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Abstract 

Scalar Utility Theory (SUT) is a model used to predict animal and human choice behaviour in 

the context of reward amount, delay to reward, and variability in these quantities (risk 

preferences). This article reviews and extends SUT, deriving novel predictions. We show that, 

contrary to what has been implied in the literature, (1) SUT can predict both risk averse and risk 

prone behaviour for both reward amounts and delays to reward depending on experimental 

parameters, (2) SUT implies violations of several concepts of rational behaviour (e.g. it violates 

strong stochastic transitivity and its equivalents, and leads to probability matching) and (3) SUT 

can predict, but does not always predict, a linear relationship between risk sensitivity in choices 

and coefficient of variation in the decision-making experiment. SUT derives from Scalar 

Expectancy Theory which models uncertainty in behavioural timing using a normal distribution. 

We show that the above conclusions also hold for other distributions, such as the inverse 
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Gaussian distribution derived from drift-diffusion models. A straightforward way to test the key 

assumptions of SUT is suggested and possible extensions, future prospects and mechanistic 

underpinnings are discussed. 
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1. Introduction 

Ernst Heinrich Weber (1795‒1878) was one of the founders of psychophysics. Weber’s law 

states that the resolution of perception diminishes in proportion to the magnitude of the stimulus. 

That is, if a just noticeable difference between a 10 kg weight and another weight is 10γ kg, 

where γ is a positive constant, then only differences exceeding 20γ kg can be detected when 

comparing a weight to a 20 kg weight. Drawing on a body of previous theory (e.g., Gibbon, 

1977; Gibbon, Church, Fairhurst, & Kacelnik, 1988), Kacelnik & Brito e Abreu (1998) used 

Weber’s law to propose that the representation of a stimulus of magnitude m in an animal’s 

memory has an error distribution that is Normal with mean m and standard deviation γm, denoted 

N(m, γm); a theory now known as Scalar Utility Theory, or SUT (Kacelnik & El Mouden, 2013; 

Marsh & Kacelnik, 2002). The “scalar” parameter γ is a species and stimulus-type (but not 

stimulus-quantity) specific constant that captures the general resolution of perceptual memory. 

SUT is a generalization to both delays to reward and reward amounts of the original model for 

delays only, known as Scalar Expectancy Theory (Gibbon, 1977).  

SUT has had some notable success in explaining effects of risk in decision making 

(Bateson & Kacelnik, 1995a, 1995b; Brito e Abreu & Kacelnik, 1999; Buhusi & Meck, 2005; 
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Kacelnik & Bateson, 1996; Reboreda & Kacelnik, 1991; Shafir, Reich, Tsur, Erev, & Lotem, 

2008), but has received surprisingly little theoretical attention since the seminal work of Gibbon 

(1977) and Gibbon et al. (1988), despite the rapidly accumulating empirical data. Therefore, we 

provide an updated theoretical review and summary of the predictions of SUT and dispel some 

common misbeliefs regarding them. We specifically concentrate on the challenge posed for 

future research in a recent review of proportional processing: “… to model what behaviour 

influenced by proportional processing would look like …” (Akre & Johnsen, 2014). 

A central goal in the study of animal and human behaviour has been to understand risk 

sensitivity in choice preferences (see Kacelnik & El Mouden, 2013; Rieskamp et al., 2006, for 

reviews). Some researchers approached the problem through functional explanations, deriving 

models that explain what kind of state-dependent risk sensitivity should evolve by natural 

selection (Caraco, Martindale & Whittam, 1980; Barnard et al., 1985; McNamara & Houston, 

1992; Houston & McNamara, 1999). While theoretically justified, the models failed to explain 

the ubiquitous partial preferences of animals (variable choices in the same task despite the same 

conditions; McNamara &Houston 1987; Shapiro et al 2008). By reference to findings of 

psychophysics, SUT and its precursors were able to propose a proximate mechanism that 

intrinsically explains both the partial preferences and the findings on risk sensitivity reviewed 

below (Gibbon et al., 1988; Reboreda & Kacelnik, 1991; Kacelnik & El Mouden, 2013). 

However, SUT does not explain switches in risk sensitivity as a function of the external 

environment and the animal’s internal state (Caraco, Martindale & Whittam, 1980; Houston & 

McNamara, 1999). 

Researchers since Tinbergen (1963) have recognised the need to integrate the levels of 

explanation (Kacelnik & Bateson, 1996; Kacelnik & El Mouden, 2013; McNamara & Houston, 
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2009). Provided that our curiosity is not satisfied by a simple statement that all the levels are 

likely to play a role, such integration requires an understanding of the fundamental components 

to be integrated. This paper aims to contribute to this wider discussion by improving the level of 

theoretical understanding about the implications of SUT. 

 A paradigmatic application of SUT involves understanding an animal’s behaviour when 

it is forced to choose between two options with the same arithmetic mean, one having no 

variance (“fixed” or “safe” option) and the other (“variable” or “risky” option) involving either a 

variable amount of reward or variable delay to reward (e.g. Bateson & Kacelnik, 1995b; 

Kacelnik & Brito e Abreu, 1998; Kacelnik & El Mouden, 2013). Simple arguments that identify 

the value of an option with its arithmetic mean suggest that animals should be indifferent in such 

experiments, but instead, they are typically found to favour the variable option for delays in 

reward and often prefer the fixed option for reward amounts (Kacelnik & Bateson, 1996; 

Kacelnik & El Mouden, 2013). It has been thought that this constitutes broad support for SUT, 

but despite many empirical studies, researchers have not carefully outlined the theoretical 

predictions of SUT, apparently thinking that the general trends of risk proneness for delays and 

risk aversion for amounts are what SUT predicts (Kacelnik & Bateson, 1996, 1997; Kacelnik & 

Brito e Abreu, 1998; Kacelnik & El Mouden, 2013). Here we outline the fuller flexibility of the 

model’s predictions, providing a possible basis for resolution of conflicts, as well as new ways to 

support or disprove SUT experimentally. We also make connections with related literature. 

 This paper is organised in the following manner. First we explain and define the SUT 

model. Then we outline its, often surprising, predictions in a number of different contexts. 

Specifically, we consider previously misrepresented model predictions of SUT, different 

accounts of rational decision making in the context of SUT, and efficient ways to test SUT. After 



5 
 

this section on model predictions, we discuss extensions, future prospects, and mechanistic 

underpinnings of SUT, and then conclude the paper. 

 

1.1. The model 

1.1.1. Basic definitions 

SUT is a model of perceptual memory’s accuracy that is to be applied only after the animal’s 

learning process can be considered as having stabilised in the sense that further experiences of 

the same experimental setting no longer change the expected behaviour (i.e., observed behaviour 

is stationary, but some learning processes may well be in operation). Pertaining to the 

paradigmatic application of SUT, Figure 1A shows how SUT assumes that the animal represents 

a choice option with fixed reward or delay in its memory, whereas Figure 1B summarises how 

representation of the variable option arises from a mixture of such simple representations. It is 

further assumed that the only way to access these representations is to draw a random sample 

from the associated distribution (Kacelnik & Brito e Abreu, 1998). Because Weber’s law implies 

a higher memory variance (inaccuracy) for the random outcomes with the greater magnitude, the 

mixture distribution of the two equally likely outcomes is heavily skewed (thick line in Fig. 1B). 

