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Abstract 

Elastodynamic scattering matrices are known to contain geometrical information about a given 

scatterer, such as its size and shape. Here, the extent to which this scattered information can be 

retrieved using an ultrasonic array and used to characterise defects for Non-Destructive Evaluation is 

explored. Experimentally measured defect scattering matrices are compared to a database of 

possible scatterers and the nearest neighbour used to characterise the defect’s geometry in terms of 

crack length and orientation. As an example, a database of scattering matrices for small (lengths 0.2-

2.0mm) cracks at a range of frequencies (2-20MHz) is formed. The short range similarity (i.e. that 

between close neighbours) and the long range similarity (i.e. uniqueness) are used to understand the 

uncertainties inherent in this approach. In addition, the effect of spatially coherent noise, such as 

grain scattering in a polycrystalline metal, on the scattered information content is quantified. It is 

shown that as the noise level or frequency increases, so the information retrievable from a given 

crack is reduced, setting bounds on the accuracy of characterisation possible from a given ultrasonic 

dataset.    

1 Introduction 

In order to assess the safety of a structure it is important to be able to detect, locate and 

characterise various types of defects. Ultrasonic array-based Non-Destructive Testing (NDT) 



techniques have allowed for this to become a regular aspect of structural inspections. Of particular 

interest is the ability of an inspection to fully characterise the nature of the defect and to decide if it 

is a critical defect which may lead to failure, or if the defect is sub-critical and may safely be ignored 

or monitored.  

Using ultrasonic array imaging methods such as the: total focusing method [1], synthetic aperture 

focusing technique [2], [3], inverse field wave extrapolation [4] or wavenumber algorithms [5], a 

range of defects can be detected and accurately located. If the defects are large, i.e. greater than a 

few wavelengths, these methods also offer the possibility to determine the defect shape and/or 

orientation of the defect directly from the image [6]. Sizing of large defects is also possible using 

mathematical models of scattered signal data [7], corner trap the tip diffracted echoes [8] and 

superimposed echo modelling [9], [10]. If the defect is small, it has been shown that characterisation 

may be possible by utilising information contained within the defect scattering matrix, which 

describes the angular scattering behaviour of a given scatterer [11].  

The scattering matrix, or S-matrix, describes the amplitude and phase of the scattered field of a 

defect in the far field, and has been shown to encode the far-field information arising from all wave-

scatterer interactions [12]. Let 𝒓 be the position vector of a point in the 𝑥-𝑧 plane which in polar 

coordinates is given by, 𝒓 = (𝑟, 𝜃); here 𝑟 = |𝒓| and 𝜃 is measured from the positive 𝑧-axis. For 2-D 

problems, the far-field scattering amplitude is defined by, [13]. 

 𝑢sc (𝒓) ≃ √
2

𝜋
𝑒−𝑖𝜋/4 𝑒𝑖𝑘𝑟

√𝑘𝑟
  𝑆(𝜃)   as   𝑟 → ∞, (1) 

where 𝑖 = √−1, 𝑘 = 𝜔/𝑐𝐿 and 𝑐𝐿 is the longitudinal wave velocity. For a given angular frequency, 𝜔, 

𝑆(𝜃, 𝜔) gives the field scattered in the direction 𝜃. If the incident field is a plane wave propagating in 

the direction 𝜃𝑖𝑛, we write 𝑆(𝜃, 𝜃𝑖𝑛, 𝜔) – this angular shape function is what we call in our paper the 

S-matrix. Note that here we approximate the far-field array element output in the vicinity of a small 

defect as a plane wave. 



The S-matrix, or more strictly, portions of it, may be extracted from array data using, for example, 

back-propagation imaging as shown in [14]. As S-matrices are extracted from a known point within 

an array image all the propagation paths/distances are known, therefore propagation, directivity and 

frequency dependent damping effects may be accounted for. Zhang et al. [6] demonstrated that if 

the extracted S-matrix contains a specular reflection, accurate sizing of a 1-D crack (for crack lengths 

≈ 0.5-1.5𝜆) is possible. A recent study by the authors used a database of pre-calculated S-matrices 

against which an experimentally extracted S-matrix was compared [11]. Using this approach, the 

length and orientation of cracks could be accurately measured, even if the specular reflections were 

not captured. This work showed that even relatively small regions of the S-matrix (i.e. in terms of 

range on incidence and scattered angles) potentially contain sufficient information for defect 

characterisation. It should be noted that realistic defects will likely feature surface roughness, for 

which a database of pre-calculated S-matrices would be unmanageably large. Recent work has 

demonstrated that defects roughness can be thought of as adding noise to the defect classification 

process, i.e. classification is unaffected by low levels of surface roughness and, as the roughness 

increases, so does classification uncertainty [15]. We build on this work by exploring the information 

contained within an S-matrix and the measurement confidence of the characterisation result. In 

particular, we examine the effect of spatially coherent scattering noise on S-matrix information 

content and hence on defect characterisation accuracy.   

