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Abstract 
Matrix metalloproteinases (MMPs) produced from macrophages contribute to plaque rupture, 

atherothrombosis and myocardial infarction. New treatments could emerge from defining the 

mediators and underlying mechanisms. In human monocytes, prostaglandinE2 (PGE2) stimulates 

MMP production and inflammatory mediators such as TNFα, IL-1 and toll-like receptor ligands can 

act either through or independently of PGE2. Differentiation of human monocytes to non-foamy 

macrophages increases constitutive expression of MMPs-7, -8, -9, -14 and -19 and TIMPs-1 to -3 

through unknown, PGE2-independent mechanisms. Human macrophages express more MMPs-1, -7, 

-9 and TIMP-3 and less MMP-12 and -13 than mouse macrophages. Inflammatory mediators working 

through AP-1 and NF-κB transcription factor pathways upregulate MMPs-1, -3, -10, -12 and -14 in 

human macrophages (MMP-9, -12 and -13 in mice) and studies with plaque tissue sections and 

isolated foam cells confirm this conclusion in vivo. Classical activation with GM-CSF upregulates 

MMP-12, whereas IFNγ upregulates MMPs-12, -14 and -25 and downregulates TIMP-3 in human but 

not mouse macrophages. Alternative activation with IL-4 markedly stimulates the expression of only 

MMP-12 in humans and MMP-19 in mice. Anti-inflammatory cytokines, IL-10 and TGFβ, decrease 

production of several MMPs.  Epigenetic upregulation of MMP-14 during foam cell formation or by 

GM-CSF occurs by decreasing miRNA-24. A ‘perfect storm’ caused by a combination of these 

mechanisms most likely promotes MMP-mediated macrophage invasion, tissue destruction and 

atherosclerotic plaque rupture.  

Introduction 
Production of matrix metalloproteinases (MMPs) from macrophages contributes to destruction of 

the extracellular matrix (ECM) in a broad range of chronic inflammatory diseases. Atherosclerosis is a 

special case because lipoprotein particles trapped in the artery wall recruit monocytes that convert 

to foam-cell macrophages by engorging oxidised and other modified forms of these lipoproteins 

(Williams & Tabas, 1995). In advanced atherosclerosis, plaques consisting of amorphous lipid 

deposits with overlying, expanded connective tissue can obstruct the coronary and other conduit 

arteries, leading to stable ischaemic syndromes, including angina pectoris. Moreover, depletion of 

collagen and other ECM molecules from the core and fibrous cap overlying plaques can lead to loss 

of mechanical competence, culminating in rupture of the cap, thrombus formation on the exposed 

thrombogenic core and partial or complete occlusion of the lumen (Libby, 2013). Plaque rupture 

underlies the majority of myocardial infarctions (MIs) and strokes (Virmani et al., 2006), which 

together constitute the principal cause of death in many advanced societies. Inhibiting MMP activity 

(Newby, 2012; Newby, 2015), or the mechanisms responsible for production of MMPs from 

macrophages (reviewed here), therefore represent viable targets for therapies to prevent MIs and 

strokes. The earlier literature relating to this topic was previously discussed exhaustively (Newby, 

2008), and hence this article seeks to provide an update by emphasizing findings during the last 

seven years. These new insights suggest that multiple inflammatory mediators need to act in concert 

to raise a ‘perfect storm’ that provokes net destruction of the ECM leading to MIs and strokes.   

Involvement of matrix metalloproteinases in atherosclerosis 
There are at least 23 MMP enzymes, most of which are secreted, except the six membrane-type 

MMPs that are inserted into or attached to the external membrane surface. The catalytic sites of 

MMPs may be blocked by all or at least some of the four tissue inhibitors of MMPs (TIMPs) 

(reviewed in detail elsewhere (Nagase et al., 2006)). A structurally-similar active catalytic domain 

occurs also in some members of the disintegrin metalloproteinases (ADAMs) and in the ADAMs with 

thrombospondin domains (ADAM-TSs). MMPs have the ability to degrade a variety of ECM 
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components but also many other cell surface, secreted or ECM-sequestered substrates many of 

which regulate inflammation (Khokha et al., 2013).   