Thus, when the animal draws independent samples from its memory representations for the fixed 

option (denoted SF) and for the variable option (SV), the random variable SF is probably slightly 

higher than SV for a given realisation, although more rarely, SV is much higher (the joint sample 

is more likely to derive from the lower-right quadrant in Fig. 1C). Thus, one finds that P(SF > SV) 

> ½ despite the experimenter using equal mean values for both the choice alternatives. If SF and 

SV represent delays to reward, the animal prefers the lower option (most frequently the variable 
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one), and is thus risk prone; in contrast, if SF and SV are amounts of reward, the animal prefers 

the higher value (most frequently the fixed option), and so is risk averse (Kacelnik & Bateson, 

1996, 1997; Kacelnik & El Mouden, 2013). 

Because SUT assumes independent draws from the memory distributions, the probability 

density function of the joint memory distribution relevant for the experiment factorises as fF,V = 

fF × fV, and the integral over the lower diagonal in Figure 1C has a particularly convenient form: 

,)()()( 




 dxxFxfSSP VFVF      (1) 

where FV(x) = P(SV < x) is the cumulative distribution function of the variable option. SUT can 

be extended for more general applications as follows. 

We consider a ‘general experiment’ where an animal can choose one of the finite number 

of options indexed by i, each having a set of associated rewards of values mi = {mi,1, …, mi,k(i)} 

that occur with respective probabilities πi = {πi,1, …, πi,k(i)}, where k(i) is the number of possible 

reward values (“outcomes”) under alternative i. Here, SUT assumes that the animal has 

accurately learned the probabilities of stimuli (π’s) but has perceptual memory, estimation and/or 

retrieval inaccuracy in their magnitudes (in m’s), so that its representation for the outcome of 

option i is captured by the mixture probability density 

    
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where N(∙; mean, s.d.) refers to a Normal density and γ is a representation noise, or error 

parameter (the scalar of “SUT”). This noise has a standard deviation γmi,j that is a scalar multiple 

of the stimulus magnitude mi,j. 
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Gibbon (1977) was aware of the possible problematic confounding of the distribution of 

π’s and that of the stimulus-magnitude estimates as “both are produced by the subject” and he 

presented an analysis that “ignores this problem”, but subsequent work has not considered it. 

Since the model has empirical merits, we also ignore this conceptual problem initially, but 

discuss it later on (in sections 3.1 and 3.2). Our aim is to derive the predictions of SUT as an 

empirical model; we do not claim that conscious estimates of stimulus probabilities are easier to 

make than estimates of stimulus quantity, although estimation of longer time intervals can be 

very challenging if one is not explicitly counting seconds. 

For simplicity, we also use reward amounts (preference for high stimulus values) 

whenever the arguments for amounts versus delays are just complements, unless specifically 

mentioned otherwise; that is, among memories of several outcomes, the animal prefers the 

largest one. In other words, an outcome is preferred if it exceeds the maximum of the 

alternatives. Because the distribution of a maximum is just a product of individual distributions,
1
 

it follows from equations (1) and (2) and these general properties of probabilities that the specific 

probability of choosing option i from the finite set of alternatives is 

    


 

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where Fj is the cumulative distribution function of the density fj that was defined in equation (2). 

This is SUT for the “general experiment” we introduced. 

                                                           
1
 If FY(y) = P(Y ≤ y) and FZ(z) = P(Z ≤ z) are probability distributions of independent random variables Y and Z, then 

the distribution of their maximum is P(max{Y, Z} ≤ x) = P({Y ≤ x} ∩ {Z ≤ x}) = P(Y ≤ x)P(Z ≤ x) = FY(x)FZ(x). Here, ”∩” 
refers to both the conditions holding, and the same argument generalizes to an arbitrary (finite) number of 
variables. 
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 Although SUT is based on the assumption of drawing a single sample from a “reference 

memory”, Kacelnik & Brito e Abreu (1998) expressed reservations regarding this assumption, 

and Todd & Kacelnik (1993) modelled the joint effects of “reference” (long-term) and 

“working” (recent-experience) memory on choice behaviour. Here we nevertheless focus on the 

standard single-sample formulation of SUT, because we think it is important to properly 

understand one model before comparing it with other models. Furthermore, some recent 

psychological data (Rauhut & Lorenz, 2011; Vul & Pashler, 2008) and influential ideas about 

neural computation (Dayan & Abbot, 2001; Deco & Rolls, 2006; Hopfield, 1982) seem in line 

with the single sampling assumption, as further explained in the Discussion section. 

 

1.1.2. Zero rewards or delays 

It is not immediately obvious that this version of SUT really applies to the entire general 

experiment. For example, Shafir et al. (2008) considered a specific example of a choice between 

a certain reward (π1,1 = 1, m1,1 = 3) versus a variable one with an approximately equal mean (π2,1 

= 0.8, π2,2 = 0.2, m2,1 = 4, m2,2 = 0), but previous work has not explicitly addressed what happens 

when an option delivers a reward of zero (mi,j = 0) with a positive probability (πi,j > 0).  

Shafir and colleagues (2008) did not explicitly make reference to SUT, but noticed that if 

an animal draws samples from its memory and has perfectly accurate estimates for both m’s and 

π’s, then for a given draw the risky option will yield precisely the value “4” with probability 0.8 

and value “0” with probability 0.2. The “safe” option, in turn, always yields precisely the value 

“3”. In repeated testing, the “safe” option “wins” (the relation Ssafe > Srisky is satisfied) only every 

fifth trial, and thus the animal will pick the “safe” option with a probability 0.2; its behaviour is 
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characterized as “risk prone”. In contrast, if the animal cannot discriminate at all between the 

values “3” and “4” but readily discriminates between nothing and something, then in half of the 

“risky” mental draws yielding a reward (proportion 0.8 of all draws), the draw from the “safe” 

option will nevertheless “win”, and thus the animal now picks the safe option with probability 

0.6 (i.e., probability 0.2 for no reward from “risky” option plus 0.5×0.8 from the now 

indiscernible rewards). Thus, the introduction of perceptual/memory error has changed the 

animal’s behaviour in this experiment from risk prone [i.e., P(choose “safe”) = 0.2 < 0.5] to risk-

averse [i.e., P(choose “safe”) = 0.6 > 0.5]. Shafir et al. (2008) showed that humans and 

honeybees indeed changed from risk-prone to risk-averse when the perceptual accuracy was 

experimentally reduced by using a very easy task and then a much harder task. How can SUT 

handle this case where zero-valued rewards are introduced? 

 A formal mathematical explanation is given in the Appendix A, but here it suffices to 

observe Figure 2A and take it for granted that the distribution N(x; 0, γ0) is Dirac’s delta 

functional δ(x) that assigns a probability mass 1 to the point {x = 0} and no mass elsewhere. 

Dirac’s δ is not a function in the ordinary sense, but it is the outcome of completing the limiting 

process in Figure 2A and it can be treated as a probability measure whose cumulative 

distribution function gets a value zero if x < 0, and 1 if x > 0 (Klenke, 2008; Rudin, 1991). 

Whereas this complication of zero rewards is thus solved by some knowledge of measure-

theoretic calculus and functional analysis, Figure 2A reveals a further complication. 

 

 

 



10 
 

 

1.1.3. Alternative fixed-outcome densities 

Although we see that SUT limits the unwieldy negative draws from memories of amounts 

(the probability mass below 0 in Fig. 2A) by the fact that the standard deviation tends to zero in 

proportion to the mean, these nevertheless exist in the model. Kacelnik & Brito e Abreu (1998) 

argue that negative memories are “unrealistic and can be ignored” by starting the integration in 

equation (1) from 0 rather than minus infinity. If this were the case, then P(choose “safe”) would 

not be predicted to equal 1 – P(choose “risky”) in an experiment where an animal must choose 

either the “safe” or the “risky” option (i.e. P would not be a probability measure but a sub-

probability, or finite measure; Klenke, 2008). A better way to do the truncation of the integral 

would be to replace the underlying normal distributions with truncated normal distributions 

(Appendix B). Numerical experiments show that the use of truncated normal distributions 

provides mostly the same predictions (Figure 2B) and negative values may turn out to have an 

interpretation (see discussion section on interpreting γ). Thus, when it is inconsequential, we use 

the simplest SUT model with Normal distributions and unrestricted integrals, and only discuss 

what the results would be for alternative distributions. 