The Structural SIMilarity (SSIM) index was originally developed as a method of objective evaluation 

of the similarity between two optical images, a reference and modified/degraded image. SSIM 

compares two images (𝑋, 𝑌) based on three parameters; mean, 𝑚(𝑋, 𝑌), variance, 𝑣(𝑋, 𝑌) and 

cross-correlation, 𝑞(𝑋, 𝑌). The SSIM between the two images 𝑋 and 𝑌 is given by 

 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =  𝑚(𝑋, 𝑌)𝛽 ∙ 𝑣(𝑋, 𝑌)𝛾 ∙ 𝑞(𝑋, 𝑌)𝛿 
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where, 𝜇 is the mean, 𝜎 the standard deviation, 𝜎𝑥𝑦 the cross-correlation (inner product) and 𝐶1,2,3 

are small constants used to avoid numerical instabilities when (𝜇𝑋
2 + 𝜇𝑌

2) and/or (𝜎𝑋
2 + 𝜎𝑌

2) and/or 

(𝜎𝑋𝜎𝑌) are close to zero. An SSIM of 1 results from two identical images. The exponents 𝛽, 𝛾, 𝛿 allow 

the contributions of each of the three major terms to be modulated, we let 𝛽 =  𝛾 = 𝛿 = 1 as per 

the original published work [16].    

2 S-Matrix database 

As the number of possible defects, and thus corresponding S-matrices, is infinite we restrict our 

analysis to that of planar cracks of negligible thickness. Not only does this restriction have the 

potential to increase the chance of successful characterisation, but it also represents arguably the 

most important type of defect found in engineering materials.  Future work will address the 

challenge of exploring the implications of further extending the range of defect types. The S-matrix 

database was created using the efficient finite element method developed in [17]. The method uses 

an integral representation of the wave field where the scattered field from an arbitrary shaped 

scatterer is decomposed into the far field scattering amplitudes, allowing the S-matrix to be 

calculated. The S-matrix calculation is performed at a single frequency yet typically it will be 

compared it to an experimental S-matrix measured using a transducer array with some bandwidth 

about its central frequency. This is reasonable as it has been shown that calculated single frequency 

S-matrices correlate extremely well with experimental S-matrices measured from time-domain data. 

It is also worth noting that techniques are available for extracting the S-matrices as a function of 

frequency and work is ongoing to understand this additional dimension to the information [14]. As 

shown in Figure 1, our database is created from planar crack-like defects in a two-dimensional 

isotropic elastic material (aluminium, with properties from [18]). The 360𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
° : 360𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑

°  angle 

S-matrices were computed with 1° angle increments. An experimentally acquired S-matrix however, 

will likely be significantly smaller in angular range than this due to the measured inspection angles 

which are possible. In order to study the effect of this reduced S-matrix each 𝑆𝐷 was truncated into 



ten sub-matrix sizes ([36𝑖𝑛𝑐.
° : 36𝑠𝑐𝑎.

° ], [72𝑖𝑛𝑐.
° : 72𝑠𝑐𝑎.

° ], … . , [360𝑖𝑛𝑐.
° : 360𝑠𝑐𝑎.

° ]). As we keep the incident 

and scattered angular ranges equal we refer to each sub-matrix size simply by its angular range, i.e. a 

sub-matrix size of 36° = [36𝑖𝑛𝑐.
° : 36𝑠𝑐𝑎.

° ]. A database was then constructed with crack length, 𝑎, 

ranging from 0.2mm to 2.0mm in 0.03mm increments, the rotation angle, 𝛼, ranging from 0° to 178° 

in 2° increments (the S-matrices are identical for cracks with ±180° rotation thus we only compute 

half the rotational range), with all studies performed from 2MHz to 20MHz in 1MHz increments. In 

total, per frequency, the database contains 5400 S-matrices, individually referred to as database 

elements, 𝑆𝐷. Each S-matrix had a data size of 790 Kbytes, stored as a 360×360 32 bit number matrix 

of the amplitude of the complex S-matrix. The database in effect acts as a ‘look-up’ reference against 

which experimentally extracted S-matrices may be compared and the nearest neighbour found. The 

assumption which is explored in this paper is that, as the SSIM increases, so the nearest neighbour in 

the database approaches the true experimental result in terms of the characteristics of the defect.   