As summarized previously (Newby, 2012; Newby, 2015), the evidence that MMPs play pathological 

roles in atherosclerosis comes partly from rabbit and especially mouse models. However, the 

expression pattern of MMP mRNAs in human blood and mouse bone marrow macrophages isolated 

and classically activated under very similar conditions is quite divergent, with far more MMPs-1, -7, -

9 and TIMP-3 in human macrophages but much less MMP-12 and -13 compared to mouse (Newby, 

2015).  This conclusion is reinforced by other studies of mouse bone marrow macrophages and 

Raw264.7 cells (Hald et al., 2012; Murray et al., 2013). Moreover, a comparison of unstimulated 

mouse and human blood monocytes and macrophages shows the same similarities and differences 

(Fig. 1). Differentiation of blood monocytes to macrophages greatly increases expression of MMPs in 

both mice and humans (Fig. 1) but levels of MMPs-1, -7, and -9 and TIMPs-1 and -3 are much higher 

in man (Huang et al., 2012), whereas MMPs-12, -13 and -23 are much higher in mice (Tsaousi et al., 

2016). The high levels of MMP-12 and -13 expression in mice macrophages correspond with 

dramatic effects on atherosclerosis (Johnson et al., 2011; Quillard et al., 2011). However, MMP-12 

(Scholtes et al., 2012) and MMP-13 (Molloy et al., 2004) have restricted expression in human 

atherosclerotic plaques, which invites caution over the clinical translation of the mouse studies.  In 

the case of MMP-12 there are genome wide association studies (GWAS) studies supporting a 

causative role in strokes (Traylor et al., 2014) but this is not the case for MMP-13. Conversely, MMP-

7 is hardly expressed in mouse macrophages and has a modest impact on atherosclerosis (Johnson 

et al., 2005) but could be more important in man (Fig. 1). Most recently, MMP-28 was shown to 

affect macrophage functions in mice (Ma et al., 2013) but MMP-28 is not expressed actively in 

human monocytes or macrophages (Bar-Or et al., 2003). Furthermore, the profound morphological 

differences and the need for high level transfer of fully active forms of MMPs to provoke plaque 

rupture in mice (Gough et al., 2006; Liang et al., 2006) discourage extrapolation to the human 

disease.  

GWAS provides convincing evidence of a pathogenic role for MMP-12 (Traylor et al., 2014) and the 

distantly-related ADAMTS-7 (Reilly et al., 2011). For other MMPs and TIMPs only correlative 

evidence is available so far. For example, many MMPs and TIMPs are overexpressed in human 

atherosclerotic plaques compared to normal tissues (reviewed in detail elsewhere (Newby, 2005)). 

More persuasively, MMP-8, -9, -12 and -14 have been shown in biobank studies to associate with 

plaque morphologies suggesting vulnerability to rupture, whereas MMP-2 and TIMP-3 show 

negative association (Sluijter et al., 2006; Peeters et al., 2011; Scholtes et al., 2012; Johnson et al., 

2014). Furthermore, at least MMP-8 and MMP-12 levels in plaques are risk factors for subsequent 

adverse cardiovascular events (Peeters et al., 2011; Scholtes et al., 2012). In future it may be 

possible to combine biochemical and genetic analyses for example in Mendelian Randomisation 

studies or by the identification of rare null mutations. In the meantime a causative role for MMPs in 

human plaque rupture is highly plausible but still a hypothesis. 

Monocyte and macrophage diversity in atherosclerosis 
Production of monocytes and macrophages from myeloid precursors relies on the trophic effects of 

colony stimulating factor (CSF-1). Deletion of CSF-1 or blocking its receptor in mice prone to 

atherosclerosis greatly reduces plaque formation (Di Gregoli & Johnson, 2012). Similarly, depletion 

of monocytes and macrophages in the early stages of mouse atherosclerosis abolishes foam cell 

formation and reveals the accumulation of lipoprotein deposits in susceptible sites (Paulson et al., 

2010).  These experiments establish that macrophages derived from circulating monocytes are 
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required to clear lipoprotein deposits retained in the ECM and that this leads to foam cell formation. 

Some contribution from macrophage proliferation (Robbins et al., 2013) or from expansion of 

resident stem cell populations has also been debated (Nguyen et al., 2012); and additional foam cells 

can be generated by transdifferentiation of resident vascular smooth muscle cells (VSMCs) 

(Shankman et al., 2015). As reviewed previously (Newby, 2005), both macrophages and VSMCs 

elaborate MMPs and TIMPs. Moreover, MMPs and other proteases promote VSMC migration and 

proliferation so as to establish the fibrous cap of plaques.  On the other hand, the high levels of 

many MMPs produced by macrophages (see below) may provoke destruction of the ECM causing 

plaque rupture. 

