terms of “1 chance 

in...” (E.g. “1 chance in 10”, “1 chance in 1000” – fill 

in ANY number you wish. If you are absolutely certain 

an eruption will occur, say, “1 chance in 1”) 

Chance estimate 

T1 I believe that [volcano name] will certainly have a 

major eruption some time within.... years 

Time estimate 



T50 I believe that there is at least a 50:50 chance that 

[volcano name] will have a major eruption within the 

next...years 

Time estimate 

Con How confident are you in the estimates you have 

given above (taken as a whole)? 

Scale from extremely 

unconfident (1) to extremely 

confident (7) 

Table 1. Questions applied in the survey. Note that scale variables only gave verbal descriptions 

for the two ends of the scale. The codes provided in the first column are used later to 

demonstrate how the derived scores were calculated. “S” variables are those referring to the 

verbal scale; “C” variables are chance estimates; “T” variables are referred to as timescale 

estimates 

3.2 Statistical methods 

Initially, several derived scores were calculated. Three sets of transformations were carried out 

on the chance estimates to assess the use of anchoring and test for any inconsistencies in 

experts’ answers: C30 was divided by C3; C300 was divided by C30; and C300 was also divided 

by C3.T50 was also divided by T1 variable for a similar reason (see Table 2). Dummy variables 

were then created to indicate whether or not scaling by an integer was used in calculating the 

answers.  The S variables (i.e. verbal scale estimates, see Table 1) were compared with the 

chance estimates (C values) to look at how the verbalscale was used in relation to probability 

estimates. Four other dummy variables were also calculated to look for anchoring effects and 

inconsistencies between different timescales and framings. These checked for (i) consistency 

between the 3 year and 30 year chance estimates (C3 and C30); (ii) consistency between the 30 

and 300 year chance estimates (C30 and C300); (iii) consistency between chance variables and 

“certainly within” (C values and T1); (iv) consistency between chance variables and 50:50 (C 



values and T50); (v) consistency between the two timescale values (T1 and T50). Finally, a 

variable representing “any inconsistency” was calculated (Con). Inconsistencies involved: 

 Higher probabilities for eruptions over shorter timescales than longer ones; 

 Longer timescales for a 50:50 chance of eruption than for certainty of an eruption; 

 Discrepancies between the chance distributions and the timescales, such as a 1 in 10 

probability of an eruption in the next 300 years, but certainty in an eruption in 200 

years.  

The calculated variables are summarised in Table 2.  

 

The variables were tested using a range of statistical methods. As the dataset failed tests for 

normality and homogeneity of variance, non-parametric tests were applied. To examine the 

relationship between scale variables, Spearman’s ρ was used. To assess the relationships 

between nominal and scale variables, the Kruskal-Wallis analysis of variance was used (H). This is 

a non-parametric test that ranks the median values within each category of the predictor. 

Similarly, for two-category variables, the Mann-Whitney test was used (U). Neither of these 

tests produced significant results. Finally, relationships between categorical variables were 

examined using Pearson’s χ2and the likelihood ratio. All tests were assessed at the 5% 

significance level.  

 

Dummy variable Calculation Meaning 

Check3-30 C30/C3 If >1, then the values are 

consistent (ie, an 



eruption in 3 years is less 

likely than in 30 years) 

Check30-300 C300/C30 If >1, then the values are 

consistent (ie, an 

eruption in 30 years is 

less likely than in 300 

years) 

Check3-300 C300/C3 If >1, then the values are 

consistent (ie, an 

eruption in 3 years is less 

likely than in 300 years) 

Checktime T50/T1 If <1, then the values are 

consistent (ie, the time 

period given for a 50-50 

chance of eruption is 

shorter than that for 

“certainly within”. 