 

Figure 1 – Defect geometry and example S-matrix. a) Geometry of crack-like defect, of length a, from which S-matrices are 

generated. Where ψ1 and ψ2 define the range of possible incident/scattered angles when using a fixed array, α is the 

rotation angle of the crack and x & z are the spatial coordinates.  b) Example S-matrix showing the full incident:scattered 

angular range ±180° for a defect of a=1.00mm and α=0° at 10MHz. The red dashed boxes show 2 sub-matrices (both 72° in 

size) of the full S-matrix as may be acquired experimentally given limited inspection angles (ψ1 and ψ2 in a). The two sub-

matrices represent the same defect shape with different rotations, α1 and α2.    



2.1 S-matrix information content 

The information content of an S-matrix will depend upon the defect shape, frequency and wave 

type. As an example, for longitudinal waves the S-matrix of a progressively shorter crack tends to 

that of a point, i.e. an omnidirectional reflector which has no angular dependence. Such simple 

scattering behaviour can be described by a single complex number. A crack of discrete length will 

however have some angular dependence, as observed in Figure 2, and hence a greater number of 

parameters are required to describe its scattering. This increase in the number of parameters can be 

thought of as an increase in information content. It is of interest to know how much information is 

contained within an S-matrix and how this varies with defect shape and frequency. While the S-

matrices we generate have almost exactly the same size when digitally stored, this does not mean 

that each one contains the same amount of information.  

There is no accepted single objective measure of information content of a 2D image, it is however 

generally separated into two categories: image complexity and spatial information. Image 

complexity is determined by the number of unique elements within the image and the spatial 

information by the number of regularities found in the image [19]. An image may have high 

complexity but low spatial information (such as an image of randomly distributed amplitudes, e.g. 

white-noise) or low complexity and high spatial information (such as an image of a number of simple 

repeating patterns).  

One measure of the complexity of a dataset is its Kolmogorov complexity, which is based on the 

ability to represent a dataset by the least amount of data possible [20]. As an example of the 

Kolmogorov complexity consider two character sequences, (a) and (b), where (a) = p,q,p,q,p,q,p,q 

and (b) = g,t,r,x,z,k,a,m. It is possible to represent (a) using less data with ‘p,q x 4’ whereas (b) cannot 

be shortened, thus (b) has a higher Kolmogorov complexity than (a). The Kolmogorov complexity 

however is not computable and it must be approximated using a compression algorithm [21]. A 

suitable algorithm being the discrete cosine transform (DCT), where the DCT expresses a dataset as a 



summation of cosine functions, as featured in JPEG compression algorithms [22]. It is a good 

indicator of complexity as a large number of terms would be needed to describe a white-noise image 

but significantly less would be required for an image of repeating patterns. The image complexity 

metric as indicated by compression size is often used by researchers in the field of image analysis, 

examples shown in [23]–[25]. A suitable indicator of spatial information within an image is to 

measure its edge content, achieved using the Sobel filter (a 2-D spatial gradient operator which 

emphasises high spatial frequencies which correspond to edges) [26]. We show these metrics in 

Figure 2 by calculating both the image complexity (i.e. file size after compressing the S-matrix using 

the JPEG algorithm) and spatial information (i.e. average number of edges given upon applying the 

Sobel operator on the S-matrices) across a range of crack lengths and frequencies (Figure 2 and 

some subsequent images use linear interpolation for smoothing, interpolated figures will be 

indicated as such). For both we see that the information content increases with increasing crack 

length and frequency. From Figure 2b&c it can be seen that image complexity and spatial 

information are strongly correlated, as observed in [23]. 

 

Figure 2 - S-matrix characteristics. a) S-matrices (normalised amplitudes) for a range of crack lengths and frequencies (scale 

bars omitted for clarity, but are identical to Figure 1b). b) Image complexity: Normalised compressed file size of S-matrices 

showing increase in complexity with increasing crack length and frequency. c) Spatial information: Normalised average 

number of edges of S-matrices showing increase in spatial information with increasing length and frequency. Interpolation 

used for b) and c). 



3 S-Matrix similarity 

An important question regarding the information content of an S-matrix is how it changes with 

varying crack length and/or frequency. We address this by analysing the similarity of a single S-

matrix when comparing it to other S-matrices. The uniqueness of an element within a group can be 

considered in two aspects; 1) is the element truly unique (not repeated elsewhere in the group)? 

and 2) is the element similar to other elements? For example: given the group [1, 2…,100] elements 

7 & 8 are both unique (not repeating) and are relatively similar in magnitude, whereas 3 & 77 are 

unique but of dissimilar magnitude. 