At least two phenotypes of monocytes (Ly6Chi, CCR2hi, and Ly6CloCXCR3hi) and three phenotypes 

of human monocytes (CD14hiCD16lo, CD14dimCD16lo and CD14dimCD16hi) have been 

characterised (Ziegler-Heitbrock et al., 2010). Despite performing different functions in relation to 

acute inflammation and patrolling behaviour, both monocyte phenotypes appear to contribute to 

atherosclerosis in mouse models (Combadiere et al., 2008). Moreover they do not seem to give rise 

to different macrophage populations in plaques (Tacke et al., 2007).  

Differentiated macrophages adopt a host of different phenotypes. These were initially divided into 

pro-inflammatory, so-called classically activated or M1 type, or anti-inflammatory, so-called 

alternatively activated or M2 type. However, the M1/M2 dichotomy has more recently been 

replaced with more nuanced descriptions of phenotypes (Murray et al., 2014) based on the 

activating mediators and their related signalling pathways some of which are illustrated in Fig. 2.   

Regulation of MMP and TIMP production from monocytes and 

macrophages 
Binding of transcription factors of the activator protein-1 (AP-1) family to regulatory elements in the 

proximal promoters of many MMPs appears to be of central importance for their transcriptional 

regulation, and certainly contributes to their increased production during inflammation (Clark et al., 

2008). However, not all MMP promoters contain proximal AP-1 sites or even a TATA box, which is 

necessary for induced transcription of most genes (Clark et al., 2008). Moreover, a plethora of other 

proximal transcription factors binding sites, including for specificity protein-1 (SP-1), nuclear factor-

κB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1), mediate inflammatory 

activation of several MMPs (Clark et al., 2008). Synergy between activation of AP-1 and NF-κB is 

responsible for induction of several MMPs in a variety of cell types (reviewed in (Newby, 2005)), 

including macrophages.  This may depend on a signalosome that brings together widely separated 

transcriptional activators including distal enhancer or suppressor elements (Glass & Natoli, 2015).  

In order to influence MMP and TIMP expression therapeutically in plaques and other inflammatory 

foci, it would be valuable to identify the key mediators and also the underlying mechanisms.  This 

review will attempt to synthesise the available information, in part by providing a searchable 

databases for monocytes (Supplementary Table 1) and macrophages (Supplementary Table 2). 

ProstaglandinE2 and the cAMP pathway 
ProstaglandinE2 (PGE2) mediates upregulation of at least MMP-1, -7, -9, -10 and -14, as well as 

TIMP-1 in undifferentiated human monocytes, as previously reviewed (Newby, 2008). PGE2-

dependent MMP up-regulation has also been observed in human alveolar macrophages, mouse 

peritoneal macrophages and RAW264 cells (see Supplementary Tables 1 and 2). As shown in Fig. 2, 

action of inflammatory mediators or integrin-mediated binding to various ECM components 

activates phospholipase C, which releases arachidonic acid.  This is transformed by the sequential 
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activity of cyclooxygenase (COX) and PGE2 synthase (PGES-1) to PGE2. COX-1 is constitutively 

expressed in human monocytes and COX-2 is rapidly upregulated by adherence or LPS (Reel et al., 

2011) or by TNFα together with GM-CSF (Zhang & Wahl, 2015). PGE2 acts specifically on EP4 

receptors to stimulate cAMP formation, which then activates transcription through direct binding of 

cAMP response element binding protein (CREB) to the MMP-1 promoter or by enhancing the binding 

NF-κB to the MMP-9 promoter (Lai et al., 2003). Work from other cell types also identifies cross-talk 

with the mitogen activated protein kinases (MAPKs) (Gerits et al., 2008) that could promote AP-1 

binding (Fig. 2). Other activators of PGE2-dependent MMP production include extracellular MMP-1 

or MMP-3, which can cleave active TNFα from the surface of mouse peritoneal macrophages, 

leading to MMP-9 secretion (Steenport et al., 2009).  Furthermore, TNFα generated in this way 

upregulates early growth response protein 1 (EGR-1), which induces mPGES-1 expression (Khan et 

al., 2012).  Exposure to Mycobacterium tuberculosis infection can also upregulate MMP-1 but not 

MMP-7 in a PGE2-dependent manner (Rand et al., 2009).  