Consist3_30 Coded based on Check3-30 0=inconsistent, 

1=consistent (ie value for 

30 years greater than or 

equal to 3 years) 

Consist30_300 Coded based on Check30-300 0=inconsistent, 

1=consistent (ie value for 



300 years greater than or 

equal to 30 years) 

Consist_CT1 Coded based on T1 and C3, 

C30, C300  

0=inconsistent, 

1=consistent (i.e., if 

T1<300 and C300>1, then 

answer is inconsistent;  

Consist_CT50 Coded based on T50 and C3, 

C30, C300;  

0=inconsistent, 

1=consistent (i.e. the 

probabilities given in for 

C3, C30 and C300 are 

consistent with the time 

period given for T50.) 

AnyInconsist If any of consistency variables 

=0, then 0; else 1.  

Is there any 

inconsistency for this 

respondent? 

Table 2. Calculations carried out on the variables in Table 1 to produce indicators of consistency 

in estimates. 

4 RESULTS 

4.1 Survey demographic 

The scientists who responded to the survey varied in their willingness to answer all of the 

questions – particularly those questions that required numerical responses. In total, 111 

scientists started the survey, but only 95 answered the questions considered in this paper. In the 



case of chance estimates only 74 responded out of the 95. Of these 74 respondents, 20 were 

women and 54 were men. In terms of tectonic setting, 12 worked on volcanoes associated with 

mantle plumes and 59 at volcanoes associated with subduction zones (3 failed to specify their 

volcano). In total, 45 had doctoral degrees and 16 had Masters degrees (volcano observatory 

scientists do not always have higher degrees). Fifty had lived in their current community for 

more than 10 years, and 44 lived within 120 km of the volcano in question. The distribution of 

ages was bimodal (with modes at ~30 and ~50), with a mean of 46. The distribution of the larger 

dataset was similar in structure with a mean at 44. Nine scientists out of the 95 had responded 

to the “half-half” and “certainly within” variables, but not the chance estimates.  

4.2 Verbal and numerical scales 

Of the 21 scientists unwilling to provide chance estimates, some stated that this was due to the 

high levels of uncertainty involved. Men were 3 times more likely to give quantitative estimates 

than women (based on the odds ratio; χ2 = 4.8, p<0.05), but no other demographic variables 

were significant. The following sections refer to the 74 scientists who provided responses to 

both timescale and chance ratings, with the exception of 4.5, which refers to the 83 who gave 

timeframe estimates.  

 

Figure 1 shows the relationship between the probability value given, and the use of the verbal 

scale. This demonstrates that over both short and long timescales, lower probabilities are more 

difficult to estimate and the relationship between the perception of a “low” probability and a 

“high” probability on a verbal scale varies between experts. This is consistent with the extensive 

psychological literature on probability estimates in both lay and expert subjects (e.g.Doyle et 

al.,2011, 2014; Teigen and Brun, 1999; Bruine de Bruin et al., 2000; Budescu and Karelitz, 2004). 







 

Figure 1. Range of values (1 in N) given for each time period, plotted against the position on 

the verbal scale selected by the respondents. 

 

Use of the verbal scale in relation to chance estimates suggests (Figure 1) that there was 

considerable overlap between categories, particularly at the low probability end of the scale – 

where the overlap spans several orders of magnitude in the 3-year case (S3 and C3). However, 

over a 30-year timescale (S30 and C30), the overlap was more balanced with some overlap at 

the high-probability end of the scale. Finally, over the longest time period (S300 and C300), the 

variation was greatest at the low-probability end, but showed non-linear variation throughout. 

The majority of volcanoes were considered likely to erupt on a 300 year timescale (30 out of 70 



volcanoes were considered to have a 1 in 1 chance of erupting; 55 were rated 6 or 7 on the 

qualitative scale). 

4.3 Chance estimates 

We asked scientists to express their probabilities in the form “1 chance in N”. Using this 

notation, ten scientists provided a higher value for the probability of eruption in 3 years than in 

30 years (Check3-30), and 3 had provided a higher probability for an eruption in 300 years than 

in 30 years (Check30-300). The majority of scientists had successfully applied the notation, 

though as noted above 14 gave the same probability for all timescales, including 4 who gave 

unity for all timescales. There were no significant predictor variables. 