We can represent our S-matrix database as a 3D array with crack length, rotation and frequency as 

the dimensions. To compare S-matrices within this array it is useful to define a ‘distance’, 𝐿, 

between neighbouring S-matrices. Here we suggest that one single increment step in either of our 

crack parameters (length, rotation and frequency) is equal to a distance of 1. It is worth noting that 

the distance between two specific 𝑆𝐷 is a function of the database increment size. However, this is a 

common approach in database searching [27]. 

3.1 Local similarity 

Similarity between an experimental S-matrix and the database can potentially be utilised to 

characterise a defect, as shown in [11]. At a given frequency a single S-matrix within the database 

will have between 3 and 8 neighbouring S-matrices (depending on its position within the database 

array). The neighbouring elements of a given S-matrix will represent a crack with length and/or 

rotation difference of one increment (i.e. 0.03 mm or 2°). Figure 3 shows the local similarity (i.e. the 

SSIM averaged across neighbours of distance equal to unity) between S-matrices within the 

database for a range of frequencies and sub-matrix sizes.  



 

Figure 3 – Average local nearest neighbour SSIM score.  

Figure 3 suggests that local similarity decreases with increasing crack length (observed at all sub-

matrix sizes) at all frequencies. This suggests that we may wish to represent our crack 

shape/rotation with a non-linear sampling increments i.e. a smaller increment step for longer 

defects. We also observe that for smaller sub-matrix sizes at higher frequencies the minimum 

average SSIM score is low. This is best explained by way of considering two small (e.g. 72°) sub-

matrices, 𝑆1 & 𝑆2, of the same crack length defect, where one represents a defect with rotation 𝛼𝑆1 

and the other 𝛼𝑆1 + 2° (where 2° is our angle increment size in our database). 𝑆1 & 𝑆2 are 

immediate neighbours in our database. Physically the two sub-matrices, 𝑆1 & 𝑆2, represent very 

similar crack geometries, the only difference being a rotation difference of 2°. We would therefore 

expect the SSIM score between 𝑆1 & 𝑆2 to be high, which we do not always observe for small sub-

matrix sizes at high frequency. The reason for this disparity is twofold. Firstly, the SSIM is sensitive to 

shift (a translation of spatial coordinates) [16]. Secondly, 𝑆1 & 𝑆2 potentially contain significantly 

different information content (more pronounced at higher frequency and length, Figure 2b,c) where 

one of them may potentially encompass an area with greater image complexity and/or spatial 

information, as shown by the two sub-matrices in Figure 1b. 



3.2 Longer range similarity  

To explore S-matrix similarity further we analysed the SSIM between a number of 𝑆𝐷 within our 

database. Given that we have 5400 S-matrices, per frequency and sub-matrix size, and are 

comparing 2, the total number of unique comparisons is 14,577,300, as given by, 𝑃(𝑔, ℎ) =

𝑔!/[ℎ! (𝑔 − ℎ)!]. Where 𝑃 is the number of unique combinations, 𝑔 is the number of elements 

within our set and ℎ is the number of elements which are being compared. Given the large number 

of comparisons we resort to sampling a random fraction of the total number of possible 

comparisons (≈30k). A possible cause of false-positives (which would be the case where two 

distinctly different cracks are found to have a high SSIM score) in our comparisons will arise from the 

S-matrix for a given crack with a given rotation angle, 𝛼, being identical to a crack of 𝛼 ± 180° 

rotation. In order to simplify our analysis we only compare the S-matrices for scatterers of rotations 

between 0° and 90°, shown in Figure 4. Given the information content shown in Figure 2b,c we 

would expect the SSIM score to drop as the ‘distance’ between the two compared S-matrices 

increases, the physical meaning being that as the ‘distance’ increases the cracks they represent are 

increasingly different, in crack length and/or orientation. As indicated in Figure 3, at high frequency 

and long crack lengths (at all sub-matrix sizes) two neighbouring S-matrices may have significantly 

different SSIM scores from one another even though they represent physically similar defects.  



 

Figure 4 - SSIM and distance, L, for 360° S-matrices. Each frequency shows a zoomed portion of the data for small distances 

and high SSIM values. Short distances and low SSIM scores represent physically similar defects being significantly different, 

as implied by their SSIM score. 

In Figure 4 it is worth considering what each of the 4 quadrants represent. (Q1) signifies two similar 

S-matrices which are close within the database, (Q2) signifies two similar S-matrices which are far 

apart, (Q3) signifies two dissimilar S-matrices which are far apart and (Q4) signifies two dissimilar S-

matrices which are close together. Each of these SSIM-distance relations can be explained by the 

information content (Figure 2b,c) and nearest neighbour (Figure 3) properties of S-matrices.  