In addition to the Normal distribution, the Inverse Gaussian distribution can produce the 

scalar property, is consistent with certain kinds of theoretical timing networks and 

experimentally found properties of neurons involved in time processing, and provides a slightly 

better fit to behaviour in interval timing tasks than the Normal distribution (Simen, Balci, de 

Souza, Cohen, & Holmes, 2011; see Figure 2C and Appendix B). Furthermore, it has been 

suggested that related mechanisms could be involved in the processing of quantity and 

numerosity in addition to time (Buhusi & Meck, 2005; Matell & Meck, 2004; Merchant, 
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Harrington, & Meck, 2013). The distribution arises naturally in the context of drift-diffusion 

processes used to model the timing of behaviour in humans and animals, but it is not strictly 

defined at zero. Inverse Gaussian distributions can be used in the same computations as Normal 

and Truncated Normal distributions, however, if the value at zero rewards is taken to be a delta 

distribution as for the Normal distribution (see Appendix B for details). Here, all the three 

approaches yield the heuristic predictions of Shafir et al. (2008) qualitatively, but not 

quantitatively, as we now show. 

Figure 2D plots the SUT-predicted probability of choosing the “safe” option in the 

example experiment as a function of the perceptual-memory noise γ (note that 1/γ then 

parameterizes discriminability). We see that at the limit of perfect discriminability (γ = 0) the 

animal is predicted to be risk prone and when the discriminability deteriorates (γ increases) the 

animal is predicted to be risk averse, but only barely; certainly not nearly as much as heuristic 

computations and empirical results in Shafir et al. (2008) would suggest. This is because one-

dimensional SUT is not flexible enough to allow a situation where the animal would easily (i.e., 

nearly perfectly) discriminate no reward from reward, while at the same time, have no ability to 

discriminate between two distinct rewards (eliminating ‘negative’ memories by the use of 

truncated normal helps a bit here, and use of Inverse Gaussian even more; Fig. 2D). To capture 

such a situation, SUT should either relax its defining scalar-hypothesis or make use of stimulus 

variations in several dimensions [the experiment of Shafir et al. (2008) used several ‘perceptual 

dimensions’, since their easy task was presented as numbers and the difficult one as dots]. On the 

other hand, it is the falsifiable predictions (restricted flexibility) that make SUT an attractive 

model, and motivates our efforts to fully outline these predictions. 
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In summary, the central assumptions of SUT are: (i) the process of retrieving perceptual 

memories can be approximated by a process of random sampling from a probability distribution, 

(ii) the distribution of retrieved “memories” for a fixed outcome is subject to the scalar property, 

(iii) memories of variable outcomes correspond to mixtures of fixed outcomes with mixing 

weights equal to probabilities of the outcomes, and (iv) the animal (possibly human) is in a 

trained state. “Trained state” means here that there is no uncertainty regarding π in the general 

experimental paradigm; the animal knows the outcome probabilities, but still has 

memory/perceptual imprecision in the quantity of delay to or amount of reward. We adopt these 

previously implicitly introduced assumptions here, but feel that we have provided a more 

rigorous and explicit definition of SUT than has been available in the previous literature. We will 

next proceed to outline the qualitative predictions of SUT. 

 

2. Results 

2.1. Model predictions 

2.1.1. SUT predicts both risk aversion and proneness for both amounts and delays 

Although it has been implied that SUT always predicts animals to be risk averse in the face of 

variability in reward amount and risk prone for delays to reward (Bateson & Kacelnik, 1995b; 

Kacelnik & Bateson, 1996; Kacelnik & Brito e Abreu, 1998; Kacelnik & El Mouden, 2013), the 

formal treatment of the experiment in Shafir et al. (2008) in the “Model” section of this paper 

suggested that this is not true when the experiment involves a zero-valued outcome. The 

associated empirical experiment also found risk proneness for amounts (Shafir et al., 2008). As 

we now show, SUT can predict both risk proneness and risk aversion for reward amounts 
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depending on the values of γ and π, even when zero-valued rewards are not involved. This is of 

interest because there are several empirical studies where animals demonstrate risk proneness for 

amount (De Petrillo, Ventricelli, Ponsi, & Addessi, 2015; Haun, Nawroth, & Call, 2011; 

Ratikainen, Wright, & Kazem, 2010; Xu & Kralik, 2014). 

 We consider an experiment that defines the “safe” option as (π1,1 = 1, m1,1 = m) and the 

“risky” option as (π2,1 = 1 – θ, π2,2 = θ, m2,1 = s, m2,2 = s + (m – s)/θ), where 0 < θ < 1 and 0 < s < 

m. That is, the safe option always yields a reward m, whereas the risky option yields a smaller 

reward with probability (1 – θ) or a bigger reward with probability θ, the average being m, 

nevertheless. Notice that this is the ‘paradigmatic’ experiment in Figure 1, with the exception 

that θ can take values other than 0.5. Figure 3 shows the contour plots for the probability of 

choosing the “safe” option [i.e., P(choose safe); left column] and the animal’s indifference 

regions [i.e., P(choose safe) ≈ 0.5; right column] as a function of both θ and γ. It can be seen that 

SUT yields all the conceivable cases: depending on the experimental parameter θ and the 

animal’s perceptual noise γ, the animal is predicted to be risk prone, risk averse, or indifferent to 

risk. Thus, there is no general qualitative prediction of SUT; specific predictions need to be 

determined on a case by case basis (almost exactly the same results are obtained for truncated 

normal and inverse Gaussian distributions; not shown, but available from the authors upon 

request). However, in the special case where the means of the alternatives are equal and the risky 

option has two equiprobable outcomes (i.e., θ = 0.5), SUT consistently predicts risk aversion for 

amount or indifference to risk, but not risk proneness (see Fig. 3). We now consider this special 

case. 

When a risky option has two equiprobable outcomes, SUT predicts indifference between 

the risky option and the safe option precisely when the magnitude of the safe option equals the 
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geometric mean of the two equiprobable outcomes in the risky option (Bateson & Kacelnik, 

1995b). Because SUT assumes that choice is not based on any explicit concept of risk and that 

the animal only tries to maximize its immediate reward, one could think that this geometric mean 

represents the “point of subjective equality” for the animal, wherein the value of the safe option 

“looks” or “is remembered” equal to the average value of the risky option, thereby resulting in 

the animal’s indifference. This provides a link between SUT and empirical literature on the 

bisection of an interval, where animals and humans display the point of subjective equality at the 

geometric mean of the interval’s end points (Allan & Gibbon, 1991; Church & Deluty, 1977; 

Jordan & Brannon, 2006; Pearson, Roitman, Brannon, Platt, & Raghavachari, 2010; Platt & 

Davis, 1983; Stubbs, 1976). In this context, the geometric mean has also been referred to as the 

“certainty equivalent” of the variable-option value (Kacelnik & Brito e Abreu, 1998). Because 

the geometric mean is less than or equal to the arithmetic mean, certainty equivalence implies 

risk aversion or indifference for amounts, but not risk proneness. In  Appendix C, we show that 

the geometric-mean property (Bateson & Kacelnik, 1995b) does not hold for more than two 

equiprobable outcomes or for the alternative memory distributions, however. For all practical 

purposes, indifference would also result when accuracy deteriorates enough, that is, when γ tends 

to infinity; in that case, any value is certainty equivalent. 