 

A comparison between inconsistencies within the numerical likelihoods and those using the 

verbal scale showed that half of the inconsistencies were also replicated in the verbal scale 

between 3 and 30 years (there were no inconsistencies using the verbal scale between 30 and 

300 years). This suggests that the chance notation itself was not the problem, but that 

estimating over specific time periods was. The respondents who made this error had also given 

high probabilities on both types of scale for 3 and 300 years, and then a much lower probability 

over 30 years. This result may imply that they assumed that the 30 year probability excluded the 

eruption they expect within 3 years – a question of phrasing. However, the verbal scale was in 

general used more consistently – and by all 95 respondents.  

4.4 Use of scaling  

The survey also allowed for analysis of the heuristics applied by scientists when scaling from a 

likelihood in 3 years (C3) to the other timescales. Scaling factors were calculated by dividing the 

longer timeframe values for “1 in N” with the shorter timeframes. The results suggest that 



almost four fifths of respondents used some form of scaling by an integer; 15 used a factor of 10 

between 3 and 30 years, and 8 had used a factor of 10 between 30 and 300 years.  Fourteen 

scientists gave the same probability for all timescales – six of these gave unity (i.e. certainty of 

an eruption). These data are summarised in Table 3. 

 

 3 to 30 years 30 to 300 years 

Linear scaling rule: factor of 2 10 13 

Linear scaling rule: factor of 5 5 9 

Linear scaling rule: factor of 10 14 9 

Linear scaling rule: factor of 100 1 4 

Other linear scaling rule 4 9 

Non-linear but consistent rule (ie higher 

probability in longer timeframe) 

14 13 

Unity (i.e. same value for both) 14 14 

Inconsistent 9 3 

Total (N) 71 72 

Table 3. Use of scaling between the chance estimates expressed as number of scientists using 

each rule. The reduction in N is due to three scientists not providing estimates for all timescales. 

4.5 Timescale forecasts 

In addition to the questions about likelihood over the three time periods, two further questions 

examined a different use of phrasing:  

 “I believe that [volcano name] will certainly have a major eruption in the next A years” 

(T1) 



 “I believe that there is at least a 50-50 chance of a major eruption at [volcano name] in 

the next B years” (T50) 

Of the scientists who provided responses, 18 gave a number of years for the 50-50 chance that 

was higher than the “certainly” range. Nineteen had scaled up their 50-50 value by doubling it. 

Several scientists (9) gave the same response for each (T1 and T50). 

4.6 Comparing chance and timescale estimates 

In relation to the chance estimates, the distinctions were more marked. Thirty one respondents 

gave low probabilities for the likelihood of eruption in the next 300 years, but then gave much 

shorter timescales over which they were certain an eruption would occur. A further 7 gave a 

higher probability (unity) for the chance estimates and then a longer timescale in response to 

the “certainly” question (Consist_CT1).  

 

Inconsistencies were slightly more marked for the “50-50” variable: thirty two respondents gave 

lower probabilities for chance estimates than for the 50-50 variable (e.g. probability of an 

eruption in 300 years= 1 in 10, but there is a 50-50 chance of an eruption within 20 years; 

Consist_CT50). A further 5 gave higher probabilities. Inconsistencies between chance estimates 

and the 50-50 value (Consist_CT50), and chance estimates and the “certainly” value 

(Consist_CT1), correlated(ρ=0.351, p<0.01). 

4.7 Experts’ confidence 

In total, fifty respondents exhibited either inconsistency between the chance estimates and 

timescale forecasts or inconsistency in their use of frequency notation, or both. Responses to 

the question “how confident are you in the estimates you have provided above” (M=4.44, 

SD=1.22) only predicted one of the inconsistencies – that between the 50-50 value and the 



likelihoods( i.e.CT50; ρ=-0.248, p<0.05). Otherwise, there was no relationship between how 

confident the experts were in their answers and how internally consistent the answers were. 

 

Level of education did not produce any statistically significant results for any of the variables 

considered in this Results section. 