4 Measurement confidence bounds 

We can now address the question: what is the physical meaning of the SSIM score? An SSIM score of 

1 would mean that the two S-matrices being compared were identical. As our database is a discrete 



representation of possible defect shapes, an SSIM of 1 is unlikely, we thus investigate what non-

unity SSIM scores mean. If we were to acquire an experimental S-matrix and compare it to all of the 

elements of the database, we will be presented with a number of SSIM scores. We could simply 

make a note of the maximum SSIM score and the corresponding 𝑆𝐷 and extract the defect 

parameters. The problem with this approach is that it gives us no indication of the confidence/error 

of the result. There will always be a maximum SSIM score even if it is a very low one, the physical 

meaning being that the defect features corresponding to 𝑆𝐷 may be very different from the real 

defect features.  

The confidence in our characterisation result can now be measured by analysing the SSIM 

distributions shown in Figure 4. As an example, consider a brute force comparison of our 

experimental S-matrix to all 𝑆𝐷  elements of the database and the maximum SSIM score is 0.95. We 

use this value as it is comparable with the higher SSIM values observed experimentally in [11]. The 

characterisation error is then defined by the lower and upper bounds of the intersection of the 

SSIM=0.95 line with the distance data shown in Figure 5a.  From this it can be seen that the 

maximum error (upper bound) in terms of distance is ≈12, which equates to an uncertainty of 

0.36 mm, 24°or some combination thereof.  Note from Figure 4 that, the higher the SSIM score, the 

lower the measurement error will be. Figure 5b shows how the maximum distance error (for 

SSIM=0.95) varies as a function of sub-matrix size and frequency, from which it can be seen that 

there is a plateaux of low errors for sub-matrix sizes greater than 90° and frequencies greater than 

7MHz. Figure 5b can be seen to act as a guide of the requirements of an array capable of 

characterising this range of defects to a defined level of accuracy. 



 

Figure 5 – Confidence measurement. a) Data at 5MHz with a sub-matrix size of 360°. A 10th order polynomial line of best fit 

is plotted and is used to calculate the associated confidence for a given SSIM (in this example the SSIM=0.95 line is shown). 

The S-matrices above the threshold are shown in cyan, and S-matrices below in blue. b) Upper-bound distance error as a 

function of frequency and sub-matrix size for an example SSIM score of 0.95. This data can be regarded as a look-up table 

of maximum possible comparison error. Portions where there is no data (low frequency small sub-matrix size) mean that an 

SSIM value 0.95 has a comparison error greater than the maximum possible error, in effect, the maximum comparison error 

is infinite. Interpolation used for b). 

5 Influence of scattering noise 

The noise included in an experimental measurement may come from many sources and either be 

incoherent or coherent in nature. Incoherent (or random noise) is less of a concern in NDT as it can 

be efficiently reduced by averaging the stationary signals [28]. Conversely, coherent noise due to, for 

example scattering from grain boundaries in metals, is the major limiting factor that determines 

defect detectability in many real NDT scenarios.  

5.1 Noisy S-matrix calculation 

In the following we describe a simplified yet realistic noise model based on a Born series to study the 

effect of scattering noise on a defect’s S-matrix. Here we assume that the noise originates from a 

distribution isotropic point scatterers (these can be thought of as the grains) and solve the multiple 

scattering process by reducing it to a linear system of equations by means of the self-consistent 

approach, as in [29]. Consider 𝑁 isotropic point scatterers centred at 𝒓1, 𝒓2, ….etc. In the 



neighbourhood of each point scatterer, the scattered field will behave as 𝐸𝑗𝐺(𝒓, 𝒓𝑗), 𝑗 = 1,2, …, 

where 𝐸𝑗  is an unknown complex amplitude and 𝐺(𝒓, 𝒓𝑗) is the free space Green’s function at a point 

𝒓 in the field of a source at 𝒓𝑗. The multiple scattering process between the defect and the point 

scatterers is presented in the following form  

𝑢(𝒓) = 𝑢𝑖𝑛(𝒓) + 𝐸𝐷𝐺(𝒓, 𝒓0) + 𝐸1𝐺(𝒓, 𝒓1) + 𝐸2𝐺(𝒓, 𝒓2) + ⋯ (3) 

The scattering properties of the scatterers are characterized by 𝐸𝑗 = 𝑠𝑗𝑢𝑗
𝑒𝑥(𝒓𝑗), where 𝑠𝑗 denotes a 

scattering coefficient. The scattering strength for the defect 𝐸𝐷 is determined by the value of the 

exciting field at 𝒓0 together with the amplification factor 𝑆𝐷, that is 𝐸𝐷 = 𝑆𝐷𝑢0
𝑒𝑥(𝒓0). Here, 𝑆𝐷 is the 

response of the defect when it exists alone, i.e. the S-matrix. We assume that the scattering 

coefficients 𝑠𝑗 are known. The exciting field 𝑢0
𝑒𝑥 is the field incident on the defect, in presence of the 

other scatterers. Evaluation of the exciting field at 𝒓0, where the defect is located, yields  