Differentiation of monocytes to macrophages 
MMPs-2, -7, -9, -11, -12 and -14 and TIMPs-2 and -3 are selectively upregulated in human MCSF-

differentiated macrophages, independently of COX, MAP kinases or NF-κB (Reel et al., 2011), and 

MMP-8, -13, -19, -23 and -25 are also increased in mouse macrophages (Tsaousi et al., 2016). 

Increased expression of MMP-14 has been ascribed to upregulation of the SAF-1 transcription factor 

(reviewed in (Newby, 2008)) but the other mechanisms remain to be clarified. 

Foam cell formation 
The properties of foam cells formed from differentiated macrophages in vitro depends on the source 

of lipid (e.g. platelets, acetylated LDL, minimally or extensively oxidised LDL). Hence widely different 

results have been obtained suggesting stimulation, inhibition or little effect on levels of MMPs 

(Supplementary tables 1 and 2). Stimulation could result from (weak) action on toll like receptors 

(Lundberg & Yan, 2011), whereas inhibition of MMP-9 expression in U937 cells (Supplementary 

Table 1) resulted from formation of peroxisome proliferation activator receptorγ (PPARγ) ligands. 

We found no effect of oxidised LDL on mRNA levels of MMPs and TIMPs but foam cells expressed 

more MMP-14 and less TIMP-3 protein, which implicated epigenetic mechanisms in part mediated 

by microRNA24 (Johnson et al., 2014). In vivo results are also divergent. Rabbit granuloma foam cells 

showed increased MMP-1, -3, -12, -14 and decreased TIMP-3 expression (Supplementary Table 2), 

although mouse granuloma foam cells showed no changes (Thomas et al., 2015) and peritoneal 

foam cells had decreased MMP-13 expression, owing to activation of the LXR nuclear receptor by 

the cholesterol pathway intermediate desmosterol (Spann et al., 2012). So far only the rabbit studies 

investigated protein levels, which might vary despite similar mRNA expression if epigenetic 

mechanisms intervene (Johnson et al., 2014).   

Classical macrophage activators and the AP-1/NF-κB pathway 
The pro-inflammatory mediators TNFα, IL-1β, CD40L and pathogen associated molecular patterns 

that act at several toll-like receptors have been observed to stimulate MMP expression in both 

monocytes and macrophages (Supplementary Tables 1 and 2). Moreover, activation of TLR-2 was 

implicated directly in MMP-1 and MMP-3 production from isolated human plaque-derived cells 

examined ex vivo (Monaco et al., 2009).  These inflammatory mediators share the ability to activate 

the MAP kinases, extracellular related kinases 1/2 (ERKs1/2), p38 MAP kinase and c-jun N-terminal 

kinase (JNK), as well as phophoinositide-3 kinase (PI3 kinase) and the inhibitor of κB kinase2 (IKK2) 

that leads to activation of NF-κB (Fig. 2). Not surprisingly, therefore inhibitors of one or more these 

kinases generally reverse the effects of this broad class of inflammatory mediators (Supplementary 

Tables 1 and 2). However, the precise identity of the activating kinases seems to depend on the 
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MMP and the source of cells (Supplementary Tables 1 and 2). One complicating factor is the 

participation to greater or lesser degree of PGE2 derived from COX-2 (Fig. 2), induction of which 

requires all these kinases (Huang et al., 2012). For example, inhibition of p38 reduced MMP-1 

expression in a PGE2 dependent manner in human monocytes, whereas inhibition of ERKs1/2 

decreased both MMP-1 and MMP-9 expression independently of PGE2 (Zhang & Wahl, 2015).  In the 

absence of PGE2, upregulation of MMP-1 and -10 in human blood derived monocytes depended on 