5 DISCUSSION 

The data presented above have a number of limitations. They are of necessity limited to 

volcanoes that are monitored – many volcanoes are not monitored at all, and of those that are, 

there is considerable variation in the methods used. The sample size is relatively small and may 

not be representative of all volcanologists – for example, the survey was only available in 

English, Spanish, French and Italian. The formulation of the questions may necessarily introduce 

some biases, though the results were interpreted with this in mind. However, there are several 

useful results that we draw out in this section. Initially, we discuss how our results might aid the 

framing of questions in risk assessments. We then discuss the implications of the study for 

understanding the cognitive processes involved in probability judgements, and suggest some 

further work that might clarify this. Finally, we assess the broader implications for expert 

judgements about volcanic risk. 

5.1 Framing the questionsThe use of the verbal likelihood scale correlated best with chance 

estimates over medium timescales, and least well over long timescales. The lower likelihood end 

of the scale was associated with greater range in numerical values. Low probabilities have been 

identified as more challenging to work with (Kahneman and Tversky, 1973). In addition, as 

Teigen and Brun (1999) argue, the use of a verbal scale does not necessarily correlate well with 

numerical probabilistic assessments, perhaps because inherent within the wording are 



particular implications. There may also be cultural and geographical variations in what is 

considered a low probability: the scientists represented a wide variety of contexts, but 

discrimination by volcano is not possible in a small dataset. Since volcanic eruptions at many 

volcanoes are low probability high impact events, this result suggests that discussion of 

uncertainties and terminology associated with probability is an important aspect of risk 

assessment.  

  

The fact that the majority of respondents struggled in some way with consistency illustrates that 

phraseology and understanding the type of response required is critical in framing probability 

judgements. Psychological research demonstrates that the framing of questions is very 

important in the interpretation of probabilistic assessments (Gigerenzer, 1991; Tversky and 

Kahneman, 1986). In this case, expressing a probability as a “1 in N chance” over a specific time-

period provides lower probabilities than expressing the result as a number of years in which the 

probability reaches certainty or fifty percent. Nevertheless, the use of frequency notation was 

relatively internally consistent: this method of expressing probabilities was generally 

understood. The timescale variables (T variables) were also relatively internally consistent.  It is 

not possible to assess whether or not these values represent consistent underestimation of the 

probability – or whether the timescale variables represent overestimation. Had a single measure 

of probabilistic judgement been used – i.e. either chance estimates or timescale forecasts – 

these differences would not have been apparent. A possible explanation for the differences 

between the likelihood estimates and the timescale values is that scientists were more reluctant 

to give the answer “1 in 1” for the 300 years range, but were more confident when asked for the 

timeframe within which an eruption would certainly occur. It may also be the case that scientists 

found it harder to make estimates based on an externally provided timescale (3, 30 or 300 



years): the fact that nine scientists did not provide these estimates but did provide estimates for 

T1 and T50 might support this. 

 

It is also significant that more scientists were willing to provide timescale values than chance 

values. This suggests that they were more comfortable thinking about the number of years 

within which an event would certainly happen than about providing a chance estimate (“1 in N”) 

over a specified timeframe. Two of these were working on volcanoes that are thought relatively 

unlikely to erupt (values provided for “certainly within” were >100,000) – but the others were all 

working at timescales of 10 to 1000 years for this question. This suggests that some scientists 

generally found it slightly easier to imagine a timeframe than to imagine a chance of “1 in N”.  

5.2 Scaling 

Expert judgement for probabilistic assessments involves the production of individual probability 

distributions for particular potential events (e.g. Aspinall, 2006). In response to the survey, 

experts were asked to produce chance estimates for the likelihood of an eruption in 3, 30 and 

300 years. In most cases, some form of internally consistent scaling was applied. This suggests 

that experts viewed the difference in probability over time as obeying a numerical law – though 

the nature of that law must have varied between experts. Our study could not distinguish 

between using different laws informed by differences in general understanding of volcanic 

processes or by volcano-specific differences (here differences might be defendable on scientific 

grounds). There were no obvious demographic factors.  