𝑢0
𝑒𝑥(𝒓0) = 𝑢𝑖𝑛(𝒓0) + ∑ 𝑠𝑗𝑢𝑗

𝑒𝑥(𝒓𝑗)𝐺(𝒓0, 𝒓𝑗)𝑁
𝑗=1 . (4) 

Equation 4 contains all multiple scattering interactions between the defect and the point scatterers 

and is valid for any incident wave 𝑢𝑖𝑛(𝒓) and in any dimension. For simplicity we consider next only 

the first-order solution of this equation, that is when 𝑢𝑗
𝑒𝑥(𝒓𝑗) = 𝑢𝑖𝑛(𝒓𝑗). Replacing the exciting field 

at the scatterers by the incident field corresponds to the Born approximation [30]. Then, the 

scattered field at the defect is calculated from  

𝑢0
𝑠𝑐(𝒓) = 𝑆𝐷𝑢0

𝑒𝑥(𝒓0)𝐺(𝒓, 𝒓0). (5) 

This in turn, defines the response of the defect in the presence of ‘noise’, i.e. the ‘noisy’ S-matrix, 𝑆𝐸, 

in the far field 

𝑆𝐸 = 𝑈0 lim
𝒓→∞ 

𝑢0
𝑠𝑐(𝒓)/𝑢𝑖𝑛(𝒓), (6) 

where 𝑈0 is a proportionality constant. 



In order to calculate 𝑆𝐸, consistent with the definition of 𝑆𝐷 (which here assumes 2-D geometries), 

we consider plane longitudinal waves of angular frequency 𝜔, propagating with wavenumber 𝑘, and 

propagation is modelled using the 2-D free-space Green’s function  

𝐺(𝒓, 𝒓𝑗) = −
𝑖

4
𝐻0

(1)
(𝑘|𝒓 − 𝒓𝑗|), (7) 

where 𝐻0
(1)

 is a cylindrical Hankel function. The scattering coefficients 𝑠𝑗 are determined by imposing 

appropriate boundary conditions on the surface of each scatterer; they are complex-valued and 

frequency dependent. In the remainder, we assume that all the scatterers are tiny identical circular 

inclusions of diameter 𝑏, so that  

𝑠 ≡ 𝑠𝑗 = 𝑖𝜋 (
𝜅𝑚−𝜅𝑠

𝜇𝑚+𝜅𝑠
) 𝜔̃2,   where   𝜔̃ = 𝑘𝑏 ≪ 1. (8) 

Here, 𝜅 and 𝜇 denote the bulk and shear moduli, and subscripts ‘m’ and ‘s’ are related to the host 

matrix and the scatterers. Scattering is caused by the deviation ∆𝜅 of the bulk modulus of the 

scatterer 𝜅𝑠 from that of the host matrix 𝜅𝑚, ∆𝜅 = 𝜅𝑚 − 𝜅𝑠. In the following, we shall use this 

quantity to ‘tune’ the level of the scattering noise. The maximum magnitude of these perturbations 

was chosen such that the resulting 𝑆𝐸 appeared to contain almost no spatially discernible features 

and were thought to represent noise only. To further support this choice, in the next section we 

illustrate the effect of noise on imaging of such defects. Note that the size of the scatterers, 𝑏, could 

equally be used as a tuning parameter for fixed ∆𝜅. The ‘noise’ would therefore increase with the 

scattering parameter, 𝜔̃ = 𝑘𝑏.  

In total, we consider two thousand (𝑁 = 2000) scatterers (where the scatterers are one micron in 

size, i.e. 𝑏 = 1 𝜇m) which we randomly place in a circular region of an effective radius 𝑅𝑒𝑓𝑓 = 25𝜆𝑀; 

here, 𝜆𝑀 denotes the wavelength associated with the smallest frequency (e.g. at 2MHz, 𝜆𝑀 ⋍

3.1 mm). This implies a constant number density of scatterers, 𝑛0 = 𝑁/(𝜋𝑅𝑒𝑓𝑓
2 ). The defect is 

placed at the origin of the region. We perform simulations by solving the wave equations (i.e. 4, 5 

and 6) in the far field of the defect, for a single realization of the scatterers’ locations. The defect and 



the scatterers are illuminated with a plane wave 𝑢𝑖𝑛 = exp(𝑖𝑘𝑟 cos 𝜃𝑖𝑛) at constant incident angle 

𝜃𝑖𝑛,. The same angular sampling is used as for the calculation of 𝑆𝐷. 