Without specifying further context, risk sensitivity of the above kind cannot be 

understood solely from rationality arguments based on average gains, because the variable 

(risky) choice option has the same average gain as the fixed (safe) option. Other definitions of 

rational choice exist, however. There has been a great deal of theoretical and empirical interest in 

the extent to which animal decision making can be seen as rational (Fawcett et al., 2014; 

Houston, 2012; Kacelnik, 2006; McNamara, Trimmer, & Houston, 2014; Monteiro, 
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Vasconcelos, & Kacelnik, 2013; Rieskamp, Busemeyer, & Mellers, 2006; Schuck-Paim & 

Kacelnik, 2007; Shafir, Waite, & Smith, 2002; Trimmer, 2013). A theoretical investigation of 

SUT is still lacking in these regards. We undertake that next. 

 

2.1.2. SUT and rationality: Transitivity and its equivalents 

Tversky and Russo (1969) showed that several rationality concepts areequivalent to the condition 

known as the Strong Stochastic Transitivity (SST). Some studies on starlings have indicated that 

the birds uphold such principles of rationality (Schuck-Paim & Kacelnik, 2007; Monteiro et al., 

2013), but an overwhelming number of studies suggest that humans do not (Rieskamp et al., 

2006). But what SUT predicts regarding rationality remains unclear. We treat here only the case 

of SST, and list the equivalent conditions in the Appendix D. 

Simply put, transitivity of choice preferences means that if an animal prefers an option b 

over an option a and also prefers an option c over the option b, then it should prefer option c over  

option a (a strict definition is given below). Now, there are many conceivable cases where such a 

condition might not hold despite optimal behaviour on behalf of the animal; for example, when 

the options involve differences in several qualitative dimensions, when the animal’s internal or 

environmental state differs across the pairwise comparisons, or the options have differential 

availability in the future or their value depends on the overall context of the choice process 

(Houston, 2012; Houston, McNamara, & Steer, 2007; McNamara et al., 2014; Schuck-Paim, 

Pompilio, & Kacelnik, 2004). Typically, violations of transitivity have been seen as problematic 

for decision-making theories, because they suggest that there is no single scale that can be used 

to assign value (or ‘utility’) to choices (Houston, 2012; Rieskamp et al., 2006), but SUT is a 
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theory in which we have a fixed dimension of value and aim to explain effects of variance on the 

behaviour that arises from it. Thus, we ask a novel question: is it possible to induce violations of 

strong stochastic transitivity in SUT predictions just by manipulating ‘experimental’ variance? 

 The definition of SST translates to the context of SUT as follows:  

if P(Sb > Sa) ≥ ½ and P(Sc > Sb) ≥ ½, then  

P(Sc > Sa) ≥ max{P(Sb > Sa), P(Sc > Sb)}.  

We prove this general relationship does not hold for SUT by deriving a contradiction; that is, by 

giving a specific example where it is violated. Although an infinite number of such examples 

exists, a single illustrative one suffices here, and in it we fix γ = 0.25. Then, let option a be (ma,1 

= 3, ma,2 = 10, ma,3 = 15, πa,1 = 0.6, πa,2 = 0.3, πa,3 = 0.1), option b be (mb,1 = 5, πb,1 = 1) and 

option c be (mc,1 = 6, πc,1 = 1). Now SUT predicts that P(Sb > Sa) ≈ 0.56, P(Sc > Sb) ≈ 0.70, but 

P(Sc > Sa) ≈ 0.60, which is less than 0.70. This contradicts the SST assumption, and thus 

disproves it for SUT. Since the proof was not constructive, we would like to better understand 

why this happens. 

 Figure 4A shows the cumulative distribution functions of each option’s SUT 

representation. Because option a is highly skewed, option c compared to option b takes a much 

larger share of total probability mass over the decision boundary (the diagonal line) than when 

option c is compared to option a despite b already being preferred to a; this breaks SST [see 

Figure panels 4B‒D; cf. Eq. (1) and Fig. 1]. In effect, this is because of the skew, which causes 

the heavy tail of the distribution of a to only slowly “drag” over the diagonal line as a function of 

translations in the more concentrated (fixed or safe) member of the joint bivariate distribution. 

Thus, we conclude this section by observing that strong stochastic transitivity can be broken for 
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SUT by relatively simple manipulations of skew. Similar argument could be made for both 

truncated normal and inverse Gaussian base distributions.  

As our example shows, it is not difficult to construct experimental settings for which SUT 

predicts a violation of SST. Just one such example suffices for a mathematical proof by 

contradiction; however, it is equally easy to construct special cases where SST is predicted to 

hold. For example, taking a less skewed option a such that (ma,1 = 3, ma,2 = 6, πa,1 = 0.5, πa,2 = 

0.5) and keeping b and c as they were above, one finds that b is preferred to a at P(Sb > Sa) ≈ 

0.61, c to b at P(Sc > Sb) ≈ 0.70, and as expected in SST, P(Sc > Sa) ≈ 0.73 ≥ max{0.61, 0.70}. 

Thus, the take-home message here is not just that SST does not generally hold for SUT, but also 

that experimentalists interested in both rationality and SUT should establish what SUT predicts 

in their particular experiment. 

 

2.1.3. SUT and rationality: Probability Matching 

A much discussed finding in decision-making research is that even though an animal has strong 

evidence that an option yields a more frequent pay off than its alternative, it does not consistently 

choose the better option but only in proportion to the reward frequencies of the two options (Erev 

& Barron, 2005; Houston, Kacelnik, & McNamara, 1982; Koehler & James, 2014; Vulkan, 

2000). This finding, known as probability matching, can be seen as a violation of rationality in 

the sense that the behaviour does not maximize expected rewards. Our general experiment can be 

turned into a typical probability-matching study by considering two uncertain rewards of equal 

size but unequal frequency; for example, (m1,1 = 3, m1,2 = 0, π1,1 = 2/3, π1,2 = 1/3) and (m2,1 = 3, 

m2,2 = 0, π2,1 = 1/3, π2,2 = 2/3). Given that the expected reward of the first option is 2 and that of 
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the second option only 1, the animal would maximize its gains by always choosing the first 

option. The probability-matching behaviour, in contrast, would yield a choice frequency of 2/3. 

What does SUT predict? 

 The prediction of SUT in the specific probability-matching experiment is given by 

integral of f1 × F2 over the real line, where the functions f1(x) = 1/3×δ(x) + 2/3×N(x; 3, γ3) and 

F2(x) = 2/3×H(x) + 1/3×Φ(x; 3, γ3). Here, δ is the Dirac’s Delta function, H is its cumulative 

distribution function (i.e., Heaviside step function), N is the SUT’s normal density and Φ its 

cumulative distribution function. According to the derivation of Appendix E, we get a prediction 

P(S1 > S2) = 1/3×2/3×1/2 + 1/3×1/3×Φ(0) + 2/3×2/3×(1 ‒ Φ(0)) + 1/3×2/3×∫ N(x)Φ(x)dx. We 

suppressed m and γ in the above equation, but by setting m = 3 and γ = 0.5, it follows that P(S1 > 

S2) ≈ 0.659 ≈ 2/3. Thus, we recovered the probability-matching prediction almost exactly using 

SUT. 