ERKs1/2, JNK and IKK2 but not p38 MAP kinase (Reel et al., 2011).  The same was true for LPS 

induction of MMP-1, -3, -10, -12 and -14 in human macrophages but induction of MMP-25 required 

p38 (Huang et al., 2012). Furthermore, specificity for the various activating kinases may depend on 

the specific inflammatory signal. For example, induction of MMP-1 in human alveolar macrophages 

by M. tuberculosus depends selectively on p38 MAP kinase (Rand et al., 2009).  Both basal and 

induced expression of many MMPs, especially MMPs-1, -3, -10 and -13 and TIMP-3 is reduced by 

inhibitors of PI3 kinase in human macrophages (Huang et al., 2012).  However, the basis for these 

effects is still not clarified. Other inflammatory mediators such as clusterin (Shim et al., 2011) or 

complement component C5a (Speidl et al., 2011), or homophylic interactions of  CD147 (EMMPRIN) 

or with its ligand cyclophylin A (Yang et al., 2008) also employ MAP kinases, PI3 kinase, IKK2 and the 

resultant activation of AP-1/NF-κB signalling to upregulate MMPs (Fig. 2).  To confirm that these 

signalling pathways contribute to increased MMP expression in human atherosclerotic plaques, we 

demonstrated co-localisation of activated NF-κB with MMP-1 and MMP-10 (Huang et al., 2012). 

Interferons and the JAK/STAT pathway 
Earlier studies demonstrated profound inhibitory effects of IFNγ on MMPs-1, -3, -9, and -12 and 

TIMP-1 production from human monocytes and macrophages (Supplementary Tables 1 and 2). On 

the other hand, IFNγ acting through the JAK/STAT pathway can upregulate MMP-12, -14 and -25 and 

suppresses TIMP-3 mRNA expression in human macrophages (Huang et al., 2012).  The effect on 

MMP-25 may be especially interesting in view of its ability to modulate the activity of several 

chemokines (Marco et al., 2013).  Given that many human plaques contain IFNγ, induction of MMP-

14 and suppression of TIMP-3 could promote the invasive and destructive MMP14+TIMP-3- 

macrophage phenotype that we detected in rabbit and human foam cells (Johnson et al., 2008).  

Effects of IFNγ appear to be very different in human and mouse macrophages (Hayes et al., 2014), 

which complicates the interpretation of the mouse models. Nevertheless, inhibition of mouse 

macrophage MMP-9 production by IFNγ correlated with slower ECM degradation and thrombus 

resolution in wild type compared to IFNγ knockout mice in a model of deep vein thrombosis (Nosaka 

et al., 2011). Deletion of TGFβ receptors in T-lymphocytes, which promotes polarization to the 

Thelper1 phenotype that releases IFNγ also decreased MMP-9 expression in atherosclerotic mouse 

aortas (Ovchinnikova et al., 2009). On the other hand, MMP-13 was increased, suggesting that IFNγ 

from Thelper1 cells can promote as well as inhibit expression of different MMPs.  In other 

experiments, deletion of all T and B cells (Hayes et al., 2014) or just Thelper1 cells (Tsaousi et al., 

2016) did not affect MMP or TIMP expression in mouse foam cells from subcutaneous granulomas or 

in atherosclerotic plaques.  Consequently, the evidence for stimulatory effects of IFNγ on MMP 

expression is stronger in humans than mice.  

IL-6 and GM-CSF 
As illustrated in Fig. 2, IL-6 activates JAK1 and STAT-3, MAP kinases and PI3 kinases (Schaper & Rose-

John, 2015), which may account for its upregulation of MMPs (Supplementary Tables 1 and 2). 

Interestingly, induction of MMP-9 in mouse macrophages by IL-6 is independent of COX-2 (Kothari et 

al., 2014).  
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GM-CSF signals through the CSFR2 complex to activate JAK2 and STAT-5 as well as MAP kinases and 

PI3 kinases (Broughton et al., 2012).  Hence the transcriptional programme initiated by GM-CSF is 

unique, although it replicates some aspects of both the classical and alternative paradigms. GM-CSF 

is especially associated with upregulation of MMP-12 (Supplementary Table 1), which occurs 

through activation of the proximal AP-1 site. Why this direct action of GM-CSF is selective for MMP-

12 over other MMPs with proximal AP-1 sites is unclear. GM-CSF can also induce TNFα secretion 

leading to the upregulation of other MMPs (Zhang et al., 1998). Given this and the fact that GM-CSF 

can be upregulated by oxidised LDL and several inflammatory mediators (Di Gregoli & Johnson, 

2012), GM-CSF-stimulated and classically-activated macrophage phenotypes are probably an 

overlapping in vivo. Despite this, in mice exposed to cigarette smoke, neutralisation of GM-CSF 

selectively decreases MMP-12 but not MMP-9 activity in lung macrophages (Vlahos et al., 2010). 