It is clear that the impact of the distribution of scatterers is such that the waves and spectra 

associated with a single realization may not approximate a configurationally average wave. 

However, this is the main attraction of the noise model described here: it provides a simple and 

realistic representation of scattering noise which may be encountered during inspection of 

engineering metals – waves propagating in such a noisy medium, would therefore ‘see’ a single 

realization of the grains’ locations.   

5.2 Noisy S-matrix database 

To simulate characterising a defect based on its S-matrix in the presence of coherent noise, we 

create a separate database of noisy S-matrices. This database contains the S-matrices corresponding 

to 100 unique defects, the lengths and rotations of which are not represented in the original (noise 

free) database. These simulated noisy S-matrices, form an experimental test dataset and are 

referred to as 𝑆𝐸. They represent cracks with randomised lengths and rotations between 0.2-2.0 mm 

and 0-180°, respectively. The 𝑆𝐸 database has 100 S-matrices per frequency at 10 sub-matrix sizes 

(as used in the 𝑆𝐷 database) at 10 levels of scattering noise amplitude, including a noise free case.  

We then perform a brute force comparison between each 𝑆𝐸 (for a given frequency, sub-matrix size 

and noise level) and the corresponding 5400 𝑆𝐷 elements using the SSIM. The maximum SSIM score 

indicates which of the 𝑆𝐷 elements is most similar to the 𝑆𝐸. To investigate the accuracy of our brute 

force search of the database we compare the estimated crack parameters for 𝑆𝐸 to the true values. 

We do this for both the crack length and rotation errors, such that  

∆𝑎 = |𝑎𝑆𝐸
− 𝑎𝑆𝐷

max 𝑆𝑆𝐼𝑀|  (9) 

∆𝛼 = |𝛼𝑆𝐸
− 𝛼𝑆𝐷

max 𝑆𝑆𝐼𝑀|, (10) 



where; The 𝑎𝑆𝐸
 is the experimental defect crack length, 𝑎𝑆𝐷

max 𝑆𝑆𝐼𝑀 is the database defect crack 

length for the maximum SSIM score resulting from the brute force search, similarly we calculate the 

error in rotational angle, 𝛼.  

5.3 Coherent noise effect on S-matrix features and imaging.  

The effect of scattering noise on an S-matrix is illustrated in Figure 6a. Here, an example defect S-

matrix is displayed for a range of frequencies and noise levels. As the scattering level increases we 

see a visual degradation of the noise-free S-matrix features. This manifests itself as increasing 

localised high/low amplitude ‘hot-spots’ which appear similar in spatial distribution to white-noise 

and as well as reduction in edge contrast of the spatial features.  

Alongside these results, in Figure 6b we also show representative images of the same defect 

obtained with using common-source method (CSM) imaging [31]. CSM imaging uses data collected 

at a set of receiver positions with a common source illuminating the subsurface; it uses all elements 

to transmit simultaneously, so that plane wave propagates into the structure and an image is 

created from the scattered waves [31]. The forward model in the previous section was used to 

simulate the operation of a planar 1-D array with 1500 elements. The output of each element was a 

five cycle, Gaussian windowed tone-burst with various centre frequencies (i.e. 2, 8, 14 and 20 MHz) 

and a −6 dB bandwidth of 50%. The inspected region is a rectangle of effective sides 𝑥𝑒𝑓𝑓 , 𝑧𝑒𝑓𝑓. The 

array extends across the entire length 𝑥𝑒𝑓𝑓 of the region and is located at (𝑥, 𝑧 = 0). We chose 

𝑧𝑒𝑓𝑓 = 40 mm, whereas 𝑥𝑒𝑓𝑓 is such that 𝑥𝑒𝑓𝑓 = 𝜋𝑅𝑒𝑓𝑓
2 /𝑧𝑒𝑓𝑓. Here again, two thousand (𝑁 =

2000) scatterers are randomly distributed in the rectangle area, with the same number density 𝑛0 =

𝑁/(𝑥𝑒𝑓𝑓𝑧𝑒𝑓𝑓) as previously used. The defect is located 20 mm below the surface. 



 

Figure 6 – The effect of simulated scattering noise on S-matrix features and imaging for an example SE defect 

(a=0.91mm, α = 0°). a) 360° S-matrices (angle scale bars omitted for clarity, but are identical to Figure 1b) with SSIM 

score for comparison to the noise free S-matrix (scattering level= 0). b) CSM images (scale in dB) of 20mm x 20mm area 

around a centred defect.  