 

2.1.4. SUT and Coefficient-of-Variation models 

It has been noticed that risk sensitivity is well predicted by the coefficient of variation (CV) of 

the “risky” option, but not by variance or standard deviation (Shafir, 2000; Weber, 2010; Weber, 

Shafir, & Blais, 2004). The CV is defined as the standard deviation divided by the mean, 

similarly to γ in SUT. A crucial difference, however, is that the CV refers to the properties of the 

experimental condition in question (fixed over individuals and species, varies across 

experiments), whereas γ refers to the subject’s internal processes (varies over individuals and 

species, fixed across experiments). Specifically, the meta-analytic findings suggest that risk 

sensitivity [i.e. |P(choose risky) – 0.5|] is linearly predicted by the CV of the risky option in 
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experiments where subjects (animals or humans) need to learn the reward values of the choice 

options by experience instead of being simply told them (as in some experiments on humans) 

(Shafir, 2000; Weber et al., 2004). Given that both the models, CV-based and SUT, rely on the 

‘scalar property’ and are applied to same data, their inter-relationship should be made explicit. 

This follows next. 

 We consider again the “paradigmatic” experiment where subjects choose between 

fixed/safe and variable/risky option, both having equal means: the “safe” option is (π1,1 = 1, m1,1 

= m) and the “risky” option is (π2,1 = 1 – θ, π2,2 = θ, m2,1 = s, m2,2 = s + (m – s)/θ), where 0 < θ < 

1 and 0 < s < m. For ease of reference, we call s the small reward, m the mean reward and b := s 

+ (m – s)/θ the big reward. We now ask: to what extent does the CV of the risky option linearly 

predict the risk sensitivity implied by SUT? That is, are predictions of SUT and CV models 

distinguishable? To get a picture of this, we arbitrarily fix s = 3 and start varying the difference 

between big and small rewards of the variable option, b – s, and the probability of the big 

reward, θ, while holding the mean reward equal across the two choice alternatives and 

comparing predictions of SUT to the ensuing “experimental” CVs. We observe that the standard 

deviation increases relative to the mean (i.e. CV increases) both when the reward values get 

further from each other (i.e. b – s increases) and when the probability of the big reward (i.e., θ) 

decreases (Figure 5A). Figure 5B–D shows how variance (Var), standard deviation (s. d.) and 

coefficient of variation (CV) change as a function of the mean difference, b – s, for three 

different values of θ (see panel legend). Given this series of “experiments”, one can then 

evaluate the prediction of SUT and see how it relates to the three alternative descriptive statistics 

of variation. 
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 Experimental variance is a convex function of the mean difference (Fig. 5B), standard 

deviation is a linear function (Fig. 5C), and coefficient of variation is a concave function (Fig. 

5D). As it happens, SUT predicts that risk sensitivity (i.e., |P(choose safe) – 0.5|) is a concave 

function of the experimental mean difference (Fig. 5E). Unsurprisingly, when a concave function 

[i.e. P(choose safe)] is plotted against another concave function (CV), the resulting graph looks 

more linear than when plotting it against convex (Var) or linear (s.d.) functions (Figure 5F–H). 

This does not mean that predictions of SUT would be linear functions of CV, however. Both the 

SUT prediction and the CV tend towards a constant function of mean difference for high values 

of θ (Fig. 5H), but for the low values, the deviations from a linear relationship between SUT and 

CV are especially prominent for the low values of γ (i.e., high perceptual accuracy; Fig. 5I). 

Although CV may predicts risk sensitivity well when compared to grossly different kinds of 

functions, such as variance and standard deviation (Shafir, 2000; Weber et al., 2004), it remains 

to be tested which of these two “fair” competitors, SUT or CV, better explains the available data. 

 

2.2. A key experiment 

A strong test for SUT exists and should be easy to implement experimentally, although to our 

knowledge, this has not been done so far. According to SUT, if an animal has a preference, 

represented by a proportion of choices ps, in an experiment (π1,1 = 1, m1,1 = m; π2,1 = 1, m2,1 = s) 

where s < m and a preference pb in an experiment (π1,1 = 1, m1,1 = m; π2,1 = 1, m2,1 = b) where b > 

m, then SUT predicts that it has a preference θps + (1 ‒ θ)pb in the experiment (π1,1 = 1, m1,1 = m; 

π2,1 = θ, m2,1 = s, π2,2 = 1 – θ, m2,2 = b). This is a direct consequence of the way that SUT defines 

variable outcome representations as a linear superposition (mixture density) of fixed outcome 

representations [see equation (2)]. The test of SUT then consists of first conducting the two 
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experiments that measure the preferences (ps and pb) when an animal compares just two fixed 

rewards (using typical paradigms for the given species), and then conducting the last experiment 

where the variable reward is compared to the fixed reward; if SUT is a correct model, the 

outcome of the last experiment should be predictable from the two preceding experiments [i.e. 

yield the preference θps + (1 ‒ θ)pb]. This should hold for all values of θ between 0 and 1. 

Otherwise, a central assumption of SUT, represented in the equation (2), will be falsified. 

The strength of this test derives from the fact that it does not require an estimate for the 

only unknown parameter of the model, γ. The animal’s preference in the third experiment should 

be θps + (1 ‒ θ)pb for all γ. Moreover, the key experiment is invariant with respect to replacing N 

in equation (2) with some other distribution; for example, the truncated normal or the inverse 

Gaussian. This test specifically assesses whether animals and humans encode variable rewards 

using mixture distributions of fixed rewards and then perform mental sampling from these 

mixture distributions. These are core assumptions of SUT that seem to warrant most study now, 

since Weber’s law and the scalar property have been roughly confirmed in simpler settings (Akre 

& Johnsen, 2014, Buhusi & Meck, 2005; Gibbon, 1977; Schuck-Paim & Kacelnik, 2007; Simen 

et al., 2011). 

 

3. Discussion 

This paper has defined basic properties of SUT more rigorously than previous work, and 

highlighted the model’s predictions to a fuller extent than has been available from the previous 

literature. Contrary to common beliefs, we have shown here that (1) SUT predicts both risk 

aversion and risk proneness for both reward amounts and delays to reward, (2) SUT implies 
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violations of different concepts of rationality (it violates strong stochastic transitivity and its 

equivalents, and leads to probability matching behaviour), and (3) SUT can predict, but does not 

always predict, a linear relationship between risk sensitivity in choices and coefficient of 

variation in the choice experiment. These predictions are not sensitive to replacing the model’s 

Normal distributions with truncated normal, or with inverse Gaussians implied by drift-diffusion 

models of neural processing (Simen et al., 2011). Furthermore, we have provided a 

straightforward way to test SUT’s assumption of mental sampling from mixture-distribution 

representations. In a broader context, our results contribute to better understanding of 

proportional processing, which may be a prerequisite for success in the Tinbergian aim to unify 

proximal and distal accounts of choice behaviour (Akre & Johnsen, 2014; Kacelnik & El 

Mouden, 2013; McNamara & Houston, 2006; Tinbergen, 1963). 

We expect that we have not exhausted the predictions of SUT, but we nevertheless 

believe this theoretical review to be useful for experimentalists in guiding their hypotheses and in 

facilitating the testing of SUT. It should also be useful for theoreticians considering extensions of 

SUT, or wishing to become familiar with the model. Regarding extensions of SUT, there is an 

obvious need to understand risk preferences in animal and human decision making when the 

available options vary in several qualitatively different dimensions (Houston, 1991, 2012; 

Shapiro, Schuck-Paim, & Kacelnik, 2012). The most pressing extension in these regards 

concerns simultaneous experimental variation in both reward amounts and delays to reward 

(Shapiro et al., 2012). In addition to many real-world decision-making challenges involving 

multiple dimensions, sometimes it is also difficult, or nearly impossible, to ensure that the 

experimental manipulations occur only in a single dimension (cf. section 1.3). A further 

extension pertains to modelling of risk versus ambiguity, and will be discussed in the sub-section 



23 
 

below. Then we will discuss possible mechanisms underlying SUT and our view of immediate 

future prospects. 