GM-CSF increases MMP-14 protein expression and activity independently of changes in mRNA 

expression but because micro-RNA24 is decreased, which relieves an inhibitory effect on protein 

translation (Di Gregoli et al., 2014). These observations are particularly interesting because there is 

evidence for distinct populations of M-CSF and GM-CSF macrophages in human plaques that may 

make different contributions to plaque stability (Di Gregoli & Johnson, 2012). Indeed, GM-CSF action 

might also account for the harmful MMP14+TIMP-3- macrophage phenotype (Johnson et al., 2008) 

Hypoxia 
Most macrophages in atherosclerotic plaques are in a chronic state of hypoxia (Sluimer et al., 2008). 

Hypoxia increases expression of MMP-7 (Supplementary Table 2). Transcriptomic data from hypoxic 

macrophages indicates that, MMPs-1, -3, -10 and -12 are also significantly upregulated, perhaps 

secondarily to increased production of IL-1α,β (Fang et al., 2009). Pathways through hypoxia 

inducible factor-1α (HIF-1α) (Lee et al., 2012), HIF-2α (Yang et al., 2010) and JAK2/STAT-3 have been 

implicated (Gao et al., 2015).  

Anti-inflammatory pathways 
Priming with IL-4 inhibitors expression of MMP-1, MMP-9 and TIMP-1 in monocytes and 

macrophages (Supplementary Tables 1, 2), perhaps owing to overexpression of suppressor of 

cytokine signalling (SOCS) proteins. However, consistent with previous work in mouse macrophages 

(Supplementary Table 2), we found that IL-4 selectively increases MMP-12 in human monocyte 

derived macrophages (Huang et al., 2012). MMP-25 and TIMP-3 were also up-regulated (Huang et 

al., 2012) but the mechanisms responsible remain unclear. IL-10 also antagonises the upregulation 

of MMP-1 and MMP-9, but unlike IL-4 it increases expression of TIMP-1 (Supplementary Tables 1 

and 2).  Again the intermediary action of SOCS proteins appears reasonable but remains to be fully 

documented. IL-10, in particular, is abundant in atherosclerotic plaques and therefore most likely 

exerts a physiological dampening effect on MMP activity.  TGFβ inhibits MMP-12 production in 

human monocytes (Supplementary Table 1). However, TGFβ can both stimulate and inhibit MMP-2 

and MMP-9 secretion from mouse peritoneal macrophages (Ogawa et al., 2011). Upregulation of 

MMP-9 by TGFβ has been recently ascribed to stimulation of PI3K leading to activation of AP-1 

transcription factors (Haidar et al., 2015). Activation of several anti-inflammatory nuclear hormone 

receptors inhibits MMP production (see Supplementary Tables 1 and 2). For example, PPARα 

selectively inhibits IL-1β induced MMP-12 production by direct binding to components of the AP-1 

complex (Souissi et al., 2008), whereas both PPARα and PPARγ inhibit MMP-9 secretion from human 

macrophages (Supplementary Table 2). PPARγ agonists protect against the macrovascular 

complications of diabetes (Dormandy et al., 2005) and inhibition of MMP activity could play an 

important part in this action. Statins, the mainstay of atherosclerosis prevention, have also been 
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shown to inhibit the expression of a broad range of MMPs by both transcriptional and post-

transcriptional mechanisms (reviewed in (Newby, 2008)). 

Conclusions: the combined action of multiple mediators causes MMP 

up-regulation and plaque rupture 
Animal and human data supports the concept that an excess of MMP over TIMP production from 

macrophages and foam cells contributes to atherosclerotic plaque growth and rupture. In rabbit and 

mouse models, several MMPs promote plaque progression and affect plaque morphology in ways 

consistent with greater vulnerability to rupture. Furthermore, foam cell macrophages in 

subcutaneous granulomas or atherosclerotic plaques actively express several MMPs that are also 

secreted by non-foamy macrophages. Adaptive immunity seems to have little impact on 

macrophage polarization and increasing levels of MMPs in mice, implying a more prominent role for 

innate immune mechanisms, including the production of CSFs, inflammatory cytokines and toll-like 

receptor ligands. Even so MMP activity must be tightly regulated because overexpression of high 

levels of fully activated MMPs is needed to provoke plaque disruption in mice. The importance of 

specific MMPs may be over or under emphasized in mice, where they are more or less abundant, 

compared to man (see Fig. 1). Hence studies in human cells and tissues should be given primary 

importance, especially if genetic approaches at a population level (such as that for MMP-12) can be 

developed to give clearer indications of causality. 