Figure 6a displays, as expected, a significant degradation to the S-matrix with increasing scattering 

level; the latter was tabbed to increase with increasing ∆𝑘 in equation 8. The maximum value of ∆𝑘 

was chosen arbitrarily to 200 (the corresponding 'scattering level' is 9 in the figure). The effect of this 

scattering noise on the CSM images is shown in Figure 6b where the ability to visually identify the 

defect is reduced at higher frequencies and scattering levels. Interestingly we observe a general 

trade-off between defect resolution (increasing with frequency, as seen for scattering level = 0) and 

image noise. Lower frequencies allows the defect location to be identified even at the highest level 

of scattering noise, but as expected this results in a large point spread function which would mean 

relatively poor resolving power. At higher frequencies however the defect can be very accurately 

located, but is only visible above the noise at the lower levels of scattering noise levels.   

5.4 Effect of coherent noise on characterisation accuracy 

In order to quantify the effect of coherent scattering noise on defect characterisation we perform 

brute force searches of our noise free database (𝑆𝐷elements) for our 100 𝑆𝐸 at each frequency and 

noise level. We choose to only perform this study for a single sub-matrix size of 72° as this is 



representative of the angular range one might encounter experimentally [11], [32], [33]. Figure 7 

shows the average and maximum errors in estimates of 𝑎 and 𝛼 for all 100 𝑆𝐸, calculated using 

equations 9 and 10 respectively. 

 

Figure 7 - Effect of scattering noise on characterisation accuracy. a) Average crack length error (in mm). b) Maximum crack 

length error (in mm). c) Average crack rotation error (in deg). d) Maximum crack rotation error (in deg). Interpolation used 

for all panels. 

Note that the maximum possible error in 𝑎 or 𝛼 results when the extracted length is at the extreme 

values of the database from (i.e. 0.2 mm or 2.0 mm for length and 0° or 178° for angle). For example, 

if the true length is 0.2 mm and the best match is at 2mm then the maximum error is 1.8 mm. At 

higher frequencies and scattering levels we observe that many of the maximum errors are at the 

maximum level. This indicates that at these noise levels/frequencies the defect characterisation via a 

S-matrix database search is ineffective.  Conversely, Figure 7 also shows large regions at lower 

frequencies and scattering levels where the performance of the database search is highly effective. 



5.5 Effect of coherent scattering noise on information content 

Figure 7 shows that the accuracy of defect characterisation is reduced with increasing scattering 

level. Here we explore the reason for this based on the information content of 𝑆𝐸 with increasing 

scattering level. Figure 8 shows the variation of image complexity and spatial information of the 

noisy scattering matrices. Figure 6a shows that increasing noise adds more granular noise to the S-

matrix, the effect of which twofold. Firstly, it adds to the image complexity of the S-matrix (top 

panels in Figure 8) without adding any meaningful data for defect characterisation. In effect the 

nature of the coherent noise itself increasingly dominates the information as scattering levels or 

frequency increase. Secondly, the presence of the coherent noise degrades the form of the spatial 

information seen in Figure 6a, which are the basis for the SSIM comparisons. This reduction in spatial 

information is clearly shown in the lower panels of Figure 8. The combined effect of the increasing 

coherent noise is therefore the progressive dominance of the information associated with the noise 

relative to that associated with the defect.  

 

Figure 8 - Effect of scattering noise on S-matrix information content. Image complexity: Normalised file size of S-matrices 

after JPEG compression. Spatial information: Normalised average number of edges (as calculated using the Sobel operator) 

of S-matrices. Interpolation used in all panels.  



6 Conclusion  

S-matrices have been shown to encode information about the geometric parameters of a 

crack-like defect. Assessment of this S-matrix via similarity and information metrics has 

shown potential to reveal these features. We have used a large database of pre-calculated 

S-matrices against which we compare a simulated experimental S-matrix to estimate the 

geometry of the defect. The nearest neighbour was found using the SSIM metric and in a 

noise free environment this was shown to work well. By modelling the effects of coherent 

scattering noise on an S-matrix it has been shown that these estimates of the defect 

geometry are increasingly inaccurate as the scattering noise increases in magnitude. 

Coupled with this we have generated a method of estimating the error in our 

characterisation scheme via an exhaustive search. Analysis of the information content of an 

S-matrix, has allowed us to understand why the SSIM approach to defect characterisation 

reduces in accuracy in the presence of coherent scattering noise – in effect the information 

associated with the coherent noise becomes dominant. An important result of this paper is 

that the limitations inherent in characterisation via a defects’ S-matrix have been quantified.  

For example, the paper highlights regions of the parameter space where, if the array is 

designed correctly, good characterisation results are possible even in the presence of 

coherent noise. Future work will explore the extension of this database search approach to 

a wider range of defects. 
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