 

3.1. Risk and Ambiguity 

An animal’s choice preferences under risk can sometimes be dissociated from those under 

ambiguity (Santos & Rosati, 2015; Trimmer et al., 2011). Here, “risk” refers to a case where 

probabilistic variation in the reward outcomes is known, whereas “ambiguity” refers to problems 

where the probabilities are unknown. For example, a decision maker faces “risk” when deciding 

whether a ball drawn randomly from an urn turns out to be red or black, if it knows the number 

of red and black balls in the urn. It faces “ambiguity” when the number of balls in the urn is 

unknown, or only partially known. As we discussed above, SUT pertains only to risk, and in 

typical experiments where SUT is used to understand the data, the experimenter tries to carefully 

ascertain that the animal has learned the “relative shares of the balls”. Cross-species comparisons 

suggest that the cognitive systems supporting risk preferences are distinct from those supporting 

ambiguity preferences (Santos & Rosati, 2015), but clearly these are often difficult to fully 

dissociate in experiments and thus it would be valuable to be able to use SUT despite variations 

in the degree of ambiguity. 

 In reality, learning relative values of m’s and π’s is likely to be inter-dependent, but a 

simplifying approximation would be to assume that they are independent. By introducing a 

distribution for π’s, one would then extend SUT to handle ambiguity as well. Since the value of π 

can make a qualitative, not just quantitative, difference to choice behaviour according to SUT 

(e.g., θ in Figure 3), we know that a distribution on it has to make a qualitative difference too. 
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Extensions for modelling ambiguity will be left for future studies. Instead, we will next consider 

some of the possible mechanistic underpinnings for the descriptive aspects of SUT. 

 

3.2. What does the parameter γ stand for? 

Although Kacelnik and Brito e Abreu (1998) state that the coefficient of variation, γ, is not a free 

parameter of the model, because it reflects internal-processes noise and can be estimated 

empirically, they did not explicitly specify the mechanisms that it reflects. Thus, γ makes SUT a 

descriptive rather than mechanistic model. In an analogy, “descriptive” population models 

frequently introduce a parameter, K, for the carrying capacity of the environment that needs to be 

estimated empirically; only models where all parameters have an interpretation in terms of the 

behaviour of individuals (constituents of the population) are then called “mechanistic” (Geritz & 

Kisdi, 2012). By that logic, when analysing individuals instead of populations, all the parameters 

in a mechanistic model need to have an interpretation in terms of the constituents of an 

individual. Unless we specify the physiological and mental processes that suffer from the noise γ, 

SUT remains a descriptive model. Because mechanistic models have many benefits over 

descriptive ones (Geritz & Kisdi, 2012; Servedio et al., 2014), we now discuss possible ways to 

explicitly connect γ with internal mechanisms. 

The striatal beat-frequency model is an influential mechanistic and neural model of 

behavioural timing, and related mechanisms could be involved in the processing of quantity and 

number in addition to time (Buhusi & Meck, 2005; Matell & Meck, 2004; Merchant, Harrington, 

& Meck, 2013). The model assumes that behavioural timing is neurally implemented as pattern 

detection, or pattern matching. At the start of a temporal estimation task, a ‘start-gun’ process 
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(located in ventral tegmental area and substantia nigra pars compacta) synchronizes multiple 

cortical oscillatory neurons with different wavelengths that project onto striatal medium spiny 

neurons, which continuously compare the current pattern of activity to the (learned) pattern that 

has been detected at the time of reward. Although they did not make a connection with the 

striatal beat-frequency model, Deco & Rolls (2006) modelled vibrotactile frequency 

discrimination as a pattern detection (attractor) decision-making neural network, explaining 

observations of Weber’s law in that context (Deco & Rolls, 2006; Deco, Scarano, & Soto-

Faraco, 2007). Their model clearly suggested that γ has an inverse relationship with the number 

of neurons in the attractor network; that is, accuracy increases with the number of neurons (Deco 

& Rolls, 2006). Similarly, one expects more distinct patterns and more accuracy for 

superpositions with a greater number of cortical oscillator neurons than with a lesser number, 

because they allow a better approximation to a full Fourier transform of an impulse function for 

time of reward. This suggests an inverse relationship between γ and the number of neurons for 

the striatal beat-frequency model too. Hence, it seems possible that the number of coding 

neurons is related to accuracy, 1/γ. 

 Neural pattern detection and attractor models suggest that the ‘negative’ 

memories implied by the left tail of SUT’s ‘mental’ normal variates just represent neural 

convergence errors for which the tail provides a good description. The same process might also 

explain why the reward-frequency distribution (the mixing distribution π of SUT) is not 

confounded with the reward-value distributions (the normal distributions of SUT) in the animal’s 

head. This would be because the animal does not ‘remember’, or even represent to begin with, 

any normally distributed range of reward values; just the one and correct value (i.e., the pattern), 

which it only fails to match with a running pattern detection process to a varying degree. 
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Furthermore, the idea of associative memory (attractor) networks resonates with the single-

sampling assumption in SUT, because such a network can simultaneously contain 

representations of multiple patterns and be able to activate only one at the time, the choice of 

which is subject to errors, or noise (Hopfield, 1982; Dayan & Abbott, 2001). 

In addition to a pattern-detection approach, a drift-diffusion process where the internal 

clock is based on ‘counting’ neural spikes is also biologically plausible and in line with 

experimental findings (Simen et al., 2011). This implies that γ is related to a delicate balance 

between excitatory and inhibitory networks that achieve the spike counting and to inherent noise 

in Poisson-spike generating neural units. In another kind of model, γ arises as a by-product of 

competing neural firing rates and a learning process (Pearson et al., 2010). Pearson et al. (2010) 

suggested that the decrease in accuracy (here, increase in γ) exists because it is beneficial for 

reinforcement learning; that is, the associated increase in behavioural sampling ensures better 

learning outcomes. This offers a theoretical viewpoint in which an apparent decrease in accuracy 

can have ‘benefits’. 

Understanding the processes behind perceptual accuracy might ultimately upgrade SUT’s 

status from “descriptive” to “mechanistic”. In turn, more rigorous testing of SUT and outlining 

of its empirically supported predictions could help to distinguish between the mechanistic 

interpretations and to organise empirical findings. It is also likely to illuminate certain empirical 

phenomena, such as the “wisdom of crowds within an individual”, where researchers have 

pointed out that an average of individual’s guesses for a quantity tends to be more accurate than 

the individual guesses, despite he or she gaining no further information between the successive 

guesses (Rauhut & Lorenz, 2011; Vul & Pashler, 2008). Such a phenomenon is expected if 
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individuals’ mental representations are partly equivalent to independent random samples, as 

assumed by SUT. 

 

3.3. Future prospects 

We have outlined a “key experiment” described in the section 2.2 of this paper, and consider it as 

an important future test of SUT. The key experiment tests the general structure of SUT, 

irrespective of the estimable parameter γ. Another possible goal for future work is to extend the 

existing meta-analyses to a new one that explicitly compares the relative merits of SUT and CV 

models (Kacelnik & Bateson, 1996; Shafir, 2000). We also stressed the importance of finding 

explicit mechanisms for the mental coefficient of variation, γ, whose inverse captures the choice 

accuracy. In addition to these important aims, other open theoretical and empirical issues remain 

for SUT, such as understanding selective pressures and constraints on γ. Regarding extensions of 

SUT, since experiments often involve several stimulus dimensions despite all the efforts to 

constrain them to a single one, a multidimensional extension of SUT could be useful in 

understanding these data (Brunner, Gibbon, & Fairhurst, 1994; Shapiro et al., 2012). Another 

future extension of SUT would capture the role of ambiguity in addition to the role of risk, 

because animals’ choice preferences under risk can sometimes be dissociated from those under 

ambiguity (Santos & Rosati, 2015; Trimmer et al., 2011). 