Longitudinal imaging studies lead to the striking conclusion that most vulnerable plaques go on to 

heal rather than rupture (Van Mieghem et al., 2006). Hence ulceration of human plaques is a 

relatively rare outcome that, just like any other accident, most probably occurs because of an 

unusual combination of adverse circumstances.  Plaque rupture most likely results from a ‘perfect 

storm’ caused by the synergistic local effects of multiple inflammatory mediators acting together in a 

hypoxic environment combined with the loss of inhibitory signals from nuclear hormone receptors, 

TGFβ and IL-10. The potential mediators of MMP overproduction include IL-1β, which can be 

produced in plaques in response to oxidised LDL (Williams & Tabas, 1995) and as a result of 

inflammasome activation by cholesterol crystals (Duewell et al., 2010; Rajamaki et al., 2010). The 

ongoing CANTOS clinical trial will examine the causal role of IL-1 in unstable coronary disease 

(Dinarello et al., 2012). Other pro-inflammatory mediators, including TNFα, GM-CSF and IL-6, which 

stimulate macrophages through different signalling pathways (Fig. 2) have the potential to induce 

MMPs synergistically.  Suppression of TIMP-3 expression by foam cell formation, INFγ or GM-CSF 

could be a further significant factor. Toll-like receptor ligands, the most effective stimulators of MMP 

production in vitro, are also present in the atherosclerotic plaques (Lundberg & Yan, 2011). 

Conversely, anti-inflammatory treatments including, importantly, the use of statins currently provide 

the best approach to reducing MMP activity in plaques and therefore preventing plaque rupture. In 

future it is likely that more selective treatments will be developed. These should be aimed at 

inhibiting excess production of specific MMPs, especially the collagenases MMP-1 (Libby, 2013) and 

MMP-8 (Ye, 2015) and MMP-12 (Traylor et al., 2014), whilst preserving the activity of those MMPs, 

including MMP-9, that are primarily involved in vascular repair (Newby, 2005). The widely different 

regulation of different MMPs in human macrophages that recent studies have so clearly emphasized 

(Huang et al., 2012) provide strong encouragement for such an approach. 
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Legends to Figures 
Figure 1 Comparison of MMP and TIMP expression in human and mouse macrophages 

Human (Huang et al., 2012) and mouse (Tsaousi et al., 2016) blood monocytes were differentiated to 

macrophages for 10-14 days in the presence of M-CSF. Total RNA was extracted and mRNA levels 

were measured by quantitative reverse transcription polymerase chain reaction using standards to 

derive copy numbers of transcripts per ng RNA. Differences greater than 100 fold are noted with 

arrows. 

Figure 2 Simplified pathways of MMP and TIMP induction. 

Binding of ligands to integrins (INT), toll-like receptors (TLR) and receptors for interferons (IFN), IL-1 

(IL1R), TNF (TNFR), PGE2 (EP4), IL-6 (GP130), GM-CSF (CSFR2) provide the initial signals. These 

interact with signal transduction pathways (shown in outline only). An integrative network activates 

the phophoinositide-3 kinase (PI3K), extracellular related kinases 1/2 (ERKs), p38 MAP kinase and c-

jun N-terminal kinase (JNK), as well as the inhibitor of κB kinase2 (IKK2). These lead together to 

activation of the activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) transcription factors that 

directly induce several MMPs and TIMP-1. Insulin response factors (IRFs) are also induced by this 

pathway and also through activation of janus kinase 2 (JAK2), which can cause release of IFNα,β, 

leading to autocrine actions. Other autocrine pathways are triggered by the production of 

arachidonic acid (AA) from the action of phospholipaseA2 (PLA2). This is converted to prostaglandin 

E2 (PGE2) by the consecutive action of cyclooxygenase-2 (COX-2) and prostaglandin E synthetase-1 

(PGES1). Autocrine action on EP4 receptors triggers cAMP production and activation of the cAMP 

response element binding protein (CREB) transcription factor, which induces MMPs further. 

Activation of janus kinases JAKs at the GP130 and CSFR2 receptors leads to nuclear translocation of 

signal transducer and activator of transcription-3 (STAT-3) and STAT-5, respectively. Production of 

TNFα through these pathways provides addition possibilities for autocrine feedback. 
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