 

The use of integers as scaling mechanisms may indicate a level of anchoring in the estimation of 

probabilities: once the probability for the first value has been estimated, the other two values 

follow (e.g. Tversky and Kahneman, 1974; Plous, 1989).  Scientists clearly viewed the logarithmic 



timescale as suggesting some kind of regular relationship with probability. The survey results 

suggest that some scalings were based on log10, others used a linear scale and others a different 

exponent. This suggests that there might be some impact of the anchoring bias in the results. 

Further work, including interviews with scientists about their reasoning, would enable 

investigation of this process. 

 

5.3 Expert probability judgement 

The presence of these inconsistencies and biases suggests that volcanologists vary in their 

approach to probability judgements. We have no data concerning the level of experience that 

our sample of experts had in making such judgements operationally, so there is no information 

about the importance of experience in this paper. However, the psychological literature on 

probability judgement allows some interpretation of the results in terms of volcanological 

expertise and general probabilistic reasoning ability.   

 

This paper has tested the ability – and willingness – of experts in volcanology to make 

probabilistic estimates in an informal context (without explanation of the process or any 

potential substantive outcome from the estimates, such as evacuations). Other studies of formal 

and informal settings have suggested that there is variation between contexts in terms of how 

well calibrated experts may be (e.g. review in O’Hagan et al., 2006), and also that expertise in a 

particular discipline is no guarantee of good calibration (Kahneman et al., 1982; Slovic, 2000) 

Probability estimation is a different cognitive process to volcanological research. It depends on a 

mathematical and philosophical understanding of probability theory, and on an awareness of 

the potential for value judgements to impact reasoning (e.g. Krinitzsky, 1993 – less of an issue, 

perhaps, in this paper, because the values were not being applied in risk assessment). The 



inconsistencies and heuristics revealed in this paper may therefore suggest that probabilistic 

methods in volcanology require a level of training (O’Hagan et al., 2006, make a number of 

constructive suggestions in this regard. See also Kynn, 2008).  

6 CONCLUSIONS 

The data suggest that experts, like laypeople, may be affected by a range of heuristics when 

asked to put probabilities on eruption likelihood over different timescales. Some of these 

produce biases (such as anchoring), while others introduce inconsistency. It is also evident that 

the estimation of lower probabilities is more challenging than estimates of events that are 

perceived as relatively likely.  

We find that: 

 Many scientists anchored their estimates to the initial estimate, and scaled up values 

from there using a range of different scaling factors; 

 Scientists also interpreted timescale variables differently depending on the phraseology 

that was used, producing some inconsistencies in their results; 

 Low probabilities presented particular challenges; 

 Around 20% of scientists were unwilling to make numerical estimates of probability at 

all, due to high uncertainty; 

 Scientists’ confidence in their answers was generally independent of whether or not the 

answers were internally consistent. 

 

These findings are consistent with previous studies (e.g.  Tversky and Kahneman, 1986; 

Lichtenstein et al., 1981; Budescu et al., 2009), and suggest that probability estimation requires 

a level of training and calibration. They also demonstrate that there is high uncertainty both in 



volcano forecasting and in the way that scientists interpret questions, and that some scientists 

might be unwilling to participate in quantitative risk assessment through probability estimation. 

The variation in responses and consistency demonstrates the vulnerability of experts to the 

same inconsistencies as made by members of the public in estimating probabilities, though 

perhaps not to the same degree (e.g. Bolger and Wright, 1994; Slovic et al., 1981; Fischoff et al., 

1982; Rowe and Wright, 2001). The phrasing and framing of probability statements can have a 

significant impact on the results. In volcanology, experts are frequently dealing with very 

uncertain and often low probabilities of high impact events. The data in this paper suggest that 

many of the surveyed scientists are not comfortable with providing numerical assessments of 

likelihood. They may be more comfortable with verbal assessments that the likelihood is 

increasing over background levels, for example – suggested by the unwillingness of some who 

used the qualitative scale to provide quantitative estimates. One approach to this might be the 

use of fuzzy sets (e.g. Dubois et al., 1993; Zadeh, 1982).  
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