 Related to the role of ambiguity is the role of learning. Animals invariably need to learn 

the various reward probabilities before SUT can be applied, and in addition to allowing 

experimental control over the accuracy of the learned estimates, an explicit model of the learning 

process might illuminate the still open mechanistic interpretations in SUT. Sequential learning in 
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humans and animals is an active field of research on its own (Cappé, Garivier, Maillard, Munos, 

& Stoltz, 2013; Erev & Roth, 2014; Houston et al., 1982; Speekenbrink & Konstantinidis, 2014; 

Sutton & Barto, 1998; Yechiam, Busemeyer, Stout, & Bechara, 2005), and might be fruitfully 

married with the study of proportional processing (Pearson et al., 2010). 

 

3.4. Conclusion 

Much scientific debate around proportional processing has pertained to ‘memory’ distributions 

for delays to reward and for reward amounts/sizes. Here we showed that the exact memory 

distributions often make little difference to predictions about risk preferences, rationality and 

external versus internal statistics based on proportional processing (Weber’s law), and that these 

predictions are much richer than has been expected. It is our hope that this theoretical 

investigation will stimulate fruitful experimental work and further theory in the future. 
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Appendix A Dirac’s delta function as a natural model for zero rewards and delays in SUT 

Dirac’s delta functional δ is not an ordinary function, but a linear mapping from the space D(R) 

of infinitely differentiable and compactly supported, real-valued ‘test’ functions onto the real line 
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R, such that for any φ in D(R), δ[φ] = φ(0) (Rudin, 1991). A standard and convenient definition 

by abuse of notation sets δ to be the function that yields the integral equation 
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but a function that would satisfy this does not exist in the ordinary theory of (Riemann or 

Lebesgue) integration. Instead, the theory of distributions can be used for a rigorous definition 

(Rudin, 1991). For present purposes, it suffices to acknowledge that a rigorous definition does 

exist, and several limiting processes of ordinary functions naturally lead to δ. Many of them are 

not relevant to SUT, however. Thus, we now prove that limμ→0 N(μ, γμ) = δ. 

Without a loss of generality, let μ = 1/n with n a positive integer and γ = 1 in the proof, 

and define a map δn from D(R) to R such that for any φ 
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The function multiplying φ(x) within the integral in (A.1) is just N(1/n, 1/n). The proof is 

completed by showing that the difference |δn[φ] ‒ φ(0)| gets arbitrarily small as n grows. Let ε > 

0 be an arbitrary, small number. Choose a value τ > 0 such that |φ(x) ‒ φ(0)| < ε/3 for all x in the 

interval [0 ‒ τ, 0 + τ], which is known to exist due to the continuity of φ. Then we have 
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The middle integral we chose to be less than ε/3 in absolute value for all n, since N(1/n, 1/n) 

integrates to 1. Because φ is continuous on a compact support, it is bounded and therefore there 

exists M < ∞ such that M > |φ(x) ‒ φ(0)| for any x. For the other two integrals, we may notice that 

nx/τ > 1 when x > τ, and by further assuming that 1/n < τ, use approximations like 
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Now, by choosing n so large that both right-hand side of (A.2) is smaller than ε/3 and 1/n < τ we 

have completed the proof. Although there are other ways to derive δ than using limμ→0 N(μ, γμ), 

this one is important here, and will be specifically needed in Appendix E. 

 

Appendix B Alternative distributions for certain outcomes 

The base density function of SUT is N(x; μ, μγ), with μ > 0 and γ > 0, but this may have positive 

values for x < 0. In other words, negative reward amounts, and even negative delays to reward, 

are implied for animals’ mental representations. If one would like to eliminate the possibility of 

negative values with only minimal change to the original SUT, the density N(x; μ, γμ) can be 

replaced with another density function 

   












0,0

0),,;(
1

),;(

x

xxN
ZxN trunc


 , 



31 
 

where Z = 1 ‒ Φ(-1/γ), and Φ(∙) denotes the standard normal cumulative distribution function 

Φ(∙; 0, 1). Ntrunc is a truncated normal distribution density with a lower truncation at 0. The mean 

of this distribution is not μ, however, but μ + N(-1/γ; μ, γμ)/Z. The standard deviation also differs 

from γμ. When μ is not close to zero, this distribution is close to a normal distribution, but the 

difference between the distributions can take any value for small enough μ, which can cause 

different results in the very low reward amount/delay regime. For example, Ntrunc(0; μ, γμ) ‒ N(0; 

μ, γμ) = (1/Z ‒ 1)exp(‒1/2γ
2
)/ (γμ(2π)

1/2
), which can be made arbitrarily large by decreasing μ. 

 Another distribution that strictly fulfils the scalar property is the Inverse Gaussian 

distribution 
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with the parameter λ = μ/γ
2
. With this parametrization, the mean is μ, the standard deviation is μγ, 

and skewness is 3γ. Since normal distribution has skewness 0, an Inverse Gaussian differs clearly 

from a normal distribution for all μ, but it satisfies the scalar property (standard deviation is 

proportional to mean) and can be a better description of observed response times than the normal 

distribution (Simen et al., 2011). It is a (difficult) empirical question which one of the three 

distributions is the best model, but the normal distribution is certainly easiest to analyse 

theoretically, and in many cases, the predicted behaviour is qualitatively the same for all 

distributions. 
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Appendix C Geometric mean is not a certainty-equivalent value in general 

Bateson & Kacelnik (1995b) prove that, under the SUT model, a certain reward is equally 

preferred to an option yielding two equiprobable outcomes when its magnitude equals the 

geometric mean of magnitudes of the equiprobable outcomes. Their proof uses symmetry of the 

normal distribution and does not therefore generalize to skewed truncated normal and inverse 

Gaussian distributions. We now prove by contradiction that it does not hold for more than two 

outcomes either. 

 Assume that an animal equally prefers an option that yields m1, m2 or m3, all with a 

probability 1/3, to an option that yields m = (m1m2m3)
1/3

 with certainty (i.e. m is the point of 

subjective equality between the variable-outcome option and the fixed-outcome option). Now, 

set m1 = m2. It follows that the experiment is the same as a two-outcome experiment yielding m1 

with probability 2/3 and m3 with probability 1/3, and thereby m = (m1)
 2/3

(m3)
1/3

 should be a point 

of subjective equality in such a two non-equiprobable outcome experiment. It is not, however. 

Take m1 = 1, m3 = 5 and γ = 0.5, and SUT will predict that P(choose constant) = 0.46 < 0.50. 

This completes the proof. As a side note, the deviations from the geometric mean are typically 

not large. 

 

Appendix D Equivalents of Strong Stochastic Transitivity (SST) 

Tversky & Russo (1969) showed that SST is equivalent to “simple scalability”, “substitutability” 

and (weak) “independence from irrelevant alternatives”. The fact that SUT breaks SST thus 

means that it breaks all these other requirements of rational choice, and by implication, also 
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Luce’s stronger form of “independence from irrelevant alternatives” (Rieskamp et al., 2006; 

Luce, 1959). The fact that there are also (at least) two other, non-stochastic, definitions with the 

same name, “independence of irrelevant alternatives”, has been a source of confusion in the 

literature (Paramesh, 1973; Trimmer, 2013); but these are less relevant for the inherently 

stochastic SUT. Below, we list the definitions of Tversky & Russo (1969) in the present notation, 

but do not repeat their proof of equivalence. 

 Let a, b, c and d be choice alternatives in a finite set of alternatives ϒ, and let e.g. Sa 

denote the random variable for a draw from animal’s memory representation for a. Then SUT 

expresses the Tversky & Russo (1969) conditions as follows: 

 Simple scalability: There are real valued functions G and u such that for all a and b in ϒ 

    P(Sb > Sa) = G(u(b), u(a)), 

where G is strictly increasing in its first argument and strictly decreasing in the second. 

 Substitutability: For all a, b and c in ϒ, 

  P(Sb > Sc) ≥ P(Sa > Sc) if and only if P(Sb > Sa) ≥ ½. 

 Independence: For any a, b, c and d in ϒ, 

  P(Sb > Sc) ≥ P(Sa > Sc) if and only if P(Sb > Sd) ≥ P(Sa > Sd). 

 Whereas SUT violates all the above rationality conditions, it does not violate the 

condition of “regularity” as can be seen immediately from the argument of Rieskamp et al. 

(2006) page 644. 
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Appendix E Details on the use of SUT in probability-matching experiments 

This appendix provides details on computations involved when using SUT to predict outcomes 

of probability-matching experiments. We use the general forms here: f1(x) = π1,1×N(x; m1,1, γm1,1) 

+ π1,2×δ(x) and F2(x) = π2,1×Φ(x; m2,1, γm2,1) + π2,2×H(x). The aim is to compute P(S1 > S2) = ∫ 

f1(x)F2(x)dx. The Heaviside step function, H, is defined by H(x) = 1 when x > 0 and H(x) = 0, 

when x < 0. The full definition of Dirac’s delta functional, δ, requires quite a lot more work 

(Rudin, 1991), but it is characterized by the properties 
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where φ is a compactly supported continuous function on the real line.  The properties of H and δ 

imply that 
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Everything in the expression is straightforward to compute, except the last integral over δ times 

H. In general, it is not uniquely defined, since H(0) is not. But in the case of SUT, the most 

natural definition is that ∫δ(x)H(x)dx = ½, as we now show. 
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 In the Appendix A, we showed that the most natural definition of δ for SUT is the limit of 

sequence (δn) as n tends to infinity, where δn was defined in equation (A.1). If we define Hn as 

the cumulative distribution function of δn, then for all n ≥ 1, 

    
2

1
)()( 





dxxHx nn .      (E.1) 

This is because, by the equation (1), the integral in (E.1) is just P(X1 > X2) for two independent 

and identically distributed (i.i.d.) normal variables X1 and X2. By definition of probability, we 

have P(X1 > X2) + P(X2 > X1) = 1 and the i.i.d. assumption implies that P(X1 > X2) = P(X2 > X1). 

Thus, P(X1 > X2) = ½. Note that this only applies to continuous distributions, as then the set {X1 = 

X2} has a measure zero; that is, P(X1 = X2) = 0 (Klenke, 2008). Now since it holds for SUT that 

∫δ(x)H(x)dx = limn→∞ ∫δn(x)Hn(x), the integral ∫δ(x)H(x)dx must be equal to ½. Collecting all the 

arguments thus far, we have fully defined the classical SUT for the general experiment. 
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Figure captions 

 

 

 

Figure 1. Typical application of Scalar Utility Theory (SUT). A) If an animal has been trained in 

an experiment where a choice option always delivers a reward of magnitude 2 (vertical dashed 

line), the animal’s operational (memory) representation is approximated by a normal 

distribution with mean 2 and standard deviation γ2 (solid line for probability density function; γ 

= 0.5 here). B) When a choice option yields a reward of 1 with probability of ½ and a reward of 

3 with probability of ½ (mean is again equal to 2), then this option’s representation is assumed 

to be a mixture of the representation (thick line) for the equivalent certain rewards (thin lines), 

with the mixing weights equal to the probabilities of respective cases of reward in the 

experiment: (½,½). Because the standard deviation of mental representation of a reward is 

assumed to be proportional to the reward value, a more dispersed representation for the bigger 

outcome is superposed on a less dispersed one for the lower outcome, which induces a skewed 

representation for the variable reward. C) Contours of the joint distribution of the independent 

fixed (horizontal axis) and variable (vertical axis) choice options. Because of the skew for the 

variable option and equal means for the fixed and variable option (i.e., 2), a larger share of the 

probability mass resides below the diagonal; i.e., in the set {fixed option > variable option}. 

Thus, in independent random samples the event {fixed option > variable option} occurs more 

often, implying risk-averse behaviour for variable reward amount. 
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Figure 2. Zero rewards in SUT. A) Irrespective of the (constant) value of γ, the standard 

deviation of SUT’s memory representations, γm, tend towards zero as the encoded value, m, 

does so. A small probability of a negative memory draw exists, however. B) With a truncated 

Normal distribution, negative memories are avoided by setting the likelihood of negative values 

to zero and normalising the positive likelihoods so as to integrate to 1. C) The inverse Gaussian 

distribution is also subject to the scalar property, although defined only for positive rewards.  D) 

SUT-predicted probability of choosing the safe option in the experiment of Shafir et al. (2008), 

as a function of γ. Solid line gives the usual SUT prediction, dashed line the one where SUT’s 

normal densities have been replaced by zero-truncated normal densities, and dash-dotted line 

the prediction using Inverse Gaussian distribution (zero reward is represented by Dirac’s delta 

distribution). 
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Figure 3. SUT prediction for two equal-mean outcomes as a function of γ and θ. Left column of 

panels shows contour plots and right column indifference regions (black areas), where 0.495 < 

P(S2 > S1) < 0.505, implying that the animal has no readily observable preference. Rows show 

the same for different values of mean (m) and small outcome of the variable option (s). The 

findings are almost exactly the same when replacing normal base distribution of the model with 

truncated normal or inverse Gaussian. 
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Figure 4. Strong Stochastic Transitivity (SST). An example where SST is violated is illustrated. 

A) Cumulative distribution functions of alternative a (solid line), b (dashed line), and c (dotted 

line). B‒D) Joint probability densities of the options. The higher mean of c compared to b takes 

more probability mass over the diagonal for the joint distribution of c and b than for the joint 

distributions of c and a or b and a. Because b was already preferred to a and c preferred to b, 

strong stochastic transitivity would require c to be preferred to a even more than it is preferred 

to b; but this fails to happen in the present SUT parametrisation. 
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Figure 5. Statistics of variation compared with SUT prediction. Panels A to D statistically 

characterize the risky option of the experiment, whereas panels E to I compare those statistics 

with corresponding predictions of SUT; the safe option has a fixed mean equal to that of the 

risky option. A) Contours plot for coefficient of variation (CV) of the two-outcome risky, or 

variable option as a function of the difference of outcomes (b – s) and the probability θ of getting 

the big reward b when choosing this option (s = 3). CV has been used to predict risk sensitivity, 

which is defined as absolute difference between probability of choosing the risky option instead 

of a safe option with equal mean and the indifference-value ½. B‒E) Variance (Var), standard 

deviation (s. d.),and  CV of the risky option, and associated SUT prediction as a function of b – s, 

for three different values of θ. F‒H) SUT prediction compared to the variance, standard 

deviation, and CV. I) SUT prediction compared to CV when θ =0.1, for three different values of 

the scalar γ. 
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Highlights 

 Scalar Utility Theory (SUT) is a model used to predict animal and human choice behaviour in the 

context of reward amount, delay to reward, and variability in these quantities (risk preferences). 

Here it is shown that, contrary to previous claims: 

 SUT can predict both risk averse and risk prone behaviour for both reward amounts and delays 

to reward depending on experimental parameters 

 SUT implies violations of several concepts of rational behaviour 

 SUT can predict, but does not always predict, a linear relationship between risk sensitivity in 

choices and coefficient of variation in the decision-making experiment 

 In addition, a straightforward way to test the key assumptions of SUT is suggested. 


